JPH041798B2 - - Google Patents

Info

Publication number
JPH041798B2
JPH041798B2 JP60202185A JP20218585A JPH041798B2 JP H041798 B2 JPH041798 B2 JP H041798B2 JP 60202185 A JP60202185 A JP 60202185A JP 20218585 A JP20218585 A JP 20218585A JP H041798 B2 JPH041798 B2 JP H041798B2
Authority
JP
Japan
Prior art keywords
weight
oil
extreme pressure
lubricant
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60202185A
Other languages
Japanese (ja)
Other versions
JPS6284192A (en
Inventor
Takeshi Kobori
Shigeki Kimura
Tadashi Ito
Kazuhide Takaishi
Masamitsu Tamura
Mitsuru Kamimura
Nobuhiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20218585A priority Critical patent/JPS6284192A/en
Publication of JPS6284192A publication Critical patent/JPS6284192A/en
Publication of JPH041798B2 publication Critical patent/JPH041798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Metal Extraction Processes (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属の冷間加工用潤滑剤に関し、殊に
ステンレス鋼管等のプラグ引抜において取扱いが
簡単であり且つ比加工材のの表面粗度が著しく改
善できる同潤滑剤に関するものである。 [従来技術] 鋼管等の各種金属管に冷間加工(圧延、押出
し、抽伸等)を施す場合には、加工製品の品質向
上及び工具の摩耗抑制(焼付防止)等の為種々の
潤滑剤が使用されている。しかしながら公知の潤
滑剤は、潤滑性能、加工後の除去容易性及び廃液
の低公害性等のすべての要求特性を満足している
とは言えない。 又比較的新しい潤滑法としては、金属材の表面
に予め化成被膜を形成しておき更に2次潤滑剤
(例えば化成金属石鹸)を塗布処理して潤滑性能
を高める方法も開発されている。かかる化成被膜
としては、燐酸塩被膜(普通鋼や低合金鋼等に適
用)、弗化アルミニウム被膜(Al又はAl基合金に
適用)、蓚酸塩被膜(ステンレス鋼等に適用)等
が知られており、この方法であれば被加工金属と
化成金属石鹸被膜との間に化成被膜が介装されこ
れらが夫々化学的に一体化されている為、潤滑被
膜は極めて強固な密着性を示し加工率を高めた場
合でも、十分な潤滑機能を発揮する。 [発明が解決しようとする問題点] しかしながら上記方法においては高い加工率を
得ることが可能である反面、油性潤滑剤に比べて
コストが高い場合、化成被膜形成が非常に不安定
であることが問題点として挙げられる。又加工後
に被加工材に残留する2次潤滑剤をアルカリ液
(例えばオルソ珪酸ナトリウム水溶液)等で除去
し、更に化成被膜をも除去しなくてはならない。 化成被膜は被加工材と化学反応しており被加工
材に対する密着性が良好であり過ぎる為、加工完
了後に化成被膜を除去する場合には酸洗が必須要
件となる。又酸洗によつて化成被膜を除去すると
被加工物表面がエツチングされ滑らかな金属肌が
得られなくなる。一方油性潤滑剤は空引き或は心
金引きの様な極めて加工率の低い場合においての
み使用されるのが現状である。特にステンレス鋼
においては加工時に発生する加工圧力が他の金属
に比べて非常に高い為、その高圧力に耐え得る油
性潤滑剤が存在せず、潤滑時における耐圧強度は
化成処理の法が優れている。 上記事情に鑑み本発明者らは、油性潤滑剤であ
つて滑らかな金属肌が得られ且つ加工率の高い場
合にも使用できる様な潤滑剤を提供すべく研究を
行ない、本発明を完成するに至つた。 [問題点を解決する為の手段] 本発明は、 ()A:塩素化パラフインと燐酸エステルの重量
配合比が4:1の混合物:40〜50重量部、 B:イソブチレンとn−ブテンの共重合物でそ
の平均分子量が1200〜2400のものと、50℃に
おける動粘度が30cstの動・植物油脂との混
合物:50〜60重量部、 から成り、50℃における粘度が200±50cstである
潤滑油:100重量部に対し、 () 金属石鹸及び/または無機固体潤滑剤粉末
である固体潤滑剤を20〜30重量部配合してなる
点に要旨を有するものである。 [作用] 本発明者らは上記問題に対し、特にステンレス
鋼管の表面粗度を極めて良好に仕上げる為、境界
潤滑状態が良好であり且つ焼付け(すじ状欠陥)
の生じない潤滑剤の開発が必要であると着目し、
それを実現する為に極圧添加剤の作用が重要であ
ると判断し種々研究を重ねた。又金属面への吸着
力が強く、油膜厚さの維持性が良く、粘度指数の
高い極圧添加剤のキヤリアとなる物質と基油とし
て選び、両者を適正割合で配合すれば目的が達成
されるとの認識を得た。 例えばステンレス鋼管のプラグ引抜きでは、引
抜開始時においては工具温度(プラグ、ダイス
等)は常温程度であり、引抜きが進行するにつれ
て工具温度は急激に上昇し(200℃程度と考えら
れる)、引抜開始時の金属管の肉厚や工具温度の
関係から大きな荷重がかかり、これが焼付事故発
生の原因となる。この様な焼付事故を防ぐ為極圧
添加剤はその特性として常温から200℃程度迄の
間において優れた極圧効果を発揮するものが望ま
しい。ここで極圧効果とは、摩擦熱などの熱によ
つて極圧添加剤が熱分解し、金属面と作用して或
る種の化合物を生成し、これが摩擦又は表面の損
傷量を減少させる現象を言う。極圧効果を発揮す
る物質を極圧添加剤と呼ぶが、この様な極圧添加
剤として塩素化合物、硫黄化合物及び燐化合物等
が知られている。(F.P.Bowden and D.Tabor、
“The Friction and Lubrication of solids”、
Oxford 1974の訳書、「固体の摩擦と潤滑」曽用
範宗訳参照)。 本発明者等は常温から200℃程度の温度領域に
て優れた極圧効果を発揮する極圧添加剤を調査し
た。そして上記条件を満足する極圧添加剤とし
て、塩素化パラフイン、燐酸エステル及び硫化油
脂等が得られた。 塩素化パラフインは150〜250℃の温度域で優れ
た極圧効果を発揮し、その作用は境界潤滑状態に
おいて熱分解してC−Cl結合が切断されてCl2
はHClを生成し、鋼と反応して塩化第1鉄或は塩
化第2鉄の被膜を金属表面に生成する。これらの
塩化物は剪断力の小さい層状構造をもつ為外力に
よつて容易に剪断され、このことによつて摩擦が
減少して焼付が防止される。 燐酸エステルにおいても前記塩素化パラフイン
と同様に鋼と反応し、低融点で滑り性の良好な燐
酸鉄(FePO4・2H2O)を生成する。この反応
は、常温から180℃位の温度域で進行する。 塩素化パラフイン及び燐酸エステル以外の極圧
添加剤として硫化油脂があるのは既にに述べた通
りであるが、硫化油脂の場合は極圧反応温度域が
250℃以上と高く本発明の目的に適合しない。 常温から200℃程度までの温度域で極圧効果を
有効に発揮する極圧添加剤は単独では存在しない
が、前記塩素化パラフイン及び燐酸エステルを所
定量配合することによつて本発明の目的に適う極
圧添加剤を実現できるものとの着想を得た。 この様にして選定した極圧添加剤を金属表面へ
吸着させるのを補助する為及び油膜厚さの維持を
図る為、キヤリアとしての機能を有する粘度指数
の高い基油を選定する必要がある。基油としての
条件を満たす物質としては、イソブチレンとn−
ブテンの共重合物が選ばれる。該共重合物は通称
ポリブテンと呼ばれる物質であり、潤滑膜厚維持
に効果を発揮すると共に温度に対する粘度変化が
少なく、又化学的に安定で熱や紫外線に対する安
定性も良い。 しかしながら上記共重合物は金属表面への吸着
性に難点があり、鉱物油の吸着性よりも良好であ
るものの、吸着性はあまり良好でないという欠点
を有している。そこで本発明者らは該共重合物の
吸着性を補う為には油性向上剤の添加が有効であ
ると考えた。該油性向上剤とは動・植物油脂や脂
肪酸或は脂肪酸エステルの如きものを指し、長い
炭化水素基と極性基とからなるものである。油性
向上剤において、炭化水素基部分は潤滑油分子と
類似してなる為これを溶解し、一方極性基は油分
子と異なつている為添加剤として作用し潤滑油の
性質を向上させる働きがある。更に金属やす水は
