JPH04179487A - Method for fermentation of simultaneous production of squalene and ethanol - Google Patents

Method for fermentation of simultaneous production of squalene and ethanol

Info

Publication number
JPH04179487A
JPH04179487A JP2302451A JP30245190A JPH04179487A JP H04179487 A JPH04179487 A JP H04179487A JP 2302451 A JP2302451 A JP 2302451A JP 30245190 A JP30245190 A JP 30245190A JP H04179487 A JPH04179487 A JP H04179487A
Authority
JP
Japan
Prior art keywords
squalene
ethanol
producing
anaerobic conditions
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2302451A
Other languages
Japanese (ja)
Other versions
JP2719693B2 (en
Inventor
Hiroshi Kataoka
片岡 廣
Masatoshi Matsumura
正利 松村
Koichi Miyamoto
功一 宮本
Hiroshi Miyabe
宮部 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP2302451A priority Critical patent/JP2719693B2/en
Publication of JPH04179487A publication Critical patent/JPH04179487A/en
Application granted granted Critical
Publication of JP2719693B2 publication Critical patent/JP2719693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PURPOSE:To industrially mass-produce squalene which is a raw material for squalane useful as a base oil, etc., for cosmetics according to a fermentation method by culturing a microorganism capable of producing the squalene under anaerobic conditions. CONSTITUTION:A microorganism capable of producing squalene is cultured under anaerobic conditions such as a nitrogen gas atmosphere. Saccharomyces cerevisiae is preferably used as the microorganism capable of producing the squalene. The squalene is produced in high yield and ethanol is simultaneously produced by culturing the Saccharomyces cerevisiae under the anaerobic conditions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスクアレン及びエタノールの製造法に関し、さ
らに詳細には微生物を用いたスクアレン及びエタノール
の同時製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing squalene and ethanol, and more particularly to a method for simultaneously producing squalene and ethanol using microorganisms.

スクアレンは化粧品のベースオイル等に使用されるスク
アランの原料である。スクアレンはc、 D H5Oで
あられされる不飽和の炭化水素で、このスクアレンを水
素添加することによりスクアランを得ることができる。
Squalene is the raw material for squalane, which is used in cosmetic base oils. Squalene is an unsaturated hydrocarbon composed of c,D H5O, and squalane can be obtained by hydrogenating this squalene.

またスクアレンは健康食品としても利用されている。Squalene is also used as a health food.

(従来技術および解決すべき課題) スクアレンはアイサメ、タロウザメなどの深海鮫の肝臓
より製造されるサメ肝油より抽出精製しているが鮫は自
然界より捕獲されるので、その漁獲高は極めて不安定で
あり、したがって、スクアレンの供給不安および価格の
大幅な変動が避けられなかった。また、日本近海で捕獲
される鮫では、海洋汚染の影響により精製不能の化学物
質が鮫肝油中に含まれているため、使用できないといわ
れている。
(Prior art and problems to be solved) Squalene is extracted and refined from shark liver oil produced from the livers of deep-sea sharks such as merganser sharks and kingfishers, but since sharks are caught from the wild, the catch is extremely unstable. Therefore, uncertainty in the supply of squalene and large fluctuations in the price were unavoidable. Additionally, it is said that shark liver oil from sharks caught in the waters around Japan cannot be used because it contains chemicals that cannot be refined due to marine pollution.

そこで、天然物を原料としないスクアレンの製造法が望
まれ、微生物によるスクアレンの生産方法が考案されて
いる。その一つはモルテイエレラ属の糸状菌による方法
(特公昭59−20356)であるが、糸状菌の培養の
点で生産性が低いという欠点があった。他の方法として
、細菌による方法(特開昭6l−212290)が提案
されているが、これも細菌の菌体あたりの含有量が最高
L48n+g/g菌体と低く実用化されていない。また
、いずれも好気発酵である。
Therefore, a method for producing squalene that does not use natural materials as a raw material is desired, and a method for producing squalene using microorganisms has been devised. One of them is a method using filamentous fungi of the genus Morteierella (Japanese Patent Publication No. 59-20356), but this method has the drawback of low productivity in terms of culturing filamentous fungi. As another method, a method using bacteria has been proposed (Japanese Patent Application Laid-Open No. 61-212290), but this method also has a low content of bacteria per cell at a maximum of L48n+g/g cells, and has not been put to practical use. In addition, both are aerobic fermentations.

一方、発酵法によるエタノールの生産は世界的に広く行
なわれているが、この方法での課題はコストの低減であ
り種々の考案が行なわれている。
On the other hand, ethanol production by fermentation is widely practiced worldwide, but the problem with this method is cost reduction, and various ideas have been developed.

たとえば、特開昭62−65679号のような、新規な
サツカロマイセス・セレビシェ酵母を用いるとエタノー
ル生産性が高く、凝集性もあるので工業的に有利である
としている。又特開昭62−126986号においては
、装置の工夫を行なうことで効率的なエタノールの発酵
生産が達成されたと記載されている。
For example, the use of a novel Saccharomyces cerevisiae yeast as disclosed in JP-A No. 62-65679 is said to be industrially advantageous due to its high ethanol productivity and flocculating properties. Furthermore, JP-A-62-126986 describes that efficient fermentation production of ethanol was achieved by devising an apparatus.

