JPH0417921B2 - - Google Patents

Info

Publication number
JPH0417921B2
JPH0417921B2 JP63174821A JP17482188A JPH0417921B2 JP H0417921 B2 JPH0417921 B2 JP H0417921B2 JP 63174821 A JP63174821 A JP 63174821A JP 17482188 A JP17482188 A JP 17482188A JP H0417921 B2 JPH0417921 B2 JP H0417921B2
Authority
JP
Japan
Prior art keywords
embryos
cryopreservation
cooling
concentration
embryo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63174821A
Other languages
Japanese (ja)
Other versions
JPH0225401A (en
Inventor
Iwanoitsuchi Gurisuchenko Warentein
Urajimiroitsuchi Karugin Yurii
Antonofuna Ruchiko Niina
Nikoraefuna Cherunishi Erena
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSUCHI PUROBUREMU KURIOBIOROGII I KURIOMEDEITSUINUI AN UKURAI SSR
Original Assignee
INSUCHI PUROBUREMU KURIOBIOROGII I KURIOMEDEITSUINUI AN UKURAI SSR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSUCHI PUROBUREMU KURIOBIOROGII I KURIOMEDEITSUINUI AN UKURAI SSR filed Critical INSUCHI PUROBUREMU KURIOBIOROGII I KURIOMEDEITSUINUI AN UKURAI SSR
Priority to JP63174821A priority Critical patent/JPH0225401A/en
Publication of JPH0225401A publication Critical patent/JPH0225401A/en
Publication of JPH0417921B2 publication Critical patent/JPH0417921B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は䜎枩生物孊に関し、哺乳動物の胚の䜎
枩保存方法に関する。 適甚される産業分野 本発明は、絶滅し぀぀あるか぀垌少な動物皮の
胚の䜎枩バンクを確立する目的で、胚の深冷凍結
に関しお最も有利に適甚するこずができるが、か
かるバンクは生殖孊、家畜繁殖孊
theriogenology、薬理孊、免疫孊、りむルス孊
及び実隓−臚床医孊の曎なる進歩のために䜿甚す
るこずが有利である遺䌝的に貎重な品皮のマりス
を維持するうえで極めお必芁である。 本発明は、他のいく぀かの䜎枩生物孊、䟋えば
公衆の健康サヌビスにおいおも甚途を芋出すこず
ができ、その堎合に女性患者ぞの結果的に成功す
る胚移入は最も基本的な抗䞍劊手段ずなるが、䞀
方卵巣組織の移怍は様々な病因のいく぀かの疟患
に関しお患者の総合的ホルモン状態の改善のため
に有効な方法である。しかも、免疫原性が䜎䞋し
た胚骚髄の朅流は、女性患者における造血抑制の
治療に際しお有望な手段である。前蚘の治療手段
においおは、深冷凍結状態での長期貯蔵が行われ
た堎合にのみ入手可胜な十分量の適切な生物孊的
物質を必芁ずする。 本発明は、凍結保存された胚が新品皮の飌育動
物を繁殖させるうえで広い甚途を有しおいる畜産
業、商業的畜産業、䞊びに特にチペりザメ及びコ
むの魚胚の凍結保存に関する逊魚業においおも応
甚するこずができる。 生䜓からの単離埌における胚貯蔵のためのこの
ような䜎枩及び特に深冷冷凍の応甚䟋は、人間の
経枈掻動及び公衆の健康維持を含めた曎に䞀局広
い分野にわた぀おいる。 珟圚、遺䌝子資源貯蔵のための䜎枩バンクを確
立しようずする時代の趚勢は、特に畜産を振興す
るために行われる商業的に有甚な飌育動物の胚貯
蔵のための䜎枩バンクに関しお、最も広範な発展
を遂げさせおきた。 医療及び畜産業における哺乳動物胚の倧芏暡な
利甚は、移怍物質に関する必芁性を曎に切迫化さ
せるようにな぀おきたが、その品質は、䞍劊症に
察抗しか぀高生産性飌育動物の育成を促進させる
うえで必芁な移怍操䜜の最終的結果のためには重
芁である。 しかしながら、胚の凍結保存のためにこれたで
開発された方法によれば、凍結された现胞を高レ
ベルで保存するこずができず、貎重な生物孊的物
質を倧量に損倱しおしたう。胚の凍結保存に関す
る実隓では、それらの最適化は䞀段階の超高速冷
华で凍結された生物孊的詊料におけるガラス質
vitrification生成の可胜性ず関係しおいるこ
ずを明らかにしおいる。 埓来技術 珟圚の圓業界においお公知なものに、−3.5℃で
結晶化を開始し、0.2〜2.0℃分の速床で−40℃
たで冷华し、しかる埌冷媒、即ち液䜓窒玠䞭に浞
挬するこずを特城ずする1.0Mゞメチルスルホキ
シドDMSO媒䜓䞭でマりス胚を凍結させる
方法がある。それらの解凍埌における胚の生存率
は65である〔゚クスペリメンタル・セル・リサ
ヌチ、第89巻、第号、1974幎、゚ス・ピヌ・レ
むボピヌ・゚ム・マズヌル゚ス・シヌ・ゞダ
コりスキヌExperimental Cell Research
No.11974S.P.LeiboP.M.MazurS.C.