極性表面を有しているので、極性基を持つ分子が
金属や水の表面に吸着する訳である。 以上述べた理由から、本発明では本発明では上
記共重合物とと油性向上剤の混合物を基油として
使用した。この様に調製される基油は鉱物油単独
と比較して遥かに優れた潤滑効果を発揮するもの
であつた。 引抜加工においては潤滑剤の粘度は重要な項目
の一つである。粘度が高い程油膜保持効果も高く
潤滑性能としては良好になるのであるが、本発明
の目的は境界潤滑状態による表面粗度の向上にあ
り、この点から考えると潤滑剤の粘度が高くなり
過ぎて流体潤滑領域が増えることは好ましい事項
とは言えず又作業性からも問題が生じる。逆に潤
滑剤の粘度が低過ぎる場合には焼付事故が発生し
やすくなり、工具の損傷を招くばかりか目的とす
る金属表面粗度の改善も困難となる。 [実施例] 実施例 1 本発明者らは塩素化パラフイン及び燐酸エステ
ルの最適配合割合を調査すべく実験を行なつた。
塩素化パラフインは炭素数12で塩素含有量70%の
もの、燐酸エステルは炭素数13のジアルキルホス
フアイトを夫々用いた。塩素化パラフインと燐酸
エステルの混合物を、50℃における粘度が30cst
のパラフイン系鉱物油で希釈し試作油No.a−1〜
a−6のものを調製した。鉱物油で希釈した理由
は、極圧添加剤のみでは焼付荷重が高くなり過ぎ
る為である。但し焼付荷重試験は防衛庁暫定規格
NDS・XXK2740(曽田四球式試験法)に準じて
回転数750rpmで行なつたものであり、試験終了
後の摩耗痕は「回転方向×軸方向」の痕の大きさ
を示し、摩擦係数は曽田振子型油性試験機により
求めた値である。 その結果を第1表に示す。
The present invention relates to a lubricant for cold working of metals, and in particular to a lubricant that is easy to handle when plugging stainless steel pipes and the like and can significantly improve the surface roughness of processed materials. [Prior art] When performing cold working (rolling, extrusion, drawing, etc.) on various metal pipes such as steel pipes, various lubricants are used to improve the quality of processed products and suppress tool wear (prevent seizure). It is used. However, known lubricants cannot be said to satisfy all required properties such as lubrication performance, ease of removal after processing, and low pollution of waste fluid. As a relatively new lubrication method, a method has also been developed in which a chemical conversion film is formed on the surface of a metal material in advance and a secondary lubricant (for example, chemical metal soap) is further applied to improve the lubrication performance. As such chemical conversion coatings, phosphate coatings (applied to ordinary steel, low alloy steel, etc.), aluminum fluoride coatings (applied to Al or Al-based alloys), oxalate coatings (applied to stainless steel, etc.) are known. In this method, a chemical conversion film is interposed between the metal to be machined and the chemical metal soap film, and these are chemically integrated, so the lubricating film exhibits extremely strong adhesion and increases the processing rate. It exhibits sufficient lubrication function even when the temperature is increased. [Problems to be Solved by the Invention] However, while it is possible to obtain a high processing rate with the above method, the formation of a chemical conversion film may be very unstable if the cost is higher than that of oil-based lubricants. This is raised as a problem. Furthermore, after machining, the secondary lubricant remaining on the workpiece must be removed with an alkaline solution (for example, an aqueous sodium orthosilicate solution), and the chemical conversion film must also be removed. Since the chemical conversion film chemically reacts with the workpiece and has very good adhesion to the workpiece, pickling is essential when removing the chemical conversion film after processing is completed. Furthermore, if the chemical conversion coating is removed by pickling, the surface of the workpiece will be etched, making it impossible to obtain a smooth metal surface. On the other hand, oil-based lubricants are currently used only in cases where the machining rate is extremely low, such as during dry drawing or mandrel drawing. In particular, the processing pressure generated during processing of stainless steel is much higher than that of other metals, so there is no oil-based lubricant that can withstand that high pressure, and chemical conversion treatment is superior in terms of pressure resistance during lubrication. There is. In view of the above circumstances, the present inventors have conducted research to provide an oil-based lubricant that can provide a smooth metal surface and that can be used even when processing rates are high, and have completed the present invention. It came to this. [Means for Solving the Problems] The present invention comprises: () A: A mixture of