JPH0417960B2 - - Google Patents

Info

Publication number
JPH0417960B2
JPH0417960B2 JP58096406A JP9640683A JPH0417960B2 JP H0417960 B2 JPH0417960 B2 JP H0417960B2 JP 58096406 A JP58096406 A JP 58096406A JP 9640683 A JP9640683 A JP 9640683A JP H0417960 B2 JPH0417960 B2 JP H0417960B2
Authority
JP
Japan
Prior art keywords
methylcoumarin
amino
enzyme
peptide derivative
acid addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58096406A
Other languages
Japanese (ja)
Other versions
JPS59222457A (en
Inventor
Shunpei Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP58096406A priority Critical patent/JPS59222457A/en
Publication of JPS59222457A publication Critical patent/JPS59222457A/en
Publication of JPH0417960B2 publication Critical patent/JPH0417960B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特定酵素活性測定用の蛍光性基質又
はその合成中間体として有用な新規ペプチド誘導
体及びその用途に関する。 本発明者は、簡便で高感度に特定酵素の活性を
測定できる酵素の基質を得るため鋭意研究を重ね
た結果、一般式 で示されるペプチド誘導体の合成に成功し、更に
この新規ペプチド誘導体が特定の酵素、即ち癌の
診断に使用できる酵素であるジペプチジルアミノ
ペプチターゼタイプ(McDonald.J.K.、Reilly.
T.J.、Zeitman.B.B and Ellis.S;J.Biol.
Chem.2432028−2037(1968))の蛍光性基質とな
り、さらに簡便で高感度にその酵素活性の測定が
できることを見出し、本発明を完成するに至つ
た。 本発明のペプチド誘導体は酸付加塩の形でもよ
く、その場合の酸は塩酸、硫酸等の鉱酸、酢酸、
トルエンスルホン酸等の有機酸が採用できる。そ
の遊離形を得るには、上記酸付加塩をアルカリで
中和すればよい。 本発明のペプチド誘導体は、ペプチド合成に慣
用されている方法に従い、例えば7−アラニルア
ミノ−4−メチルクマリンとアミノ基を保護した
リジン又はその活性エステルとを縮合剤例えばジ
シクロヘキシルカルボジイミドの存在で反応さ
せ、所望に応じてその反応生成物のアミノ基の保
護基を脱離することによつて容易に製造すること
ができる。 上記活性エステルの形として、p−ニトロフエ
ニルエステルやN−ヒドロキシスクシンイミドエ
ステルを好ましい例としてあげることができる。 溶媒を用いる場合は、例えばジメチルホルムア
ミド(DMF)、水を用いるとよい。この反応は室
温で進行するが、所望に応じて加熱し、反応を促
進させることもできる。 反応混合物より本発明のペプチド誘導体を単離
するには、例えば反応混合物を濃縮乾固し、残溜
物をカラムクロマトグラフイーにより精製し、次
いで凍結乾燥する。 分子を構成するリジン及びアラニンがそれぞれ
L−体またはD−体のいずれか一方のものである
目的化合物を製造するには、目的化合物の製造に
用いる出発原料のリジン、アラニンまたはその誘
導体に光学活性体を採用してもよいし、目的化合
物のDL−体を製造して光学分割に付してもよい。 本発明のペプチド誘導体はジペプチジルアミノ
ペプチチターゼタイプにより選択的に加水分解
されるので、この酵素の蛍光性基質として好適で
ある。 尚、本発明のペプチド誘導体を基質として使用