これに対して本発明のように、スクアレンを嫌気条件下
で生産すること、そしてまた微生物を用いてスクアレン
とエタノールを同時に生産せしめることは、いずれも従
来全く知られておらず新規である。
On the other hand, as in the present invention, producing squalene under anaerobic conditions and simultaneously producing squalene and ethanol using microorganisms are both completely unknown and new.

(課題を解決するための手段) 本発明は、このような技術の現状に鑑みてスクアレンの
工業的製法を確立する目的でなされたものである6 上記目的達成のために種々検討した結果、微生物の代謝
経路からスクアレン生産をエタノール生産途上で行なわ
せることが可能である知見を得、工業的にスクアレンを
大量生産するには微生物を利用する方法が有利であると
判断するに至り、鮫のような不安定な天然物を原料とし
ないスクアレンの生産が行なわれかつエタノールと共に
有用で高価なスクアレンを併産する事により、コスト的
な課題も解決することとした。
(Means for Solving the Problems) The present invention was made for the purpose of establishing an industrial method for producing squalene in view of the current state of technology.6 As a result of various studies to achieve the above purpose, microorganisms We obtained the knowledge that it is possible to produce squalene during the production of ethanol from the metabolic pathway of By producing squalene that does not use unstable and unstable natural products as raw materials, and by co-producing squalene, which is useful and expensive, with ethanol, the cost issue was also resolved.

このような課題の解決を目的として、本発明者らが種々
検討したところ、スクアレンは、カビ、酵母等の真核生
物の中間代謝物として広く生物体内に存在し、各種微生
物中、特に酵母サツカロミセス・セレビシェがスクアレ
ンの生産能力が強く、スクアレン生産に好適であること
を見い出した。
With the aim of solving these problems, the present inventors conducted various studies and found that squalene exists widely in living organisms as an intermediate metabolite of eukaryotes such as molds and yeast, and that squalene exists widely in living organisms as an intermediate metabolite of eukaryotes such as molds and yeast. - It was discovered that Cereviche has a strong squalene production capacity and is suitable for squalene production.

そして更に検討の結果、微生物菌体内でのスクアレンの
代謝に注目した。すなわち、スクアレンはカビ、酵母の
ような真植生物の菌体中ではアセチル−CoAを基点と
してメバロン酸を経由してスクアレンに変換された最終
的にはエルゴステロールに至る代謝経路の中間生成物で
ある。この代謝経路においてスクアレンは酵素スクアレ
ンエポキシダーゼによりスクアレンエポキサイドに変換
される点に、本発明者らは新たに着目した。
As a result of further investigation, we focused on the metabolism of squalene within microbial cells. In other words, squalene is an intermediate product in the metabolic pathway that converts acetyl-CoA into squalene via mevalonic acid, which ultimately leads to ergosterol, in the cells of euphytoorganisms such as molds and yeast. be. The present inventors newly focused on the fact that squalene is converted to squalene epoxide by the enzyme squalene epoxidase in this metabolic pathway.

この点に着目して、本発明者らは、微生物の環境を酸素
の少ない嫌気的な雰囲気とすることで、酵素スクアレン
エポキシダーゼの生産が抑えられて結果的にスクアレン
の菌体内蓄積がおこり、かつ、エタノールの菌体外蓄積
も行なわれるため、エタノールとスクアレンの併産か可
能となるのではないか、との観点にたって検討した結果
、エタノール生産菌であるサツカロミセス・セレビシェ
の嫌気培養によってエタノールとスクアレンを同時に生
産せしめることに成功し、上記推定が現実に可能である
ことをはじめて確認した。
Focusing on this point, the present inventors have found that by creating an anaerobic atmosphere with little oxygen in the environment of microorganisms, production of the enzyme squalene epoxidase is suppressed, resulting in accumulation of squalene within the microbial cells. Furthermore, since ethanol is also accumulated outside the bacterial body, we considered that it might be possible to co-produce ethanol and squalene. We succeeded in producing squalene and squalene at the same time, and confirmed for the first time that the above estimation is actually possible.

本発明は、この新規にして有用な知見を基礎としてなさ
れたものであって、微生物を嫌気条件に保持することに
よってスクアレンを生産せしめることを基本的技術思想
とするものであり、例えば嫌気条件下でエタノール生産
能も併有する微生物によれば、スクアレンと共にエタノ
ールも同時に生産せしめることができるのである。
The present invention was made based on this new and useful knowledge, and its basic technical idea is to produce squalene by maintaining microorganisms under anaerobic conditions. According to microorganisms that also have the ability to produce ethanol, it is possible to simultaneously produce ethanol as well as squalene.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明は、前記したスクアレンの代謝系を利用するもの
であり、したがってそのような代謝経路を有する微生物
であればすへて利用することができる。そしてその際、
エタノール生産能を併有する微生物であれば、これを嫌
気条件下に保持することにより、上記したようにスクア
レンを生産すると同時にエタノールも生産することがで
きる。
The present invention utilizes the squalene metabolic system described above, and therefore any microorganism that has such a metabolic pathway can be used. And at that time,
If the microorganism has the ability to produce ethanol, it can produce squalene and ethanol at the same time as described above by maintaining it under anaerobic conditions.