chlorinated paraffin and phosphoric acid ester in a weight ratio of 4:1: 40 to 50 parts by weight; B: A combination of isobutylene and n-butene. A mixture of a polymer with an average molecular weight of 1,200 to 2,400 and an animal or vegetable oil with a kinematic viscosity of 30 cst at 50°C: 50 to 60 parts by weight, and has a viscosity of 200 ± 50 cst at 50°C. The gist is that 20 to 30 parts by weight of a solid lubricant, which is a metal soap and/or an inorganic solid lubricant powder, is blended with 100 parts by weight of oil. [Function] In order to solve the above problem, the present inventors have particularly improved the surface roughness of stainless steel pipes, so that the boundary lubrication state is good and there is no seizure (streaky defects).
Focusing on the need to develop a lubricant that does not cause
In order to achieve this, we determined that the effect of extreme pressure additives was important and conducted various research. In addition, the purpose can be achieved by selecting a base oil and a substance that will be a carrier for extreme pressure additives that have strong adsorption power to metal surfaces, good ability to maintain oil film thickness, and a high viscosity index, and blending both in the appropriate ratio. It was recognized that For example, when drawing a plug from a stainless steel pipe, the tool temperature (plug, die, etc.) is around room temperature at the start of drawing, but as the drawing progresses, the tool temperature rises rapidly (estimated to be around 200°C), and then the drawing starts. Due to the wall thickness of the metal tube and the temperature of the tool, a large load is applied at the time, which can lead to seizure accidents. In order to prevent such seizure accidents, it is desirable that the extreme pressure additive exhibit excellent extreme pressure effects from room temperature to about 200°C. The extreme pressure effect here refers to the thermal decomposition of extreme pressure additives due to heat such as frictional heat, which interacts with the metal surface to produce a certain type of compound, which reduces friction or the amount of damage to the surface. describe a phenomenon. Substances that exhibit extreme pressure effects are called extreme pressure additives, and chlorine compounds, sulfur compounds, phosphorus compounds, and the like are known as such extreme pressure additives. (FP Bowden and D. Tabor,
“The Friction and Lubrication of solids”
(See "Friction and Lubrication of Solids" translated by Norimune Soyo, translated by Oxford 1974). The present inventors investigated extreme pressure additives that exhibit excellent extreme pressure effects in the temperature range from room temperature to about 200°C. As extreme pressure additives satisfying the above conditions, chlorinated paraffins, phosphoric esters, sulfurized oils and fats, etc. were obtained. Chlorinated paraffin exhibits excellent extreme pressure effects in the temperature range of 150 to 250°C, and its action is thermal decomposition in boundary lubrication conditions, breaking C-Cl bonds and producing Cl 2 or HCl, which makes it difficult to bond with steel. The reaction produces a film of ferrous chloride or ferric chloride on the metal surface. Since these chlorides have a layered structure with low shearing force, they are easily sheared by external forces, thereby reducing friction and preventing seizure. Phosphate ester also reacts with steel in the same way as the chlorinated paraffin, producing iron phosphate (FePO 4 .2H 2 O), which has a low melting point and good slipperiness. This reaction proceeds in a temperature range from room temperature to about 180°C. As mentioned above, sulfurized oils and fats are extreme pressure additives other than chlorinated paraffins and phosphoric esters, but in the case of sulfurized oils, the extreme pressure reaction temperature range is