する場合、分子を構成するアラニンはL−体が好
ましく、他のアミノ酸が分子を構成する場合のそ
のアミノ酸はL−体、D−体のいずれであつても
よいが、特に両者共L−体であるのが好ましい。 本発明のペプチド誘導体による酵素活性測定は
次のようにして行なう。すなわち、所望の酵素を
含有する試料溶液と7−L−リジル−L−アラニ
ル−4−メチルクマリンを接触せしめ、次いで、
7−アミノ−4−メチルクマリンを定量すること
により試料溶液中の酵素活性を測定することがで
きる。7−L−リジル−L−アマニル−4−メチ
ルクマリンは、試料溶液中に酵素、即ちジペプチ
ジルアミノペプチターゼタイプが存在すれば、
その量に比例してL−リジル−L−アラニルと7
−アミノ−4−メチルクマリンに分解遊離し、
Ex380nm、Em460nmの蛍光下でその7−アミノ
−4−メチルクマリンの蛍光強度を測定すること
により高感度の酵素活性を測定できる。従つて、
本発明のペプチド誘導体により、癌の診断を極め
て正確かつ簡便に行うことができる。 本発明のペプチド誘導体は、酵素活性測定用基
質として発癌性等の虞れがない安全な物質であ
り、また基質として不可欠な各種条件即ち酵素作
用をうけた基質量の測定の容易さ、安定性、酵素
量及び接触反応時間に対する直線性等を全て満足
するものであることを確認し、医学上特に癌の診
断において重要な意義を有する酵素活性測定方法
を提供することができる。 以下、実施例により本発明を具体的に説明す
る。 実施例 7−(N〓−t−ブチルオキシカルボニル−L−
アラニル)アミノ−4−メチルクマリンの合成 t−ブチルオキシカルボニル−L−アラニン
18.9gを乾燥したテトラヒドロフラン(THF)
100mlにとかし、氷冷撹拌下ジシクロヘキシルカ
ルボジイミド11.3gを乾燥THF50mlにとかし少
しずつ加えた。その後室温にて50分撹拌し、不溶
物を濾去した。濾液に7−アミノ−4−メチルク
マリン8.75gのジメチルホルムアミドDMF)50
ml溶液を加え一夜撹拌を続けた。 溶媒を溜去し、残さを酢酸エチルにとかし、1
規定塩酸、5%重曹水、水の順に洗浄し、硫酸マ
グネシウムで乾燥した。酢酸エチルを溜去し、残
さを酢酸エチルとn−ヘキサンより再結晶し、7
−(N〓−t−ブチルオキシカルボニル−L−アラ
ニル)アミノ−4−メチルクマリン()12.8g
(73.6%)を得た。このものは、融点193−194℃
(分解)、比旋光度[α]20 D=−38.1(c=1.05、酢
酸)Rf=0.50(溶媒系;クロロホルム:メタノー
ル:酢酸=95:5:3)であつた。 N〓,N〓−ジ−ブチルオキシカルボニル−L−
リジン−p−ニトロフエニルエステルの合成 L−リジン塩酸塩91g(0.5モル)とt−ブチ
ルオキシカルボニル−アジド215g(1.5モル)を
ジオキサン750mlと水250mlにとかし、炭酸ソーダ
210gを加え35〜40℃で二日間かきまぜた後、水
750mlを加え生じる油状物をエーテルで抽出して
除く。水層に1規定塩酸を加えPH2とし酢酸エチ
ルで抽出する。酢酸エチル層を水洗、乾燥後濃縮
し残溜物にジシクロヘキシルアミン60gを酢酸エ
チル300mlにとかして加え、これを振りまぜた後、
酢酸エチルを溜去する。残溜物にn−ヘキサンを
加え結晶化させ、酢酸エチルとn−ヘキサンより
再結晶することにより融点141〜141.5℃、比旋光
度[α]22 D=8.1(c=4.06、メタノール)のN〓,
N〓−ジ−t−ブチルオキシカルボニル−L−リ
ジン・ジシクロヘキシルアミン塩()149g
(56.4%)を得た。 ()79.2g(0.15モル)を酢酸エチルにとか
し、1規定硫酸と振りまぜ、ジシクロヘキシルア
ミン硫酸塩を水層に除去した後、酢酸エチル層を
水洗乾燥した。続いて、P−ニトロフエノール21
g(0.15モル)を加え、氷冷しながらかきまぜ、
ジシクロヘキシルカルボジイミド32g(0.17モ
ル)を加え、室温にて一夜かきまぜた後、不溶物
を濾去し、母液を濃縮し、残溜物に酢酸エチル
100ml、n−ヘキサン300mlを加え、可溶物を除
き、残さをエチルアルコール300mlにとかし再結
晶した。その結果、融点119〜121℃、比旋光度
[α]22 D=24.5(c=1.1、エチルアルコール)のN〓