このような微生物の例としては、サツカロミセス9セレ
ビシエ(Saccharomyces cerevis
iae)が挙げられ、これを嫌気培養することによって
スクアレンが菌体内に蓄積されるとともにエタノールが
菌体外に分泌蓄積される。そして工業的に実施するには
、より生産能の高い菌株を選択してこれを使用するのが
好適である。
Examples of such microorganisms include Saccharomyces cerevisiae.
iae), and by culturing it anaerobically, squalene is accumulated within the bacterial cells and ethanol is secreted and accumulated outside the bacterial cells. For industrial implementation, it is preferable to select and use a strain with higher productivity.

本発明を実施するには、このような微生物を資化しうる
炭素源及び窒素源を含む栄養培地中に接種し、嫌気条件
下で培養する。
To carry out the present invention, such microorganisms are inoculated into a nutrient medium containing assimilated carbon and nitrogen sources and cultured under anaerobic conditions.

炭素源としては、グルコース、シュークロース、澱粉、
廃糖蜜、フラクトース、グリセリンその他の炭水化物を
使用するのが好ましい。
Carbon sources include glucose, sucrose, starch,
Preference is given to using blackstrap molasses, fructose, glycerin and other carbohydrates.

窒素源としては、オートミール、イーストエキストラク
ト、ペプトン、グルテンミール、綿実粉、大豆ミール、
コーンステイープリカー、乾燥イースト、小麦胚芽、落
花生粉、チキン骨肉ミール等のほか、アンモニウム塩(
例えば、硝酸アンモニウム、硫酸アンモニウム、リン酸
アンモニウム等)、尿素、アミノ酸等の無機及び有機の
窒素化合物も有利に使用することができる。
Nitrogen sources include oatmeal, yeast extract, peptone, gluten meal, cottonseed flour, soybean meal,
In addition to cornstarch liquor, dried yeast, wheat germ, peanut flour, chicken bone meal, etc., ammonium salts (
Inorganic and organic nitrogen compounds such as ammonium nitrate, ammonium sulfate, ammonium phosphate, etc.), urea, amino acids, etc. can also be used advantageously.

これらの炭素源及び窒素源は、併用するのが有利である
が、純粋なものを必らずしも使用する必要はない。純粋
でないものには、生長因子や微量要素が含まれているか
らである。
Although it is advantageous to use these carbon sources and nitrogen sources in combination, it is not necessary to use pure sources. This is because impure products contain growth factors and trace elements.

必要ある場合には、ビタミン類のほか、例えば次のよう
な無機塩類を培地に添加してもよい:炭酸ナトリウム、
炭酸カリウム、リン酸ナトリウム、リン酸カリウム、塩
化ナトリウム、塩化カリウム、塩化カルシウム、ヨウ化
ナトリウム、ヨウ化カリウム、マグネシウム塩、銅塩、
コバルト塩等。
If necessary, in addition to vitamins, inorganic salts such as the following may be added to the medium: sodium carbonate,
Potassium carbonate, sodium phosphate, potassium phosphate, sodium chloride, potassium chloride, calcium chloride, sodium iodide, potassium iodide, magnesium salt, copper salt,
Cobalt salt etc.

これら必要な各成分を必要量用いて培地を調製し、そし
てその際、エタノール発酵用培地組成も充分に利用する
ことができ、これを発酵槽に入れて微生物を植菌した後
、窒素ガスその他の不活性ガス雰囲気下、空気遮断条件
下等嫌気条件下、10〜1100rp程度の撹拌を行い
又は撹拌することなく、微生物の生育温度(微生物によ
っても異なるが、20〜45℃程度)で、必要時間(酵
母の場合、例えば10〜200時間)培養する。
A culture medium is prepared using the necessary amounts of each of these necessary components, and at that time, the composition of the medium for ethanol fermentation can also be fully utilized. After putting this into a fermenter and inoculating it with microorganisms, nitrogen gas and other Under anaerobic conditions such as an inert gas atmosphere or air-blocking conditions, with or without stirring at about 10 to 1100 rpm, at the growth temperature of microorganisms (about 20 to 45 °C, although it varies depending on the microorganism), as necessary. Cultivate for a period of time (for example, 10 to 200 hours in the case of yeast).