The temperature is high, 250°C or higher, and is not suitable for the purpose of the present invention. Although there is no extreme pressure additive that effectively exhibits extreme pressure effects in the temperature range from room temperature to about 200 degrees Celsius by itself, it is possible to achieve the objective of the present invention by blending the above-mentioned chlorinated paraffin and phosphoric acid ester in a predetermined amount. I got the idea that it would be possible to create a suitable extreme pressure additive. In order to assist the adsorption of the extreme pressure additive selected in this way onto the metal surface and to maintain the oil film thickness, it is necessary to select a base oil with a high viscosity index that functions as a carrier. Isobutylene and n-
A copolymer of butene is chosen. The copolymer is a substance commonly called polybutene, which is effective in maintaining the lubricant film thickness, shows little change in viscosity with temperature, is chemically stable, and has good stability against heat and ultraviolet rays. However, the above-mentioned copolymers have a drawback in adsorption to metal surfaces, and although the adsorption is better than that of mineral oil, the adsorption is not very good. Therefore, the present inventors thought that addition of an oiliness improver would be effective in supplementing the adsorption properties of the copolymer. The oiliness improver refers to animal/vegetable oils and fats, fatty acids, or fatty acid esters, and is composed of a long hydrocarbon group and a polar group. In oiliness improvers, the hydrocarbon group is similar to the lubricating oil molecule and dissolves it, while the polar group is different from the oil molecule, so it acts as an additive and improves the properties of the lubricating oil. . Furthermore, since metals and water have polar surfaces, molecules with polar groups are adsorbed to the surfaces of metals and water. For the reasons stated above, in the present invention, a mixture of the above-mentioned copolymer and an oiliness improver was used as the base oil. The base oil prepared in this manner exhibited a far superior lubricating effect compared to mineral oil alone. The viscosity of lubricant is one of the important items in drawing processing. The higher the viscosity, the higher the oil film retention effect and the better the lubrication performance.However, the purpose of the present invention is to improve the surface roughness due to the boundary lubrication state, and from this point of view, the viscosity of the lubricant becomes too high. This increase in the fluid lubrication area is not a desirable matter, and also causes problems in terms of workability. On the other hand, if the viscosity of the lubricant is too low, seizure accidents are likely to occur, which not only causes damage to the tool but also makes it difficult to improve the desired metal surface roughness. [Examples] Example 1 The present inventors conducted an experiment to investigate the optimal blending ratio of chlorinated paraffin and phosphoric acid ester.
The chlorinated paraffin with 12 carbon atoms and 70% chlorine content was used, and the phosphoric acid ester was dialkyl phosphite with 13 carbon atoms. A mixture of chlorinated paraffin and phosphoric acid ester has a viscosity of 30cst at 50℃.
Prototype oil No.a-1 ~ diluted with paraffinic mineral oil
A-6 was prepared. The reason for diluting with mineral oil is that the seizure load would be too high if only the extreme pressure additive was used. However, the seizure load test is based on the Defense Agency provisional standard.
The test was conducted at a rotation speed of 750 rpm in accordance with NDS/XXK2740 (Soda four-ball test method), and the wear marks after the test indicate the size of the marks in the "rotational direction x axial direction", and the friction coefficient is the Soda four-ball test method. This is a value determined using a pendulum type oil tester. The results are shown in Table 1.