N〓−ジ−t−ブチルオキシカルボニル−L−リ
ジン−p−ニトロフエニルエステル()を得
た。 7−(N〓,N〓−ジ−t−ブチルオキシカルボニ
ル−L−リジル−L−アラニル)アミノ−4−
メチルクマリンの合成 ()3.46g(10ミリモル)にトリフロロ酢酸
15mlを加え、室温にて15分かきまぜた後、減圧濃
縮した残溜物にエチルエーテルを加え、白色粉末
とし、濾別乾燥し、7−(N〓−L−アラニル)ア
ミノ−4−メチルクマリン・トリフロロ酢酸塩
()を得た。このものはシリカゲル薄層クロマ
トグラフイーにてRf=0.05(溶媒系;クロロホル
ム:メタノール:酢酸=95:5:3)に単一のス
ポツトを示した。 ()全量にDMF30mlを加えてとかし、トリ
エチルアミン1.5mlを加えて中和した後、()
5.6gを加え二日間室温で撹拌した。溶媒を溜去
し酢酸エチルにとかし、10%炭酸ソーダ水、0.5
規定塩酸、水でよく洗い、硫酸マグネシウムで乾
燥した後、濃縮した残溜物にエチルエーテル100
mlを加えてとかし、冷して静置することにより結
晶を得た。収量は2.2gで、融点179℃(分解)を
示す7−(N〓,N〓−ジ−t−ブチルオキシカルボ
ニル−L−リジル−L−アラニル)アミノ−4−
メチルクマリン()を得た。このものはシリカ
ゲル薄層クロマトグラフイーにてRf=0.55(溶媒
系;クロロホルム:メタノール:酢酸=95:5:
3)に単一のスポツトを示した。又、比旋光度
[α]20 D=−59.1(c=0.77、酢酸)であつた。 7(L−リジル−L−アラニル)アミノ−4−
メチルクマリン・2トルエンスルホン酸塩の合
成 ()1.0gに酢酸10mlとトルエンスルホン酸
一水和物1.0gを加え、室温にて90分間かきまぜ
た後、エチルエーテルを加え、白色粉状沈澱を得
る。このものを濾別し、酢酸エチルで洗浄するこ
とにより、7−(L−リジル−L−アラニル)ア
ミノ−4−メチルクマリン・2トルエンスルホン
酸塩()1.29gを得た。このものは高圧液体ク
ロマトグラフイー(HPLC)にて1%以上の不純
物は認められず、比旋光度[α]20 D−28.6(c=
1.3450%酢酸)であつた。 6規定塩酸中110℃、24時間封管中で加水分解
後のアミノ酸分析機による含有組成の実測値はア
ラニン1.00対リジン0.99で理論値1対1とよく一
致した。 元素分析 実測値 C=53.09%、H=6.11%、N=7.17% 論理値 C=53.00%、H=6.06%、N=7.17% (論理値はC33H42N4O10S2・H2O・AcOH) 7−(L−リジル−L−アラニル)アミノ−4
−メチルクマリン・2トルエンスルホン酸塩
(Lys−Ala−MCA Tosylate)の蛍光性基質
試験 Lys−Ala−MCA Tosylateを水に2ミリモル
濃度となるように溶解し基質溶液とした。ラツト
腎より均一に精製した前記ジペプチドジアミノペ
プチターゼ(DPPII)を酵素液として用いて表−
1に示す操作を順次行なつた(なお、本発明にお
いて使用された酵素の調製はF.Fukasawaetal.ト
ルオール;Biochimica et Biophysica Acta
(1983)BBA31603記載の方法によつた。)。次い
で同様の操作をインキユベート時間を変化させて
行つた。蛍光分析により(1)PH活性曲線と(2)反応時
間と生成した7−アミノ−4−メチルクマリン
(MCA)量との関係を求めた。
The present invention relates to a novel peptide derivative useful as a fluorescent substrate for measuring specific enzyme activity or a synthetic intermediate thereof, and uses thereof. As a result of extensive research in order to obtain enzyme substrates that can be used to easily and sensitively measure the activity of specific enzymes, the present inventors discovered the general formula We succeeded in synthesizing a peptide derivative shown in , and furthermore, this new peptide derivative was used to synthesize a specific enzyme, namely dipeptidyl aminopeptidase type (McDonald.JK, Reilly.
T.J., Zeitman.BB and Ellis.S; J.Biol.
Chem. 2432028-2037 (1968)) and found that its enzyme activity could be measured easily and with high sensitivity, leading to the completion of the present invention. The peptide derivative of the present invention may be in the form of an acid addition salt, in which case the acid may be a mineral acid such as hydrochloric acid or sulfuric acid, acetic acid,
Organic acids such as toluenesulfonic acid can be used. To obtain its free form, the acid addition salt may be neutralized with an alkali. The peptide derivative of the present invention can be obtained by reacting 7-alanylamino-4-methylcoumarin with amino-protected lysine or an active ester thereof in the presence of a condensing agent such as dicyclohexylcarbodiimide, according to a method commonly used for peptide synthesis. It can be easily produced by removing the protecting group of the amino group of the reaction product as desired. Preferred examples of the active ester include p-nitrophenyl ester and N-hydroxysuccinimide ester. When using a solvent, for example, dimethylformamide (DMF) or water may be used. This reaction proceeds at room temperature, but the reaction can be accelerated if desired by heating. To isolate the peptide derivative of the present invention from the reaction mixture, for example, the reaction mixture is concentrated to dryness, the residue is purified by column chromatography, and then lyophilized. In order to produce a target compound in which lysine and alanine constituting the molecule are either L-form or D-form, optically active lysine, alanine or a derivative thereof, which is the starting material used for the production of the target compound, is produced. Alternatively, a DL-isomer of the target compound may be produced and subjected to optical resolution. The peptide derivatives of the present invention are selectively hydrolyzed by the dipeptidyl aminopeptidase type and are therefore suitable as fluorescent substrates for this enzyme. In addition, when using the peptide derivative of the present invention as a substrate, alanine constituting the molecule is preferably L-form, and when other amino acids constitute the molecule, the amino acid may be either L-form or D-form. However, it is particularly preferable that both are L-forms. Enzyme activity measurement using the peptide derivative of the present invention is carried out as follows. That is, a sample solution containing a desired enzyme is brought into contact with 7-L-lysyl-L-alanyl-4-methylcoumarin, and then,