上記のようにして培養を行っても所期の目的は達成され
るが、ビタミン類、特にサイアミンを添加し及び/又は
糖濃度を維持をしながら培養を行うと、エタノール、ス
クアレンの収率、特にスクアレンの収率が増加する。糖
濃度は使用菌によっても相違するが、S、セレビシェの
場合は0.3g/l以上、好ましくは0.5g/Ω以上
、更に好ましくは1g712以上に維持するのがよい。
Although the desired purpose can be achieved even if the culture is carried out as described above, if the culture is carried out while adding vitamins, especially thiamine and/or maintaining the sugar concentration, the yield of ethanol and squalene will be reduced. In particular, the yield of squalene increases. The sugar concentration differs depending on the bacteria used, but in the case of S. cerevisiae, it is preferably maintained at 0.3 g/l or more, preferably 0.5 g/Ω or more, and more preferably 1 g712 or more.

糖濃度の維持は常法にしたがって適宜行えばよいが、例
えば、pHスタット法に基いて窒素源及び炭素源を同時
に供給する流加培養法は好適な方法のひとつである。具
体的には、pHの調整と窒素源とを兼ねて水酸化アンモ
ニウムやアンモニウム水等を添加し、それと同時に炭素
源も添加して培養を行い、その結果、培地中の糖濃度が
一定に保持されて、エタノールとスクアレン、特に従来
困難であったスクアレンの効率的生産が可能となるので
ある。
The sugar concentration may be maintained as appropriate according to conventional methods; for example, a fed-batch culture method in which a nitrogen source and a carbon source are simultaneously supplied based on a pH-stat method is one of the preferred methods. Specifically, ammonium hydroxide, ammonium water, etc. are added to adjust the pH and serve as a nitrogen source, and at the same time, a carbon source is also added during cultivation. As a result, the sugar concentration in the medium is maintained constant. This makes it possible to efficiently produce ethanol and squalene, especially squalene, which has been difficult to produce in the past.

培養終了後、培養物(微生物菌体、菌体を含有する培養
液、菌体を除去した培養液、菌体のほが培地等も除去し
た培養濾液等)から、目的物質を分離、回収する。目的
物質の分離、回収は、常法にしたがって行えばよい。
After completion of the culture, the target substance is separated and recovered from the culture (microbial cells, culture solution containing the microorganisms, culture solution from which the microorganisms have been removed, culture filtrate from which the culture medium of the microorganisms has been removed, etc.). . Separation and recovery of the target substance may be performed according to conventional methods.

使用する微生物によって相違するが、S、セレビシェを
使用する場合は、通常、エタノールは菌体外に分泌生産
され、スクアレンは菌体内に蓄積される。したがって、
培養終了後、培養液より菌体を分離し、培養液は蒸留に
よりエタノールを回収し、菌体からは溶剤によりスクア
レンを抽出すればよい。この抽出溶剤として、菌体を乾
燥させた場合はN−ヘキサン、石油エーテルのような極
性の低い溶剤を用い、菌体が水を多量に含むか、又は同
伴する場合には塩化メチレン・メタノールやエタノール
・N−ヘキサンのような混合溶媒を使用すると効率が良
い。この溶媒に溶解したスクアレンを単独でとりだすに
は蒸留して溶媒を除去し、得られた粗スクアレンを減圧
蒸留すれば高純度のスクアレンを得ることができる。必
要ある場合は抽出に先立ち、菌体を酵素や超音波等で破
壊してもよい。
Although it differs depending on the microorganism used, when S. cerevisiae is used, ethanol is usually secreted and produced outside the microorganism, and squalene is accumulated inside the microorganism. therefore,
After the cultivation is completed, the bacterial cells are separated from the culture solution, ethanol is recovered from the culture solution by distillation, and squalene is extracted from the bacterial cells using a solvent. As the extraction solvent, use a low polar solvent such as N-hexane or petroleum ether if the bacterial cells are dried, or methylene chloride, methanol, or It is efficient to use a mixed solvent such as ethanol/N-hexane. In order to take out the squalene dissolved in the solvent alone, the solvent is removed by distillation, and the resulting crude squalene is distilled under reduced pressure to obtain highly pure squalene. If necessary, the bacterial cells may be destroyed using enzymes, ultrasound, etc. prior to extraction.

スクアレンの同定は質量分析、核磁気共鳴スペクトルに
より、スクアレンの定量はガスクロマトグラフィで行な
うことができる。
Squalene can be identified by mass spectrometry and nuclear magnetic resonance spectroscopy, and squalene can be quantified by gas chromatography.

(実施例) 以下本発明を実施例により説明するが、本発明はこれに
限定されるものではない。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例1 培養器として5Q容量の小型発酵槽及び以下に示す組成
の培地を使用して、エタノール生産性酵母2菌株を培養
し、スクアレン及びエタノールを生産せしめた。
Example 1 Two ethanol-producing yeast strains were cultured to produce squalene and ethanol using a small fermenter with a 5Q capacity as a culture vessel and a medium having the composition shown below.