【表】【table】

【表】 第1表から明らかな様に、塩素化パラフインと
燐酸エステルの重量配合が4:1のもの(試作油
No.a−2)が最適であつた。従つて本発明では、
塩素化パラフインと燐酸エステルの重量配合比は
4:1と定めた。又この配合の試作油ほ50℃にお
ける粘度は200cstであつた。 実施例 2 次に本発明者らは配合比率の決定された極圧添
加剤(試作油No.a−2のもの)の基油に対する適
正配合比率を調査すべく鋼球通し試験を行なつ
た。 鋼球通し試験とは本出願人の提案した性能試験
法(特開昭52−68493号公報参照)であつて、第
1図に示すようなダイスをSKD11調質材によつ
て製作し、SUS304ステンレス鋼からなるサイズ
22〓×19〓×1.5t×40l(mm)の試験片(管)に潤滑剤
を塗布した後、前記ダイスの孔に嵌挿し、13/16
(20.64〓mm)のベアリング用様鋼球を、サイズ
19.1〓×60l×(先端)10.3R(mm)の押棒により前記
試験片の内孔に順次押込んで試験片を変形させ、
変形に要した荷重、試験片・鋼球の表面状態を調
べたものである。該試験法は圧延された試験片の
内面性状及び鋼球の表面性状から潤滑剤の性能を
判断するものであり、実際の加工条件よりも過酷
な条件で行なうものである為潤滑剤の性能を厳格
に判定することができる。 又基油としては取りあえず極圧添加剤とほぼ同
粘度の鉱物油(50℃における粘度が240cstのパラ
フイン系鉱物油)を用い、配合比率による粘度変
化がないように調整した。この様にして試作油No.
b−1〜b−6のものを作成し、基油に対して必
要とする極圧添加剤の量を決定した。 その結果を第2表に示す。 尚第2表中の表面状態の評価基準は下記の通り
である。 (表面状態) ×……不良(深い線状傷有り) △……問題あり(軽度の線状有り) ○……良(線状傷は無いが光沢悪い) ◎……優秀(線状傷無く光沢も良い)
[Table] As is clear from Table 1, the weight ratio of chlorinated paraffin and phosphate ester is 4:1 (prototype oil
No. a-2) was optimal. Therefore, in the present invention,
The weight mixing ratio of chlorinated paraffin and phosphoric acid ester was determined to be 4:1. The viscosity of the prototype oil with this formulation at 50°C was 200 cst. Example 2 Next, the present inventors conducted a steel ball passage test to investigate the appropriate blending ratio of the extreme pressure additive (prototype oil No. a-2) to the base oil, for which the blending ratio had been determined. . The steel ball through test is a performance test method proposed by the applicant (see Japanese Patent Application Laid-open No. 52-68493), in which a die as shown in Fig. 1 is made of SKD11 tempered material, and SUS304 is used. Size made of stainless steel
After applying lubricant to a 22 × 19 × 1.5 t × 40 l (mm) test piece (tube), insert it into the hole of the die, and 13/16
(20.64〓mm) steel balls for bearings, size
Deform the test piece by sequentially pushing it into the inner hole of the test piece with a push rod of 19.1 × 60 l × (tip) 10.3R (mm),
The load required for deformation and the surface condition of the test piece and steel ball were investigated. This test method judges the performance of the lubricant from the inner surface properties of the rolled test piece and the surface properties of the steel balls, and because it is conducted under conditions that are harsher than actual processing conditions, the performance of the lubricant cannot be evaluated. It can be judged strictly. Additionally, as the base oil, a mineral oil with approximately the same viscosity as the extreme pressure additive (a paraffinic mineral oil with a viscosity of 240cst at 50°C) was used, and adjustments were made so that the viscosity would not change due to the blending ratio. In this way, the prototype oil No.
Samples b-1 to b-6 were prepared, and the amount of extreme pressure additive required for the base oil was determined. The results are shown in Table 2. The evaluation criteria for the surface condition in Table 2 are as follows. (Surface condition) ×...Poor (deep linear scratches) △...Problem (slight linear scratches) ○...Good (no linear scratches but poor gloss) ◎...Excellent (no linear scratches) Good gloss)