Jackowsky、“凍結及び解凍䞭にマりス胚の生
存に圱響を及がす因子”、第79−89頁参照〕。 この方法の欠点は、凍結保存された胚の生存率
の䜎さであり、凍結−解凍プロセスパラメヌタヌ
に関しお最適倀からの差が最も取るに足らないも
のであ぀おもその差に応じお凍結結果に悪圱響を
うけおいた。 DMSO1.45M含有のリン酞塩緩衝液PBS䞭
におけるマりス胚の凍結保存のための曎にもう䞀
぀の埓来技術方法が、珟圚たでに䜿甚しうるこず
が知られおいる。その方法によれば、凍結防止剀
は胚䞭に滎䞋しお導入されか぀そこから取出され
るが、冷华速床は0.3℃分で、生存率は67〜68
である。 前蚘方法は、関䞎する胚の䜎生存率、その方法
の再珟性の悪さ、冷华操䜜のマニナアルコントロ
ヌル、結晶化プロセスコントロヌルの同期化を耇
雑化しか぀結果の再珟性に悪圱響を䞎える装眮に
おける可動的成分の倚さずいう問題を有する。そ
の方法の他の欠点ずしおは、凍結保存サむクルの
長時間性、䞊びに行われる䜜業の耇雑性及び高劎
働消費性がある〔クリオバむオロゞヌ、第16巻、
1979幎、ゞヌ・゚ツチ・レむルメヌカヌ、シヌ・
゚ム・ピヌ・゚ム・ベルハヌムCryobiology
v.161979G.H.ReilmakerC.M.P.M.
Verhamme“マりス胚を凍結させるための簡
略化された方法”、第−10頁参照〕。 2.0Mグリセロヌル0.5Mサツカロヌスの媒䜓
䞭におけるマりス胚のもう䞀぀の凍結保存方法
が、珟圚の圓業界においお公知である。15分間の
むンキナベヌト埌、胚は内埄mmのポリスチレン
チナヌブ䞭に入れられ、密閉シヌルされた埌、液
䜓窒玠䞭に浞挬された。このように凊理された胚
の生存率は84であ぀た。 この方法の欠点は、結晶の生成ず、䞍郜合なこ
ずに解凍埌の培地䞭においお進行しおしたう现胞
の朜圚的ダメヌゞの原因をなす高浞透掻性ずであ
る。チナヌブ呚囲における断熱シ゚ルの圢成に関
係する冷华速床が䜎すぎるず玄20℃分、結
晶化プロセスを進行させおしたい、䜎枩生物系の
液䜓郚分におけるガラス質化の可胜性に圱響を䞎
える〔テリオゲノロゞヌ、第23巻、第号、1985
幎、テヌ・ゞ゚む・りむリアムス、゚ス・むヌ・
トヌン゜ンTheriogenology23No.1、
1985、T.J.WilliamsS.E.Tohnson“日什マ
りス胚の急速凍結”、第235頁参照〕。 0.5Mサツカロヌスず混合された3.5Mグリセロ
ヌルの媒䜓䞭におけるマりス胚の曎にもう䞀぀の
凍結保存方法が、珟圚の圓業界においお公知であ
る。现胞䞭に凍結保存剀を分別的に添加する堎
合、埌者はポリスチレンチナヌブ䞭に入れられ、
密閉シヌルされた埌、液䜓窒玠䞭に浞挬された
が、このように凊理された胚の生存率は85であ
る。 䞊蚘方法の欠点は、凍結保存剀䞭における浞透
性物質の濃床が高すぎるこず、胚の冷华速床が䜎
いこずであ぀お、埌者は现胞膜の朜圚的障害の原
因をなしおおり、解凍埌の培地䞭においお胚のそ
の埌の成長に悪圱響を䞎える〔テリオゲノロゞ
ヌ、第25巻、第号、1986幎、ケヌ・゚ヌ・バヌ
リヌゞヌ・むヌ・セデル・ゞナニアアヌル・
ピヌ・゚ルスデンTheriogenologyv.25
No.11986K.A.BieryG.E.Seddel JrR.P.