Enzyme activity in a sample solution can be measured by quantifying 7-amino-4-methylcoumarin. 7-L-lysyl-L-amanyl-4-methylcoumarin can be used if an enzyme, ie dipeptidyl aminopeptidase type, is present in the sample solution.
L-lysyl-L-alanyl and 7 in proportion to the amount.
- decomposes and liberates amino-4-methylcoumarin,
Enzyme activity can be measured with high sensitivity by measuring the fluorescence intensity of 7-amino-4-methylcoumarin under fluorescence of Ex 380 nm and Em 460 nm. Therefore,
The peptide derivative of the present invention allows cancer diagnosis to be performed extremely accurately and easily. The peptide derivative of the present invention is a safe substance with no risk of carcinogenicity as a substrate for measuring enzyme activity, and also meets various conditions essential as a substrate, such as ease of measurement of the amount of substrate subjected to enzyme action and stability. It has been confirmed that the method satisfies all the requirements such as linearity with respect to enzyme amount and contact reaction time, and it is possible to provide an enzyme activity measuring method that has important medical significance, particularly in cancer diagnosis. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 7-(N〓-t-butyloxycarbonyl-L-
Synthesis of alanyl)amino-4-methylcoumarin t-butyloxycarbonyl-L-alanine
18.9g dried tetrahydrofuran (THF)
11.3 g of dicyclohexylcarbodiimide was dissolved in 50 ml of dry THF and added little by little under ice-cooling and stirring. Thereafter, the mixture was stirred at room temperature for 50 minutes, and insoluble matter was filtered off. Add 8.75 g of 7-amino-4-methylcoumarin to the filtrate (DMF) 50
ml solution was added and stirring continued overnight. The solvent was distilled off, the residue was dissolved in ethyl acetate, and 1
It was washed with normal hydrochloric acid, 5% sodium bicarbonate solution, and water in this order, and dried with magnesium sulfate. Ethyl acetate was distilled off, and the residue was recrystallized from ethyl acetate and n-hexane.
-(N〓-t-butyloxycarbonyl-L-alanyl)amino-4-methylcoumarin () 12.8g
(73.6%). This substance has a melting point of 193-194℃
(decomposition), specific rotation [α] 20 D = -38.1 (c = 1.05, acetic acid) Rf = 0.50 (solvent system; chloroform: methanol: acetic acid = 95:5:3). N〓,N〓-di-butyloxycarbonyl-L-
Synthesis of lysine-p-nitrophenyl ester 91 g (0.5 mol) of L-lysine hydrochloride and 215 g (1.5 mol) of t-butyloxycarbonyl-azide were dissolved in 750 ml of dioxane and 250 ml of water, and dissolved in sodium carbonate.
After adding 210g and stirring at 35-40℃ for two days, add water.
Add 750 ml and remove the resulting oil by extracting with ether. Add 1N hydrochloric acid to the aqueous layer to adjust the pH to 2 and extract with ethyl acetate. The ethyl acetate layer was washed with water, dried and concentrated, and 60 g of dicyclohexylamine dissolved in 300 ml of ethyl acetate was added to the residue, which was then shaken.
Ethyl acetate is distilled off. The residue was crystallized by adding n-hexane, and recrystallized from ethyl acetate and n-hexane to obtain N with a melting point of 141-141.5°C and a specific optical rotation [α] 22 D = 8.1 (c = 4.06, methanol). 〓、
N-di-t-butyloxycarbonyl-L-lysine dicyclohexylamine salt () 149g
(56.4%). 79.2 g (0.15 mol) of the solution was dissolved in ethyl acetate, mixed with 1N sulfuric acid, dicyclohexylamine sulfate was removed from the aqueous layer, and the ethyl acetate layer was washed with water and dried. Subsequently, P-nitrophenol 21
g (0.15 mol) and stir while cooling on ice.
After adding 32 g (0.17 mol) of dicyclohexylcarbodiimide and stirring at room temperature overnight, insoluble matter was filtered off, the mother liquor was concentrated, and the residue was diluted with ethyl acetate.
100 ml and 300 ml of n-hexane were added to remove the soluble materials, and the residue was dissolved in 300 ml of ethyl alcohol and recrystallized. As a result , the N