【表】【table】

【表】 その結果、極圧添加剤の配合は全体に対して40
重量%以上が好ましい(試作油No.b−3〜b−
6)。 実施例 3 実施例2の結果に基づき、平均分子量(W)
が1200、2400のポリブテンと50℃における粘度が
30cstの動・植物油脂との混合油を基油とし、こ
れに実施例1で最適配合比率が選定さた極圧添加
剤を各種割合で配合し、好ましいと判断される粘
度(50℃で200cst程度)になる様に潤滑油No.T1
−a〜T1−j、T2−a〜T2−j、T3−a〜T3
−jの各種潤滑油を調製した。この様にしてポリ
ブテンと動・植物油脂の最適配合比率を調査し
た。尚平均分子量1200のポリブテンの50℃におけ
る粘度は12000cstであり、平均分子量2400のポリ
ブテンの50℃における粘度は24000cstであつた。
又判定は実施例2の場合と同様の鋼球通試験にて
行なつた。 その結果を第3表(1)〜(3)に示す。
[Table] As a result, the combination of extreme pressure additives was 40% of the total.
Weight% or more is preferable (prototype oil No. b-3 to b-
6). Example 3 Based on the results of Example 2, the average molecular weight (W)
is 1200, 2400 polybutene and the viscosity at 50℃ is
The base oil is a mixed oil of 30 cst animal/vegetable oils and fats, and the extreme pressure additives whose optimal blending ratio was selected in Example 1 are blended in various proportions to achieve a viscosity judged to be preferable (200 cst at 50°C). lubricating oil No.T1 so that
-a~T1-j, T2-a~T2-j, T3-a~T3
-j various lubricating oils were prepared. In this way, we investigated the optimal blending ratio of polybutene and animal/vegetable oils. The viscosity of polybutene with an average molecular weight of 1200 at 50°C was 12,000 cst, and the viscosity of polybutene with an average molecular weight of 2400 at 50°C was 24,000 cst.
Further, the determination was made by the same steel ball passing test as in Example 2. The results are shown in Tables 3 (1) to (3).

【表】【table】

【表】【table】

【表】 第3表(1)〜(3)から明らかな様に50℃における粘
度が200±50程度の潤滑油のものが鋼球通し試験
において良好な結果が得られた。又極圧添加剤の
割合が多くなるにつれて加工表面の光沢が失なわ
れてゆく傾向が見られたが、ポリブテンの平均分
子量の違いによる差異は認められなかつた。従つ
てポリブテンはその平均分子量(W)が1200、
2400のいずれか一方のものでもよく、又両者の混
合或は両者の中間の平均分子量をもつものでもよ
い。 実施例 4 極圧添加剤と基油の最適配合割合を更に詳しく
調査する為、実施例3の結果より良好な潤滑油
(潤滑油No.T1−c、T1−h;T2−c、T2−h;
T3−c、T3−h)について引抜試験を行なつ
た。 但し引抜試験は、SUS304シームレス管[22〓×
2.2t(mm)]を、FSP型プラグを使用し、19〓×1.7t
(mm)のサイズ(断面減少率26.5%)にまで引抜
いたときのプラグの状態及び管の状態を調査した
ものである。 結果は第4表に示す通りであり、極圧添加剤の
配合率が40〜50重量%の範囲で表面光沢が良く且
つ線状傷のない極めて良好な金属表面が得られた
が、いずれも引抜中にびびり現象が生じ金属表面
にびびりマークが残つた。 尚引抜試験の評価基準は下記の通りである。 (プラグの状態) △……焼付あり(第4表中にはないが、後述の
第5表中に現をわれる) ○……軽い曇りが見られる ◎……異常なし (管の状態) △……軽い線状傷あり(第4表中にはないが、
後述の第5表中に現をわれる) ○……線状傷は無いが光沢悪い ◎……線状傷が無く光沢も良い(優良)
[Table] As is clear from Table 3 (1) to (3), lubricating oils with a viscosity of about 200±50 at 50°C gave good results in the steel ball penetration test. There was also a tendency for the treated surface to lose its gloss as the proportion of the extreme pressure additive increased, but no difference was observed due to the difference in the average molecular weight of polybutene. Therefore, polybutene has an average molecular weight (W) of 1200,
2400, or a mixture of the two, or one having an average molecular weight intermediate between the two. Example 4 In order to investigate in more detail the optimal blending ratio of extreme pressure additives and base oil, lubricating oils that were better than the results of Example 3 (lubricating oil No. T1-c, T1-h; T2-c, T2- h;
A pullout test was conducted on T3-c and T3-h). However, the pull-out test was conducted using SUS304 seamless pipe [22〓×
2.2 t (mm)] using an FSP type plug, 19〓×1.7 t
(mm) (section reduction rate of 26.5%), the state of the plug and the state of the pipe were investigated. The results are shown in Table 4, and an extremely good metal surface with good surface gloss and no linear scratches was obtained when the compounding ratio of the extreme pressure additive was in the range of 40 to 50% by weight. A chatter phenomenon occurred during drawing, leaving chatter marks on the metal surface. The evaluation criteria for the pull-out test are as follows. (Condition of plug) △... Seizure (not shown in Table 4, but shown in Table 5 below) ○... Light clouding is observed ◎... No abnormality (condition of pipe) △ ...There are light linear scratches (not shown in Table 4, but
(Represented in Table 5 below) ○...No linear scratches but poor gloss ◎...No linear scratches and good gloss (excellent)