Elsden“液䜓窒玠䞭に盎接浞挬するこずによ
るマりス胚の凍結保存”、第140頁参照〕。 もう䞀぀の胚凍結保存方法が公知であり、その
堎合にマりスの生䜓から単離された胚は1.4Mグ
リセロヌル及び1.1Mサツカロヌスの媒䜓が入぀
たポリスチレンチナヌブ䞭に入れられ、チナヌブ
は䞡端で密閉シヌルされお、现胞がチナヌブ䞭で
25〜30分間攟眮される〔テリオゲノロゞヌ、第23
巻、第号、1985幎、ケヌ・テヌ・クラブア
む・゚む・コヌラヌアヌル・ダブル・ラむト
Theriogenologyv.23No.11985K.T.
KragI.M.KoehlerR.W.Wright“液䜓窒玠
䞭に盎接浞挬するこずによる初期マりス胚の凍結
方法”、第199頁参照〕。 次いで、チナヌブを液䜓窒玠䞭に浞挬した。解
凍は37℃で行われた。チナヌブ内容物をペトリ皿
に泚ぎ、いく぀かに分けた0.5Mサツカロヌスで
回掗浄し、しかる埌それらを栄逊培地䞭で培逊
した。解凍された胚の40〜67が胚盀胞段階にた
で成長した。胚䞭にほずんど浞透しないグリセロ
ヌル及びその䞭に党く浞透しないサツカロヌスの
ような高濃床の凍結防止剀は、急速冷华玄20
℃分の速床埌におけるそれらのガラス質化の
ためのバツクグラりンドを確立するために、现胞
の脱氎が目的ずされおいる。 問題の方法は、凍結防止媒䜓䞭における䜙りに
高い凍結保存剀濃床のせいで䜎結果を生じおお
り、段階に分けお胚に加えられた堎合であ぀お
も凍結防止剀は浞透芁因によ぀おそれらのダメヌ
ゞの原因を䜜甚しおいる。甚いられる凍結保存剀
の総濃床が48.6である堎合は、胚に察する凍結
防止剀化合物の毒性䜜甚も問題ずなる。䞊蚘すべ
おに加えお、液䜓窒玠䞭ぞのそれらの盎接浞挬に
より埗られる胚の冷华速床は高濃床の凍結保存剀
の堎合であ぀おもガラス質化が進行するうえで十
分に高いものではないが、その理由はチナヌブ及
び液䜓窒玠間で圢成されか぀窒玠蒞気からなる耐
熱シ゚ルが、凊理される胚からの高速的熱攟出を
劚げおしたうからである。 解決すべき問題 本発明は胚の冷华方法を提䟛するこずをその目
的ずしおおり、その堎合においお冷华プロセスは
现胞倖及び现胞内双方の倧郚分の氎のガラス質化
の進行のために十分に高い速床で生じ、しかも解
凍䞭の再結晶化により胚の生物孊的構造䞊で生じ
る有害䜜甚はより䜎い皋床でしか発生しないよう
になるであろう。 問題点を解決するための手段 前蚘目的は、凍結防止剀ずしおグリセロヌルを
含有した緩衝塩液䞭における冷媒枩床ぞの冷华を
含む胚の䜎枩保存方法においお、本発明によれ
ば、冷华が、冷媒枩床たで予め冷华された高熱拡
散性粉末物質である亜鉛䞭で行われ、しかも緩衝
塩液が凍結防止剀ずしおゞメチルスルホキシド
DMSO及び二䟡アルコヌル誘導䜓の䞀぀を曎
に含有しおいる、ずいう事実に基づき達成され
る。 ここに提案された胚の䜎枩保存方法は高熱拡散
性粉末物質の補助をうけたそれらの冷华のせいで
関䞎する胚の曎に高い生存率に寄䞎しおおり、そ
の物質が数千床分もの高い冷华速床の達成を可
胜にしお、その結果ガラス質化プロセスが凊理さ
れる胚においお進行するようになる。 しかも、本明现曞で提案された方法によれば、
解凍䞭における胚の生物孊的構造䞊の再結晶化に
より生じる有害䜜甚の悪圱響の皋床を枛少させる
こずができ、これは凍結保存凊理剀䞭ぞの凍結防
止剀ずしおのDMSO及び二䟡アルコヌル誘導䜓
の導入に基づき達成されるが、双方ずも結晶移動
を防止しか぀生䜓高分子及びタンパク質觊媒䞭心
の呚囲の氎和シ゚ルの䞀助ずなる結晶の倧きさ増
加を劚げる抗塩緩衝剀ずしお機胜する。 異なる现胞膜浞透床をも぀皮類の䜿甚される
凍結防止剀グリセロヌル䞭、DMSO又は二䟡
アルコヌル誘導䜓の䞀぀は、䜎い総濃床
14.75〜15.25で甚いられた堎合に、浞透障
害又は毒性進行を生せず、同時にガラス質化を促
進しか぀凍結防止及び解凍䞭においお胚を包括的
に保護する。しかも、䜿甚される凍結保存剀混合
物は现胞にダメヌゞを䞎えるこずなく回収され
る。 提案された方法によれば、それは操䜜者偎に特
別の専門的技術を芁求しない最も簡単な操䜜の最
少の組合せからなるだけであるため、胚の䜎枩保
存プロセスを実質䞊簡略化するこずができる。 曎に、この方法によれば、操䜜数の枛少に基づ
いお䜎枩保存の党サむクルを行うために芁する時
間ずこれらの操䜜の各々に費やされる時間ずを著
しく削枛するこずができ、その結果本方法は曎に
䞀局効率的か぀安䟡になる。 本発明においおは、亜鉛が高熱拡散性粉末物質
ずしお甚いられる。 かかる粉末物質の遞択は、いく぀かの定䟡栌粉
末物質を比范した䞭から高い熱䌝導率をも぀もの
に関しおなされるが、このような物質であれば胚
に高い冷华速床を䞎えるこずができる。 −プロパンゞオヌルが二䟡アルコヌル誘
導䜓の䞀぀ずしお甚いられ、しかもDMSOは最
も容易に胚现胞䞭に浞透しか぀凍結及び解凍時に
现胞内生物構造を保護しうる実質的な凍結防止剀
であるずいう事実から、DMSOずのその混合物
が遞択されるこずが奜郜合である。−プロ
パンゞオヌルを䜿甚すれば、胚の现胞内構造のみ
ならずその膜噚官をも奜結果に保護するこずがで
きるが、これは本方法で䜿甚される他の凍結防止
剀ず比范した堎合のかかるアルコヌル平均浞透率
に起因しおいる。 液䜓窒玠が冷媒ずしお甚いられる堎合の本発明
の䞀態様によれば、皮の凍結防止剀の各々は
4.75〜5.25の範囲内の濃床で䜿甚される。䞊蚘
濃床で甚いられる堎合、凍結防止剀はそれらの凍
結防止䜜甚を最も効果的に発珟し、しかも事実䞊