N-di-t-butyloxycarbonyl-L-lysine-p-nitrophenyl ester () was obtained. 7-(N〓,N〓-di-t-butyloxycarbonyl-L-lysyl-L-alanyl)amino-4-
Synthesis of methylcoumarin () 3.46 g (10 mmol) and trifluoroacetic acid
After adding 15 ml and stirring at room temperature for 15 minutes, ethyl ether was added to the residue that was concentrated under reduced pressure to obtain a white powder, which was filtered and dried to obtain 7-(N〓-L-alanyl)amino-4-methylcoumarin.・Trifluoroacetate () was obtained. This product showed a single spot at Rf=0.05 (solvent system: chloroform:methanol:acetic acid=95:5:3) in silica gel thin layer chromatography. () Add 30 ml of DMF to the total amount, dissolve, and neutralize by adding 1.5 ml of triethylamine. ()
5.6 g was added and stirred at room temperature for two days. Distill the solvent, dissolve in ethyl acetate, add 10% sodium carbonate water, 0.5
After thoroughly washing with normal hydrochloric acid and water and drying with magnesium sulfate, add 100% ethyl ether to the concentrated residue.
ml was added and dissolved, cooled and allowed to stand to obtain crystals. The yield was 2.2 g of 7-(N〓,N〓-di-t-butyloxycarbonyl-L-lysyl-L-alanyl)amino-4- with a melting point of 179°C (decomposition).
Methylcoumarin () was obtained. This material was measured by silica gel thin layer chromatography with Rf = 0.55 (solvent system; chloroform: methanol: acetic acid = 95:5:
3) shows a single spot. Further, the specific optical rotation [α] 20 D = -59.1 (c = 0.77, acetic acid). 7(L-lysyl-L-alanyl)amino-4-
Synthesis of methylcoumarin 2-toluenesulfonate (2) Add 10ml of acetic acid and 1.0g of toluenesulfonic acid monohydrate to 1.0g, stir at room temperature for 90 minutes, then add ethyl ether to obtain a white powdery precipitate. . This product was filtered and washed with ethyl acetate to obtain 1.29 g of 7-(L-lysyl-L-alanyl)amino-4-methylcoumarin 2-toluenesulfonate (). No impurities of 1% or more were found in this product by high pressure liquid chromatography (HPLC), and the specific optical rotation [α] 20 D -28.6 (c =
1.3450% acetic acid). After hydrolysis in a sealed tube at 110° C. for 24 hours in 6N hydrochloric acid, the actual content composition determined by an amino acid analyzer was 1.00 alanine and 0.99 lysine, which was in good agreement with the theoretical value of 1:1. Elemental analysis Measured values C = 53.09%, H = 6.11%, N = 7.17% Logical values C = 53.00%, H = 6.06%, N = 7.17% (Logical values are C 33 H 42 N 4 O 10 S 2・H 2 O・AcOH) 7-(L-lysyl-L-alanyl)amino-4
- Fluorescent substrate test of methylcoumarin 2-toluenesulfonate (Lys-Ala-MCA Tosylate) Lys-Ala-MCA Tosylate was dissolved in water to a concentration of 2 mmol to prepare a substrate solution. The dipeptide diaminopeptidase (DPPII) homogeneously purified from rat kidney was used as an enzyme solution.
The operations shown in 1 were performed sequentially (the enzyme used in the present invention was prepared using F. Fukasawaetal. Toluol; Biochimica et Biophysica Acta
(1983) according to the method described in BBA31603. ). Next, similar operations were performed while changing the incubation time. Fluorescence analysis was used to determine the relationship between (1) the PH activity curve and (2) the reaction time and the amount of 7-amino-4-methylcoumarin (MCA) produced.