塵嵐框双 グルコース         100g#1(NH4)
2So45g/12 に82P041g/l MgSO4・7H201g#I CaCL ・2820          0 、17
g/ Qイーストエキストラクト   0.5g/lイ
ノシトール       0.1g#!ビタミン混合液
(リ      LmQ/l3つ ”j” ”    
      (B/100m12、ビオチン     
      0.35パントテン酸カルシウム   5
0 ピリドキサール塩酸     25 サイアミン塩酸      100 ニコチン酸アミド      100 すなわち、ジャーファーメンタ−に上記組成の培地を4
aずつ入れ、これにエタノール生産性酵母である5ac
charo+ayces ceravisiae AT
CC26603及びSaCcharomyces ce
revisiae IFO216をそれぞれ植菌し、温
度30℃、無通気、 1100rpで攪拌しながら84
時間培養して第1表の結果を得た。
Dust Storm Soglucose 100g #1 (NH4)
2So45g/12 to 82P041g/l MgSO4・7H201g#I CaCL・2820 0, 17
g/Q Yeast Extract 0.5g/l Inositol 0.1g#! Vitamin mixture (3 LmQ/l ``j''''
(B/100m12, biotin
0.35 Calcium pantothenate 5
0 Pyridoxal hydrochloric acid 25 Thiamine hydrochloric acid 100 Nicotinic acid amide 100
Add 5ac, which is an ethanol-producing yeast, to this.
charo+ayces ceravisiae AT
CC26603 and SaCcharomyces ce
revisiae IFO216, and stirred at 30°C, no ventilation, and 84 rpm at 1100 rpm.
After culturing for a period of time, the results shown in Table 1 were obtained.

第1表 スクアレン生産量C+++g/g−cell)    
0.35     8.81乾燥菌体濃度  (g/1
2)        4.135      4.25
上記結果からも明らなように、同じエタノール生産性酵
母であってもスクアレン生産能には差があることが確認
され、特にすぐれたスクアレン生産菌としてサツカロミ
セス・セレビシェIF0216株を選択した。
Table 1 Squalene production amount C+++g/g-cell)
0.35 8.81 Dry bacterial cell concentration (g/1
2) 4.135 4.25
As is clear from the above results, it was confirmed that there are differences in squalene production ability even among the same ethanol-producing yeasts, and Satucharomyces cerevisiae strain IF0216 was selected as a particularly excellent squalene-producing bacterium.

実施例2 (1)培養器として2.3Q容量の小型発酵槽及び以下
に示す組成の培地を使用して、エタノール生産性酵母を
嫌気条件の下で培養し、スクアレン及びエタノールを生
産せしめた。
Example 2 (1) Ethanol-producing yeast was cultured under anaerobic conditions to produce squalene and ethanol using a small fermenter with a capacity of 2.3Q and a medium having the composition shown below as a culture vessel.

1鬼藍處 グルコース         30g/l(N)14)
2S04          5g/lKH2P047
g/l MgSO,・77H2O1/l CaCL ・2H200,17g/Illイーストエキ
ストラクト  0.5g#1イノシトール      
 O,1g/ρビタミン混合液(リ     1mQ/
l3°)4す之q      (mg/l。。、9)ビ
オチン          0.35パントテン酸カル
シウム  50 ピリドキサール塩酸    25 サイアミン塩酸      100 ニコチン酸アミド     100 すなわち、2.3Q容ジャーファーメンタ−に上記組成
の培地を2Ω入れ、これにエタノール生産性酵母である
Saccharomyces cerevisiae 
IFO216を植菌し、pH5,0、温度30℃、無通
気、1100rpで攪拌しながら78時間培養し、菌体
濃度、糖濃度、スクアレン含量、アルコール濃度の時間
的変化をそれぞれ測定して、第1図及び第2表の結果を
得た。
1. Glucose 30g/l (N) 14)
2S04 5g/lKH2P047
g/l MgSO, 77H2O1/l CaCL 2H200, 17g/Ill Yeast Extract 0.5g #1 Inositol
O, 1g/ρ vitamin mixture (Li 1mQ/
l3°) 4sunoq (mg/l.., 9) Biotin 0.35 Calcium pantothenate 50 Pyridoxal hydrochloric acid 25 Thiamine hydrochloric acid 100 Nicotinic acid amide 100 That is, a medium with the above composition was placed in a 2.3Q jar fermenter. 2Ω, and the ethanol-producing yeast Saccharomyces cerevisiae was added to this.
IFO216 was inoculated and cultured for 78 hours at pH 5.0, temperature 30°C, no ventilation, and stirring at 1100 rp, and the temporal changes in bacterial cell concentration, sugar concentration, squalene content, and alcohol concentration were measured. The results shown in Figure 1 and Table 2 were obtained.