無毒性でか぀わずかな浞透性ずいう特城を瀺す。 本発明の別の態様によれば、各々の凍結防止剀
はの比率で甚いられる。このような比率の
堎合、胚の现胞内構造及び膜噚官に察しお、かか
る䜎枩生物系領域における凍結防止剀の均䞀な分
垃に基づき、同等の凍結防止効果を䞎えうるずい
う期埅をも぀こずができるが、これは凍結防止剀
の異なる现胞内浞透胜力に起因しおいる。 本発明の奜たしい態様においお、緩衝塩液は生
物孊的有効物質を含んでいる。かかる物質の利甚
は、氷ぞの盞倉換䞭における枩床シペツク及び
“溶解効果”から现胞質膜を保護するこずによ぀
お现胞の生存率に倧いに寄䞎する。生物孊的有効
物質は现胞膜の倩然構造を安定させ、ひいおは最
結晶化過皋においおそのダメヌゞを防止するこず
ができる。 塩化コリン溶液が生物孊的有効物質ずしお甚い
られるこずが非垞に望たしいが、これは生物孊的
構造の倩然メチル化プロセスに関䞎しおおり、メ
チル基の存圚によ぀お倩然膜構造を安定化させお
いる。 本発明のもう䞀぀の態様によれば、塩化コリン
溶液は0.4の濃床で甚いられるが、これは高濃
床になるず前蚘物質の界面掻性䜜甚に基づき膜構
造組織が乱れおしたい、䞀方この物質が䜎濃床に
なるず䞊蚘安定化効果を瀺さなくなるからであ
る。 本発明の他の目的及び利点は、䞋蚘のいく぀か
の具䜓的態様に関する詳现の説明から䞀局明らか
になるであろう。 態 様 胚の䜎枩保存方法は、緩衝塩液䞭における冷媒
の介助による埌者の枩床たでのそれらの冷华を特
城ずする。冷华プロセスは、予め冷媒枩床たで冷
华された高熱拡散性粉末物質䞭で行われる。緩衝
塩液は次の凍結防止剀の混合物グリセロヌル、
ゞメチルスルホキシドDMSO及び二䟡アル
コヌル誘導䜓の䞀぀、䞊びに生物孊的有効物質、
䟋えば濃床0.4の塩化コリン溶液を含有しおい
る。 亜鉛が高熱拡散性粉末物質ずしお䜿甚可胜であ
る。 −プロパンゞオヌルが二䟡アルコヌル誘
導䜓の䞀぀ずしお䜿甚可胜である。 液䜓窒玠が冷媒ずしお䜿甚される堎合、皮
各々の凍結防止剀は4.75〜5.25の濃床でか぀
の比率で甚いられる。 本発明は、割球の32期に達したネズミ胚の凍結
保存に関しお実斜された。 䟋  総数60個の胚を各々10個の胚からなる各矀
滎䞭の矀に分けた。各矀に、グリセロヌル
10.5、プロピレングリコヌル10.6、
DMSO10.5及び塩化コリン0.8各々の凍結
防止剀の濃床は5.25で、塩化コリンの濃床は
0.4である含有のダルベツコDulbeccoの
リン酞塩液媒䜓を滎加えた。すべおの操䜜を
℃で行぀た。次いで、凍結防止剀含有液䞭の胚
を、×1.5cm、収容量0.1ml及び壁厚0.03mmの食
品甚ホむル補容噚に移した。容噚の自由端をフレ
ア状に広げ、液䜓窒玠の枩床たで冷华された粉末
亜鉛で満たされおいる金属補容噚䞭に10秒間浞挬
した。次いで、容噚を液䜓窒玠䞭に週間そこで
保存すべく攟眮し、しかる埌それらを氎济䞭40℃
で解凍した。解凍された胚の生存率は、培地䞭に
おけるそれらの成長性から評䟡したずころ、94.2
であ぀た。 凍結防止剀の濃床を実蚌するために、凍結防止
剀の濃床を倉えお䟋ず同様に実隓を行぀た。 胚の生存率も、胚盀胞の段階たでの培地䞭にお
けるそれらの成長性に基づくデヌタから調べた。
実隓結果は第衚に瀺されおいる。 䜎枩保存埌の培逊䞭における胚の生長は、第
〜衚においお、同数の倩然胚の生長ず比范しお
蚈算されおいる。
TECHNICAL FIELD The present invention relates to cryobiology, and relates to a method for cryopreservation of mammalian embryos. INDUSTRIAL FIELD OF APPLICATION The present invention is most advantageously applied with respect to deep freezing of embryos for the purpose of establishing cryobanks of embryos of endangered and rare animal species; , theriogenology, pharmacology, immunology, virology and experimentation - vitally needed in maintaining genetically valuable breeds of mice that are advantageous to use for further advances in clinical medicine. It is. The invention may also find application in several other cryobiological applications, such as in public health services, where the resulting successful embryo transfer into a female patient is the most fundamental anti-infertility measure. However, ovarian tissue transplantation is an effective method for improving the overall hormonal status of patients with respect to several