【表】 実施例 5 本発明者らは前記びびり現象を、引抜速度と潤
滑性能が適応していない為、即ち前記潤滑油の潤
滑性能が良すぎる為の現象と判断した。そこで焼
付きを生じることなく、且つ金属表面粗度を低下
させることなく潤滑性能だけを抑え、びびり現象
を防止する方法として固体潤滑剤を添加すること
を思いついた。 第4表に示された潤滑油のうち良好なもの(潤
滑No.T1−c、T1−h、T2−c、T2−h、)につ
いて固体潤滑剤を種々割合で配合して各種の潤滑
剤を調製し、実施例4と同様の引抜試験を行ない
びびり現象の調査を行なつた。固体潤滑剤とは金
属石鹸(ステアリン酸Ca等)、無機固体潤滑剤粉
末(タルク、雲母等)の如きものであり、上記潤
滑油に混合分散させた。 結果を第5表(1)〜(4)に示す。尚引抜試験の評価
基準は実施例4の場合と同様である。
[Table] Example 5 The present inventors determined that the chatter phenomenon was caused by the drawing speed and lubrication performance not being compatible, that is, the lubrication performance of the lubricating oil was too good. Therefore, we came up with the idea of adding a solid lubricant as a method to suppress the lubrication performance and prevent the chatter phenomenon without causing seizure or reducing the metal surface roughness. Among the lubricating oils shown in Table 4, good ones (lubrication No. T1-c, T1-h, T2-c, T2-h,) are mixed with solid lubricants in various proportions to create various lubricants. was prepared and subjected to the same pull-out test as in Example 4 to investigate the chatter phenomenon. The solid lubricant is a metal soap (such as Ca stearate) or an inorganic solid lubricant powder (talc, mica, etc.), and is mixed and dispersed in the above lubricating oil. The results are shown in Tables 5 (1) to (4). The evaluation criteria for the pull-out test were the same as in Example 4.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第5表(1)〜(4)から明らかな様にステアリン酸
Ca又はタルクのいずれを配合した場合も20〜30
重量%の配合割合でびびり現象が止まり且つ被加
工物の表面粗度も実施例4と同様良好であつた。
しかしながら該配合割合が40重量%以上では線状
傷が増えると共に調製した潤滑剤がペースト状と
なり作業性が著しく困難となる。従つて固体潤滑
剤の最適配合割合は前記潤滑油100重量部に対し
20〜30重量部の範囲が好ましい。又固体潤滑剤と
してはステアリン酸Ca及びタルクの混合物であ
つても差しつかえない。 [発明の効果] 本発明は以上の様に構成されるが、要は選定さ
れた極圧添加剤と基油の配合割合を決定し且つ粘
度を特定し、これに引抜中のびびり現象を解消す
る為の固体潤滑剤を分散させた1液潤滑剤を使用
することにより、以下に列記する様な利益を享受
することができる。 (1) 1液型であるから潤滑処理が簡単である(被
加工剤を本潤滑剤に浸漬し乾燥するだけでよ
い)。 (2) 表面研削等の手入れをすることなく表面粗度
の良い金属加工物を製造できる。 (3) 化成処理の様な化学反応を利用するタイプで
ないので、加工後の除去が容易である。 (4) 金属等の加工は勿論のこと、金属線や金属板
等の加工にも利用できる。
[Table] As is clear from Table 5 (1) to (4), stearic acid
20 to 30 when combined with either Ca or talc
The chatter phenomenon stopped at a blending ratio of % by weight, and the surface roughness of the workpiece was as good as in Example 4.
However, if the blending ratio exceeds 40% by weight, linear scratches will increase and the prepared lubricant will become paste-like, making workability extremely difficult. Therefore, the optimum blending ratio of the solid lubricant is based on 100 parts by weight of the lubricating oil.
A range of 20 to 30 parts by weight is preferred. The solid lubricant may also be a mixture of Ca stearate and talc. [Effects of the Invention] The present invention is configured as described above, but the key point is to determine the blending ratio of the selected extreme pressure additive and base oil, specify the viscosity, and eliminate the chattering phenomenon during drawing. By using a one-component lubricant with a solid lubricant dispersed therein, the following benefits can be enjoyed. (1) Since it is a one-liquid type, lubrication is easy (simply immerse the workpiece in this lubricant and dry it). (2) Metal workpieces with good surface roughness can be manufactured without surface grinding or other maintenance. (3) Since it does not use a chemical reaction like chemical conversion treatment, it is easy to remove after processing. (4) It can be used not only for processing metals, but also for processing metal wires, metal plates, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼球通し試験に用いられるダイスの断
面図である。
FIG. 1 is a cross-sectional view of a die used in the steel ball passing test.