第2表 Q  O,0300 60,2290 120,329100 240,52930 362,01565 483,51,01229 603,40,0230 723,400,830 783,400,530 第1図及び第2表の結果から明らかなように、培養開始
48時間後にエタノール濃度及びスクアレン濃度(最大
値12mg/g−cellを示す)が増大し、糖濃度は
Ig/lを示している。さらに48時間以後にはエタノ
ール濃度の変化はほとんどないが、糖濃度が1g/lを
低下するとスクアレン濃度の減少傾向が顕著になってお
り、糖濃度が維持されないとスクアレンの生産性能が低
下することは明らかである。
Table II As shown, 48 hours after the start of culture, the ethanol concentration and squalene concentration (maximum value 12 mg/g-cell) increased, and the sugar concentration showed Ig/l. Further, after 48 hours, there is almost no change in the ethanol concentration, but when the sugar concentration drops below 1 g/l, the squalene concentration tends to decrease, indicating that squalene production performance will decline if the sugar concentration is not maintained. is clear.

これらの結果からして、スクアレンの工業的生産という
面からみると、糖濃度は0.3g/12以上、好ましく
は0.5g/l以上、特に好ましくはIg/II以上に
維持するのがよいことが判る。
From these results, from the standpoint of industrial production of squalene, it is recommended that the sugar concentration be maintained at 0.3 g/12 or higher, preferably 0.5 g/l or higher, particularly preferably Ig/II or higher. I understand that.

(2)前項の条件で、但し培養ははじめに嫌気条件でな
く好気条件のもとで、S、 ceravisiae I
FO0216をセミ−バッチ方式により培養した。次い
で36時間後に嫌気条件に切りかえて嫌気培養を行い、
84時間培養を継続した。そしてこの間の菌体濃度。
(2) Under the conditions described in the previous section, except that the cultivation was initially carried out under aerobic conditions rather than anaerobic conditions.
FO0216 was cultured in a semi-batch mode. Then, after 36 hours, the conditions were changed to anaerobic conditions and anaerobic culture was carried out.
Culture was continued for 84 hours. and the bacterial cell concentration during this period.

糖濃度及びスクアレン含量の時間的変化をそれぞれ測定
して、第2図の結果を得た。
The temporal changes in sugar concentration and squalene content were measured, and the results shown in FIG. 2 were obtained.

第2図の結果から明らかなように、好気条件下における
増殖速度はμ、、x=o、isと先の嫌気条件下での値
と同一であった。このことから、本菌の電子伝達系の活
性は弱く、好気条件で菌体増殖速度の改菩を図ることは
困難であることが判明した。
As is clear from the results in FIG. 2, the growth rate under aerobic conditions was μ, x=o, is, which was the same as the value under anaerobic conditions. These results revealed that the activity of the electron transport system of this bacterium is weak, making it difficult to improve the bacterial growth rate under aerobic conditions.

培養開始36時間の時点で、新たに培地を添加して通気
を停止後、約20分程度で溶存酸素濃度はほぼゼロとな
った。菌の増殖が再び開始され、12時間で添加された
全ての糖が消費されて最終菌体濃度は2.7g/lとな
った。嫌気条件に移行した後、スクワレンの蓄積が盛ん
に行われ、定常期初期に17mg/g−cellに達し
たが、その後急激に減少した。
After 36 hours from the start of culture, a new medium was added and aeration was stopped, and the dissolved oxygen concentration reached almost zero in about 20 minutes. Bacterial growth started again and all added sugars were consumed in 12 hours, resulting in a final bacterial cell concentration of 2.7 g/l. After shifting to anaerobic conditions, squalene was actively accumulated, reaching 17 mg/g-cell at the beginning of the stationary phase, but then rapidly decreasing.

以上の結果から、スクワレンの菌体内の蓄積は、対数増
殖後期および定常期初期に盛んに行われ、培養液中の糖
が枯渇すると急激に減少することが分かった。つまり、
スクワレンの効率的生産には。
From the above results, it was found that squalene accumulates actively in the bacterial cells during the late logarithmic growth period and the early stationary phase, and rapidly decreases when sugar in the culture solution is depleted. In other words,
For efficient production of squalene.

嫌気条件及び糖が必要であることが改めて確認されたの
である。
The necessity of anaerobic conditions and sugar was confirmed once again.

実施例3 培養器として2.0Q容量の小型発酵槽を用いて、エタ
ノール生産性酵母S、 cerevisiae IFO
216を嫌気的条件の下、糖濃度をIg#1以下にしな
いようにコントロールしなから流加培養を行った。
Example 3 Using a small fermenter with a capacity of 2.0Q as a culture vessel, ethanol-producing yeast S, cerevisiae IFO
216 was subjected to fed-batch culture under anaerobic conditions while controlling the sugar concentration not to fall below Ig#1.

培地としては、実施例2で用いたのと同一組成のものを
使用したが、更に糖濃度を維持するための補充用培地と
して、以下の組成とアンモニア水(25,6g#l)と
を培地のpHが5.0となるように各別に及び/又は同
時に混合した混合培地を使用した。
A culture medium with the same composition as that used in Example 2 was used, but the following composition and aqueous ammonia (25.6g #l) were added as a supplementary medium to maintain the sugar concentration. A mixed medium was used in which each medium was mixed separately and/or simultaneously so that the pH of the medium was 5.0.