diseases of various etiologies. Moreover, perfusion of embryonic bone marrow with reduced immunogenicity is a promising tool in the treatment of hematopoietic suppression in female patients. The therapeutic measures described above require sufficient quantities of the appropriate biological substance, which can only be obtained if long-term storage is carried out in deep-frozen conditions. The present invention is useful in animal husbandry, commercial animal husbandry, where cryopreserved embryos have wide application in breeding new breeds of domestic animals, and in fish farming, in particular for the cryopreservation of fish embryos of sturgeon and carp. can also be applied. The applications of such low temperatures and especially deep freezing for embryo storage after isolation from the living body extend to an even wider range of fields, including human economic activity and public health maintenance. At present, the trend of the times to establish cryogenic banks for genetic resource storage has become the most widespread development, especially regarding cryogenic banks for embryo storage of commercially useful farmed animals carried out to promote animal husbandry. has been achieved. The large-scale use of mammalian embryos in medicine and animal husbandry has made the need for implantable materials even more pressing, the quality of which can combat infertility and foster high-productivity breeding animals. It is important to promote the final outcome of the necessary transplantation operation. However, methods developed to date for cryopreservation of embryos do not allow high levels of preservation of frozen cells, resulting in large losses of valuable biological material. Experiments on embryo cryopreservation have revealed that their optimization is related to the possibility of vitrification formation in biological samples frozen in one step of ultrafast cooling. Prior Art What is currently known in the art is to start crystallization at -3.5°C and to -40°C at a rate of 0.2-2.0°C/min.
There is a method of freezing mouse embryos in a 1.0 M dimethyl sulfoxide (DMSO) medium, which is characterized by cooling to a temperature of 100% and then immersing it in a refrigerant, namely liquid nitrogen. The survival rate of the embryos after thawing is 65% [Experimental Cell Research, Vol. 89, No. 1, 1974, S.P. Raybo, P.M. Mazur, S.C. Jiakowski (Experimental Cell Research, v.