Claims (1)

【特許請求の範囲】 1 ()A:塩素化パラフインと燐酸エステルの
重量配合比が4:1の混合物:40〜50重量
部、 B:イソブチレンとn−ブテンの共重合物でそ
の平均分子量が1200〜2400であるものと、50
℃における動粘度が30cstの動・植物油脂と
の混合物:50〜60重量部、 から成り、50℃における粘度が200±50cstで
ある潤滑油:100重量部に対し、 () 金属石鹸及び/または無機固体潤滑剤粉末
である固体潤滑剤を20〜30重量部配合してなる
ことを特徴とする金属の冷間加工用潤滑剤。
[Claims] 1 () A: A mixture of chlorinated paraffin and phosphoric acid ester in a weight ratio of 4:1: 40 to 50 parts by weight, B: A copolymer of isobutylene and n-butene whose average molecular weight is those that are 1200-2400 and those that are 50
50 to 60 parts by weight of a mixture with animal/vegetable oils and fats with a kinematic viscosity of 30 cst at °C, and 100 parts by weight of a lubricating oil with a viscosity of 200 ± 50 cst at 50 °C, () metallic soap and/or A lubricant for cold working of metals, characterized in that it contains 20 to 30 parts by weight of a solid lubricant, which is an inorganic solid lubricant powder.
JP20218585A 1985-09-11 1985-09-11 Lubricant for cold working of metal Granted JPS6284192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20218585A JPS6284192A (en) 1985-09-11 1985-09-11 Lubricant for cold working of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20218585A JPS6284192A (en) 1985-09-11 1985-09-11 Lubricant for cold working of metal

Publications (2)

Publication Number Publication Date
JPS6284192A JPS6284192A (en) 1987-04-17
JPH041798B2 true JPH041798B2 (en) 1992-01-14

Family

ID=16453371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20218585A Granted JPS6284192A (en) 1985-09-11 1985-09-11 Lubricant for cold working of metal

Country Status (1)

Country Link
JP (1) JPS6284192A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553700B2 (en) * 1989-04-24 1996-11-13 松下電器産業株式会社 Gas shielded arc welding wire and method for producing the same
JPH0433998A (en) * 1990-05-30 1992-02-05 Nippon Parkerizing Co Ltd Method for lubricating steel pipe
JP4004752B2 (en) * 2001-06-14 2007-11-07 日本パーカライジング株式会社 Steel wire or steel wire with excellent lubricity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147902A (en) * 1974-10-24 1976-04-24 Nippon Steel Corp Kinzokuno reikenyo junkatsuzaisoseibutsu

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147902A (en) * 1974-10-24 1976-04-24 Nippon Steel Corp Kinzokuno reikenyo junkatsuzaisoseibutsu

Also Published As

Publication number Publication date
JPS6284192A (en) 1987-04-17

Similar Documents

Publication Publication Date Title
EP1454965B1 (en) Treating agent for forming protective coating and metallic material having protective coating
EP0917559B1 (en) Waterborne lubricant for the cold plastic working of metals
US6194357B1 (en) Waterborne lubricant for the cold plastic working of metals
Nautiyal et al. Transfer of aluminum to steel in sliding contact: effects of lubricant
JPH0566436B2 (en)
JPH041798B2 (en)
JPS6160791A (en) Lubricant for plastic working and method of plastic working using same
JPS62241994A (en) Oily lubricant for cold plastic working of metallic material
JPH0280493A (en) Urea grease composition for conical roller bearing
JPS6187795A (en) Lubricant for cold working of metallic tube
Mokšin et al. Effectiveness of twisted nematic liquid crystals as water based cutting fluid additive and tap lubricant
JP2925449B2 (en) Hot rolling lubricant and method of supplying hot rolling lubricant
US20180148662A1 (en) Environmentally friendly high pressure lubricant additive
JP2001514689A (en) Phosphates as extreme pressure additives
JPS62153396A (en) Lubricant for use in metal drawing work and method for carrying out drawing work by using same
WO1989012669A1 (en) Lubricant composition for hot-rolling of steel
JPS6185492A (en) Lubricant for cold working, and plastic working of aluminum using same
JPH041799B2 (en)
JPS5830358B2 (en) Lubricant for cold to warm processing of metal pipes
Ajimotokan Lubricants and Materials for Tribological Applications
Rizvi Metalworking and machining fluids
JPH0696164B2 (en) Cold rolling lubrication method for steel sheet
WO2005056738A1 (en) Treating agent for plastic working of steel material, method of plastic working, and method of inhibiting oxidation
Planells et al. Tribological behavior of cutting tool on Ti6Al4V sample with different grades of self-emulsifying esters with and without anti-corrosion additives
Rudston et al. Recent developments in the performance properties of water based cutting and hydraulic fluids