補充用培地組成 グルコース         210g/ρKH,PO
47g/l MgSO4・7Hz01g/l CaCI22−28,0          0.17
g#1イーストエキストラクト   0.5g/lイノ
シトール       0.1g/lビタミン混合液(
J       1aQ/lビオチン        
  0.35パントテン酸カルシウム  5゜ ピリドキサール塩酸    25 サイアミン塩酸      100 ニコチン酸アミド     100 すなわち、2.0Q容量の小型発酵槽に実′施例2で用
いた培地を1.012入れ、エタノール生産性酵母S、
 cerevisiae IFO216を発酵槽に植菌
し、温度25℃、窒素ガス0.5ff/win通気、3
00rpmで攪拌し、糖濃度の変化は培地のPH変化を
モニターして、 pH4.8を維持するように、アンモ
ニア混合培地を適宜送入して培養した。
Replenishment medium composition Glucose 210g/ρKH, PO
47g/l MgSO4・7Hz01g/l CaCI22-28,0 0.17
g#1 yeast extract 0.5g/l inositol 0.1g/l vitamin mixture (
J 1aQ/l biotin
0.35 Calcium pantothenate 5° Pyridoxal hydrochloride 25 Thiamine hydrochloric acid 100 Nicotinic acid amide 100 That is, 1.012 of the medium used in Example 2 was put into a small fermenter with a capacity of 2.0 Q, and ethanol-producing yeast S,
cerevisiae IFO216 was inoculated into a fermenter, temperature was 25°C, nitrogen gas was aerated at 0.5ff/win, 3
The culture was carried out by stirring at 00 rpm, monitoring changes in sugar concentration by monitoring changes in pH of the medium, and appropriately introducing ammonia mixed medium to maintain pH 4.8.

培地量が54時間後に1.4Qに達したため、0.7Q
を抜き出しさらに培養を続け、99時間後培養を終了し
、途中抜き呂した0、7Qを含めた培地中の菌体量は9
.0g、エタノール量は89g、そしてスクアレンの量
は115+ngであった・ その培養経過は第3表に示すとおりであった。
Since the medium amount reached 1.4Q after 54 hours, 0.7Q
After 99 hours, the culture was terminated.
.. The amount of ethanol was 89 g, and the amount of squalene was 115+ng. The progress of the culture was as shown in Table 3.

0  0.18  5.1   0.2     10
23  2.1  6.5   9.0     3.
038  3.4  5.6   23.0     
8.154  3.4  4.3   33.8   
  16.174  4.0  5.6   38.1
     14.0(発明の効果) 本発明によれば、深海鮫等天然物からの抽出によること
なく、培養条件を新たにコントロールするシステムを採
用し、微生物を用いる発酵法によってスクアレンを大量
に工業生産することができる。
0 0.18 5.1 0.2 10
23 2.1 6.5 9.0 3.
038 3.4 5.6 23.0
8.154 3.4 4.3 33.8
16.174 4.0 5.6 38.1
14.0 (Effects of the Invention) According to the present invention, squalene can be industrially produced in large quantities by a fermentation method using microorganisms by adopting a new system for controlling culture conditions, without relying on extraction from natural products such as deep-sea sharks. can do.

また本発明によれば、エタノール発酵性微生物を使用す
ることにより、スクアレンのほかにエタノールも同時に
且つ大量に工業生産することも可能である。
Further, according to the present invention, by using ethanol-fermenting microorganisms, it is also possible to industrially produce ethanol in addition to squalene simultaneously and in large quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、S、 cerevisiae IFO216
の嫌気条件下での培養経過を示した図面であり、第2図
は、同菌の好気条件下次いで嫌気条件下での培養経過を
示した図面である。 代理人 弁理士 戸 1)親 男 乾燥菌体導度ig/17・ ス’)7レンk1度量[mg/g−cell l sI
A槍濃壇(q/ll。 OLn           ′ アルコール濃度[g/13Δ 乾燥菌体導度1g/II・ スクアレン生産量[mg/g−cel目1残留グルコー
スJ度[[]/ll。
Figure 1 shows S. cerevisiae IFO216.
FIG. 2 is a drawing showing the progress of culturing the same bacterium under anaerobic conditions, and FIG. 2 is a drawing showing the progress of culturing the same bacterium under aerobic conditions and then under anaerobic conditions. Agent: Patent attorney 1) Parent: Male dry bacterial cell conductivity ig/17・su') 7len k1 weight [mg/g-cell l sI
A-yari concentration (q/ll. OLn' Alcohol concentration [g/13Δ Dry cell conductivity 1 g/II/Squalene production [mg/g-cel 1st residual glucose J degree [[]/ll.