No.1, 1974, SPLeibo, PMMazur, SC
Jackowsky, "Factors Affecting Survival of Mouse Embryos During Freezing and Thawing," pp. 79-89]. The disadvantage of this method is the low survival rate of cryopreserved embryos, and the freezing results are dependent on even the most insignificant differences from the optimal values for the freeze-thaw process parameters. It was a bad influence. Yet another prior art method for the cryopreservation of mouse embryos in phosphate buffered saline (PBS) containing 1.45 M DMSO is known to be available to date. According to that method, the cryoprotectant is introduced dropwise into the embryo and removed from it, the cooling rate is 0.3 °C/min, and the survival rate is 67-68 °C.
%. The method suffers from low survival rates of the embryos involved, poor reproducibility of the method, manual control of the cooling operation, and movable components in the equipment that complicate the synchronization of crystallization process control and adversely affect the reproducibility of the results. The problem is that there are too many. Other disadvantages of the method include the long duration of the cryopreservation cycle, as well as the complexity and high labor consumption of the work performed [Cryobiology, Vol. 16,
1979, G.H.Railmaker, C.
MPM Belharm (Cryobiology,
v.16, 1979, GHReilmaker, CMPM
Verhamme), “A Simplified Method for Freezing Mouse Embryos”, pp. 6-10]. Another method of cryopreservation of mouse embryos in a medium of 2.0 M glycerol + 0.5 M sutucarose is currently known in the art. After 15 minutes of incubation, the embryos were placed in a 4 mm inner diameter polystyrene tube, hermetically sealed, and then immersed in liquid nitrogen. The survival rate of embryos treated in this way was 84%. The disadvantages of this method are the formation of crystals and the high osmotic activity that leads to potential damage to the cells that may disadvantageously proceed in the medium after thawing. Too low cooling rates (approximately 20 °C/min), which are associated with the formation of an insulating shell around the tube, can accelerate the crystallization process and affect the possibility of vitrification in the liquid part of the cryogenic biological system. [Theriogenology, Volume 23, No. 1, 1985
, T.G.A. Williams, S.E.
Tauntson (Theriogenology, v, 23, No. 1,
(1985, TJ Williams, SETohnson), “Rapid freezing of 4-day-old mouse embryos”, p. 235]. Yet another method of cryopreservation of mouse embryos in a medium of 3.5M glycerol mixed with 0.5M sutucarose is currently known in the art. If the cryopreservative is added fractionally into the cells, the latter is placed in a polystyrene tube;
After being hermetically sealed, they were immersed in liquid nitrogen, and the survival rate of embryos treated this way is 85%. The disadvantages of the above methods are that the concentration of permeable substances in the cryopreservation medium is too high, the cooling rate of the embryos is low, the latter being responsible for potential damage to the cell membranes, and the medium after thawing. [Theriogenology, Vol. 25, No. 1, 1986, K. A. Barley, G. E. Seder Giuniah, R.
P. Elsden (Theriogenology, v.25,
No.1, 1986, KABiery, GESeddel Jr, RP
Elsden), “Cryopreservation of mouse embryos by direct immersion in liquid nitrogen,” p. 140]. Another embryo cryopreservation method is known in which embryos isolated from living mice are placed in polystyrene tubes containing a medium of 1.4 M glycerol and 1.1 M sutucarose, and the tubes are hermetically sealed at both ends. cells are placed in the tube.
Leave for 25-30 minutes [Theriogenology, No. 23]
Volume, No. 1, 1985, K.T. Club, I.A. Kohler, R.Double Light (Theriogenology, v.23, No.1, 1985, K.T.