【表】 ン酸カリウム、ホウ酸、バルビタール
380nm/460nmにおける蛍光強度をそれぞれ
測定(Ex/Em)し、酵素により生成したMCA
の量は、次式により求めた。 (E−C)/(S−B)×0.3n mol 結果を表−2および表−3に示した。
[Table] Potassium phosphate, boric acid, barbital
The fluorescence intensity at 380nm/460nm was measured (Ex/Em), and the MCA produced by the enzyme was measured.
The amount was determined using the following formula. (E-C)/(S-B)×0.3 n mol The results are shown in Table-2 and Table-3.

【表】【table】

【表】 以上の結果から、本基質はPH5〜6とするのが
最適であり、また反応時間に対し比例して(直線
関係)MCAを生成せしめることがわかる。 次に、上記の実験を酵素液量を各種変化せしめ
て行ない、37℃、30分間インキユベーシヨンした
後の蛍光強度を同様に測定して、酵素により生成
したMCAの量を求めた。結果を表−4に示した。
[Table] From the above results, it can be seen that it is optimal for this substrate to have a pH of 5 to 6, and that MCA is produced in proportion to the reaction time (linear relationship). Next, the above experiment was carried out by varying the amount of enzyme solution, and after incubation at 37°C for 30 minutes, the fluorescence intensity was similarly measured to determine the amount of MCA produced by the enzyme. The results are shown in Table-4.

【表】【table】

【表】 上記の結果から明らかなように、本基質は使用
酵素量に比例してMCAを与えることが確認され
た。従つて、試料溶液に本基質を上記の方法に準
じて作用させ生成するMCA量を測定し、標準関
係と比較すれば、試料溶液中の目的とする酵素量
を正確に測定でき、前述のように病気の診断に役
立つことがわかる。 次に、正常人と癌患者について、血清中のLys
−Ala−MCAの加水分解活性を求めた。結果を
表−5に示した。
[Table] As is clear from the above results, it was confirmed that this substrate gave MCA in proportion to the amount of enzyme used. Therefore, by applying this substrate to a sample solution according to the method described above, measuring the amount of MCA produced, and comparing it with the standard relationship, the desired amount of enzyme in the sample solution can be accurately measured. It turns out that it is useful for diagnosing diseases. Next, we investigated the Lys levels in the serum of normal people and cancer patients.
The hydrolysis activity of -Ala-MCA was determined. The results are shown in Table-5.

【表】【table】

【表】 上記の結果から明らかなように、正常人と口腔
偏平状皮癌患者とでは酵素活性には1%の危険率
で有意差のある違いがあり、この違いから本発明
のペプチド誘導体を用いることにより、1〜3μ
以下の血清で超微量測定が可能となることがわ
かる。
[Table] As is clear from the above results, there is a significant difference in enzyme activity between normal people and patients with oral squamous skin cancer at a 1% risk rate. By using 1~3μ
It can be seen that ultra-trace measurements are possible with the following serums.