Claims (6)

【特許請求の範囲】[Claims] (1)スクアレン生産菌を嫌気条件下で培養することを
特徴とするスクアレンの製造方法。
(1) A method for producing squalene, which comprises culturing squalene-producing bacteria under anaerobic conditions.
(2)サッカロミセス属に属するスクアレン生産菌を嫌
気条件下で培養し培養物からスクアレンを採取すること
を特徴とするスクアレンの製造方法。
(2) A method for producing squalene, which comprises culturing squalene-producing bacteria belonging to the genus Saccharomyces under anaerobic conditions and collecting squalene from the culture.
(3)スクアレン及びエタノール生産菌を嫌気条件下で
培養することを特徴とするスクアレン及び/又はエタノ
ールの製造方法。
(3) A method for producing squalene and/or ethanol, which comprises culturing squalene and ethanol-producing bacteria under anaerobic conditions.
(4)サッカロミセス属に属するスクアレン及びエタノ
ール生産菌を嫌気条件下で培養し培養物からスクアレン
及び/又はエタノールを採取することを特徴とするスク
アレン及び/又はエタノールの製造方法。
(4) A method for producing squalene and/or ethanol, which comprises culturing squalene and ethanol producing bacteria belonging to the genus Saccharomyces under anaerobic conditions and collecting squalene and/or ethanol from the culture.
(5)培地の糖濃度を0.5g/l以上、好適には1g
/l以上に維持することを特徴とする請求項1〜4のい
ずれか1項に記載の方法。
(5) Sugar concentration of the medium is 0.5 g/l or more, preferably 1 g
5. The method according to any one of claims 1 to 4, characterized in that it is maintained at or above /l.
(6)培地にサイアミンを添加することを特徴とする請
求項1〜5のいずれか1項に記載の方法。
(6) The method according to any one of claims 1 to 5, characterized in that thiamine is added to the medium.
JP2302451A 1990-11-09 1990-11-09 Fermentation method to produce squalene and ethanol simultaneously Expired - Lifetime JP2719693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2302451A JP2719693B2 (en) 1990-11-09 1990-11-09 Fermentation method to produce squalene and ethanol simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2302451A JP2719693B2 (en) 1990-11-09 1990-11-09 Fermentation method to produce squalene and ethanol simultaneously

Publications (2)

Publication Number Publication Date
JPH04179487A true JPH04179487A (en) 1992-06-26
JP2719693B2 JP2719693B2 (en) 1998-02-25

Family

ID=17909096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2302451A Expired - Lifetime JP2719693B2 (en) 1990-11-09 1990-11-09 Fermentation method to produce squalene and ethanol simultaneously

Country Status (1)

Country Link
JP (1) JP2719693B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964923A1 (en) 2007-02-27 2008-09-03 Alain André Guy Vertès Multiplex fermentation process
GB2518927A (en) * 2013-05-21 2015-04-08 Univ Swansea The production of biomolecules using yeast
US9012190B2 (en) 2011-06-15 2015-04-21 Butamax Advanced Biofuels Llc Use of thiamine and nicotine adenine dinucleotide for butanol production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964923A1 (en) 2007-02-27 2008-09-03 Alain André Guy Vertès Multiplex fermentation process
US9012190B2 (en) 2011-06-15 2015-04-21 Butamax Advanced Biofuels Llc Use of thiamine and nicotine adenine dinucleotide for butanol production
GB2518927A (en) * 2013-05-21 2015-04-08 Univ Swansea The production of biomolecules using yeast

Also Published As

Publication number Publication date
JP2719693B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US4368268A (en) Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant
Himmi et al. Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii
JPS6357039B2 (en)
MX2010013307A (en) Method of producing yeast biomass.
CN105483167B (en) A method of based on reducing power regeneration fermentation succinic acid-producing in electro-chemical systems regulating cell
US4511656A (en) Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant
JP6942697B2 (en) Clostridium beigelinky and its use, and method for producing butanol
CA1043283A (en) Production of 2-keto-l-gulonic acid from glucose by mixed cultures
EP0424384B1 (en) Improved fermentation process for carboxylic acids
US4935360A (en) Process for the microbial anaerobic production of acetic acid
Yang et al. Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae
Hayashida et al. High concentration-ethanol fermentation of raw ground corn
JPH0365192A (en) Production of 1, 3-propane diol by fermenting means
JP4132253B2 (en) Ammonia-resistant L (+)-lactic acid-producing bacterium and L (+)-lactic acid production method
EP0486024B1 (en) Lactobacillus SP.B001 and method of producing mannitol
CN105722988B (en) Process for microbial fermentation of sugar-containing substrates and use of hydrogen in atomic, ionic or gaseous state in such process
JPH04179487A (en) Method for fermentation of simultaneous production of squalene and ethanol
US4731329A (en) Ethanol production by high performance bacterial fermentation
FI71766C (en) FRAMSTAELLNING AV ETHANOL GENOM HOEGEFFEKTIV BAKTERIEJAESNING.
US2344025A (en) Fermentative production of 2,3-butylene glycol
US4830964A (en) Ethanol production by high performance bacterial fermentation
US4229543A (en) Process for culturing methanol-utilizing yeasts
EP0899342B1 (en) Process for the biotechnological production of Delta-decalactone and Delta-dodecalactone
CA1209073A (en) Process for the biotechnical production of l-malic acid
US4647534A (en) Ethanol production by high performance bacterial fermentation