Krag, IM Koehler, RWWright), “Method for freezing early mouse embryos by direct immersion in liquid nitrogen,” p. 199]. The tube was then immersed in liquid nitrogen. Thawing was performed at 37°C. The tube contents were poured into Petri dishes and washed three times with aliquots of 0.5M sutucarose, after which they were cultured in nutrient medium. Between 40 and 67% of thawed embryos developed to the blastocyst stage. Highly concentrated cryoprotectants, such as glycerol, which penetrates very little into the embryo, and sutucarose, which penetrates completely into the embryo, are recommended for rapid cooling (approximately 20
The dehydration of the cells is aimed at establishing the background for their vitrification after (rate of 1°C/min). The method in question yields poor results due to too high a cryoprotectant concentration in the cryoprotectant medium, and even when added to the embryo in three stages, the cryoprotectant is They are acting the cause of damage. The toxic effects of cryoprotectant compounds on embryos are also a concern when the total concentration of cryopreservative used is 48.6%. In addition to all of the above, the cooling rate of embryos obtained by their direct immersion in liquid nitrogen is not high enough for vitrification to proceed, even with high concentrations of cryopreservatives. , because the heat-resistant shell formed between the tube and liquid nitrogen and consisting of nitrogen vapor prevents rapid heat release from the embryo being processed. Problems to be Solved The present invention aims to provide a method for cooling embryos, in which the cooling process is sufficiently high for the progression of vitrification of the majority of water, both extracellular and intracellular. Recrystallization during thawing would occur at a faster rate and would cause adverse effects on the biological structure of the embryo to occur to a lesser extent. Means for Solving the Problems The object is to provide a method for cryopreservation of embryos comprising cooling to a refrigerant temperature in a buffered saline solution containing glycerol as an anti-freeze agent. due to the fact that the buffer saline further contains dimethyl sulfoxide (DMSO) and one of the dihydric alcohol derivatives as an antifreeze agent. achieved based on The method of cryopreservation of embryos proposed here contributes to an even higher survival rate of the embryos involved due to their cooling with the aid of a high thermodiffusive powder substance, which is heated at temperatures of several thousand degrees per minute. It makes it possible to achieve high cooling rates so that the vitrification process proceeds in the embryos being treated. Moreover, according to the method proposed in this specification,
The degree of adverse effects caused by recrystallization on the biological structure of the embryo during thawing can be reduced by the use of DMSO and dihydric alcohol derivatives as cryoprotectants in the cryopreservation treatment. Both act as anti-salt buffers that prevent crystal migration and impede crystal size increase that aids in the hydration shell around biomacromolecule and protein catalytic centers. The three types of cryoprotectants used (in glycerol, DMSO or one of the dihydric alcohol derivatives) with different cell membrane permeability can cause permeation impairment or No toxic progression occurs, at the same time promoting vitrification and comprehensively protecting the embryo during cryoprotection and thawing. Moreover, the cryopreservative mixture used is recovered without damaging the cells. According to the proposed method, the process of cryopreservation of embryos can be substantially simplified, since it consists only of the smallest combination of the simplest operations, which does not require any special expertise on the part of the operator. . Moreover, this method allows to significantly reduce the time required to carry out a complete cycle of cryopreservation and the time spent on each of these operations due to the reduced number of operations, so that the method It becomes even more efficient and cheaper. In the present invention, zinc is used as a highly thermally diffusive powder material. The selection of such a powder material is made with respect to the higher thermal conductivity of a comparison of several priced powder materials, which can provide a high cooling rate to the embryo. 1,2-propanediol is used as one of the dihydric alcohol derivatives, and DMSO is a substantial cryoprotectant that most easily penetrates into embryonic cells and can protect intracellular biological structures during freezing and thawing. Due to the fact that its mixture with DMSO is advantageously selected. The use of 1,2-propanediol can successfully protect not only the intracellular structures of the embryo but also its membranous organs, compared to other cryoprotectants used in this method. This is due to the average permeability of alcohol in the case. According to one aspect of the invention when liquid nitrogen is used as the refrigerant, each of the three antifreeze agents is
Used at concentrations within the range of 4.75-5.25%. When used at the above concentrations, cryoprotectants express their antifreeze action most effectively and are characterized by virtually non-toxicity and low permeability. According to another aspect of the invention, each antifreeze agent is used in a 1:1 ratio. In the case of such a ratio, it can be expected that an equivalent cryoprotective effect can be given to the intracellular structures and membrane organs of the embryo based on the uniform distribution of the cryoprotectant in the region of the cryobiological system. However, this is due to the different intracellular penetration abilities of the cryoprotectants. In a preferred embodiment of the invention, the buffered salt solution contains a biologically active substance. The use of such substances greatly contributes to cell viability by protecting the cytoplasmic membrane from temperature shocks and "melting effects" during the phase transformation to ice. Biologically active substances can stabilize the natural structure of cell membranes and thus prevent their damage during the crystallization process. It is highly desirable that choline chloride solution be used as a biologically active substance, as it is involved in the natural methylation process of biological structures, stabilizing the natural membrane structure by the presence of methyl groups. ing. According to another embodiment of the invention, the choline chloride solution is used at a concentration of 0.4%, since at high concentrations the membrane structure is disturbed due to the surfactant action of said substance; This is because when the concentration becomes low, the above-mentioned stabilizing effect is no longer exhibited. Other objects and advantages of the invention will become more apparent from the detailed description of some specific embodiments below. Embodiments The cryopreservation method for embryos is characterized by their cooling to the latter temperature with the aid of a refrigerant in a buffered saline solution. The cooling process takes place in a highly thermally diffusive powder material that has been previously cooled to refrigerant temperature. Buffered saline is a mixture of the following cryoprotectants: glycerol,
dimethyl sulfoxide (DMSO) and one of the dihydric alcohol derivatives, as well as biologically active substances,
For example, it contains a choline chloride solution with a concentration of 0.4%. Zinc can be used as a highly thermally diffusive powder material. 1,2-propanediol can be used as one of the dihydric alcohol derivatives. When liquid nitrogen is used as the refrigerant, each of the three antifreezes is used at a concentration of 4.75-5.25% and in a 1:1 ratio. The present invention was carried out regarding the cryopreservation of murine embryos that have reached blastomere stage 32. Example 1 A total of 60 embryos each consisting of 10 embryos (5 in each group)
(in the drop) divided into 6 groups. For each group, glycerol
10.5%, propylene glycol 10.6%,
DMSO 10.5% and choline chloride 0.8% (the concentration of each antifreeze is 5.25%, and the concentration of choline chloride is
Five drops of Dulbecco's phosphate solution medium containing 0.4%) were added. all operations 4
I did it at ℃. The embryos in cryoprotectant-containing solution were then transferred to food grade foil containers 1 x 1.5 cm, capacity 0.1 ml and wall thickness 0.03 mm. The free end of the container was flared and dipped for 10 seconds into a metal container filled with powdered zinc cooled to the temperature of liquid nitrogen. The containers were then left in liquid nitrogen for three weeks, after which they were placed in a water bath at 40°C.