Claims (1)

【特許請求の範囲】 1 一般式 で示されるペプチド誘導体及びその酸付加塩。 2 分子を構成するアラニンがL−体である特許
請求の範囲第1項記載のペプチド誘導体及びその
酸付加塩。 3 分子を構成するリジンがL−体である特許請
求の範囲第1項記載のペプチド誘導体及びその酸
付加塩。 4 一般式 で示されるペプチド誘導体及びその酸付加塩の少
なくとも一種を含有することを特徴とする、ジペ
プチジルアミノペプチターゼタイプ含有試料と
を接触せしめ、酵素反応により遊離生成した7−
アミノ−4−メチルクマリンを蛍光法により測定
する上記酵素活性の測定用の蛍光性基質。 5 酵素反応溶液がPH値4〜8の範囲にある水溶
液である特許請求の範囲第4項記載の基質。 6 試料が人血清である特許請求の範囲第4項記
載の基質。
[Claims] 1. General formula Peptide derivatives and acid addition salts thereof. 2. The peptide derivative and acid addition salt thereof according to claim 1, wherein the alanine constituting the molecule is L-form. 3. The peptide derivative and acid addition salt thereof according to claim 1, wherein the lysine constituting the molecule is L-form. 4 General formula 7-, which is freely produced by an enzymatic reaction, is brought into contact with a dipeptidyl aminopeptidase type-containing sample, which is characterized by containing at least one of the peptide derivative represented by the formula and its acid addition salt.
A fluorescent substrate for measuring the above enzyme activity by measuring amino-4-methylcoumarin by a fluorescence method. 5. The substrate according to claim 4, wherein the enzyme reaction solution is an aqueous solution having a pH value in the range of 4 to 8. 6. The substrate according to claim 4, wherein the sample is human serum.
JP58096406A 1983-05-31 1983-05-31 Peptide derivative and use thereof Granted JPS59222457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58096406A JPS59222457A (en) 1983-05-31 1983-05-31 Peptide derivative and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58096406A JPS59222457A (en) 1983-05-31 1983-05-31 Peptide derivative and use thereof

Publications (2)

Publication Number Publication Date
JPS59222457A JPS59222457A (en) 1984-12-14
JPH0417960B2 true JPH0417960B2 (en) 1992-03-26

Family

ID=14164080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58096406A Granted JPS59222457A (en) 1983-05-31 1983-05-31 Peptide derivative and use thereof

Country Status (1)

Country Link
JP (1) JPS59222457A (en)

Also Published As

Publication number Publication date
JPS59222457A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
EP0000063B1 (en) Dipeptide derivatives of 7-(n-alpha-substituted or non-substituted x-arginyl)-amino-4-methyl-coumarin
JPS6345397B2 (en)
JPH0550278B2 (en)
SU786853A3 (en) Method of detecting activity of x-prolyldipeptidylaminopeptidane
US4237047A (en) Peptide derivative
JPS6126558B2 (en)
US4147692A (en) Novel dipeptide derivatives, and method of measuring enzymatic activity
CA1117136A (en) Peptides and acid addition salts thereof
EP0152872B1 (en) Arginyl-3-carboxy-4-hydroxyanilide and their use
TWI404723B (en) Probe compounds for protein tyrosine phosphatase (ptp) and precursors thereof
JPH0417960B2 (en)
JP3593590B2 (en) Peptide-substituted coumarin derivatives
US4507232A (en) Peptide derivatives
US4191809A (en) Method of measuring enzymatic activity using novel peptide derivatives
SU1316556A3 (en) Method of producing proline derivatives or rharmaceuticall asseptable
JPS6126918B2 (en)
JPS58177951A (en) Chromogenic peptide and manufacture
JP2929555B2 (en) Chromogenic substrate
JPS6130559B2 (en)
JPH0755942B2 (en) Peptide derivative for measuring enzyme activity and use thereof
JP2660864B2 (en) Aminoacetophenone derivatives and methods for measuring enzyme activity using the same
JPS6156100A (en) Determination of dipeptidylaminopeptidase ii activity
JPS5842862B2 (en) peptide derivative
JPS6027675B2 (en) 7-Arginylamino-4-methylcoumarin
JPS633000A (en) Peptide derivatives and manufacture