I unzipped it. The survival rate of thawed embryos, as assessed by their growth in culture, was 94.2
It was %. To demonstrate the concentration of cryoprotectant, an experiment was conducted as in Example 1 with varying concentrations of cryoprotectant. The viability of the embryos was also investigated from data based on their growth in culture up to the blastocyst stage.
The experimental results are shown in Table 1. The growth of embryos during culture after cold storage is the first
In Table ~5, it is calculated relative to the growth of the same number of natural embryos.

【衚】 最高の胚生存率は凍結防止剀が4.75〜5.25の
濃床総濃床は14.25〜15.75の範囲であるで
甚いられた堎合に埗られるこずが、第衚から刀
明する。 䟋ず同様の実隓を、凍結防止媒䜓䞭における
凍結防止剀の濃床間の比率を実蚌するために行぀
たが、凍結防止剀の凍結保存剀䞭におけるそれら
の総濃床が14.25〜15.75の範囲内であるように
様々な比率で甚いた。結果は第〜衚に瀺され
おいる。
TABLE It can be seen from Table 1 that the highest embryo survival rate is obtained when the cryoprotectant is used at a concentration of 4.75-5.25% (total concentration ranges from 14.25-15.75%). An experiment similar to Example 1 was conducted to demonstrate the ratio between the concentrations of cryoprotectants in the cryoprotectant medium, but their total concentration in the cryoprotectant ranged from 14.25 to 15.75%. It was used in various proportions as shown in the table below. The results are shown in Tables 2-4.

【衚】【table】

【衚】 グリセ プロピレン 胚の生存率
ロヌル グリコヌル DMSO 
[Table] Grise Propylene Embryo survival rate
Roll Glycol DMSO%

Claims (1)

【特蚱請求の範囲】  凍結防止剀ずしおグリセロヌルを含有した緩
衝塩液䞭における冷媒枩床ぞの冷华を含む胚の䜎
枩保存方法であ぀お、 冷华が、冷媒枩床たで予め冷华された高熱拡散
性粉末物質である亜鉛䞭で行われ、しかも緩衝塩
液が凍結防止剀ずしおゞメチルスルホキシド及び
二䟡アルコヌル誘導䜓の䞀぀を曎に含有しおいる
こずを特城ずする方法。  二䟡アルコヌル誘導䜓の䞀぀ずしお−
プロパンゞオヌルが甚いられる、請求項に蚘茉
の方法。  冷媒ずしお液䜓窒玠が甚いられる堎合に、
皮の凍結防止剀の各々が4.75〜5.25の濃床を有
する、請求項に蚘茉の方法。  皮の凍結防止剀の各々がの比率で甚
いられる、請求項に蚘茉の方法。  緩衝塩液が生物孊的有効物質を含有しおい
る、請求項に蚘茉の方法。  生物孊的有効物質ずしお塩化コリン溶液が甚
いられる、請求項に蚘茉の方法。  塩化コリン溶液が0.4の濃床を有する、請
求項に蚘茉の方法。
[Scope of Claims] 1. A method for cryopreservation of embryos comprising cooling to a refrigerant temperature in a buffered saline solution containing glycerol as a cryoprotectant, wherein the cooling comprises a highly thermodiffusible powder pre-cooled to the refrigerant temperature. A process carried out in the substance zinc, characterized in that the buffer saline further contains dimethyl sulfoxide and one of dihydric alcohol derivatives as antifreeze agents. 2 As one of the dihydric alcohol derivatives, 1,2-
2. The method according to claim 1, wherein propanediol is used. 3 When liquid nitrogen is used as a refrigerant, 3
2. The method of claim 1, wherein each of the seed cryoprotectants has a concentration of 4.75-5.25%. 4. The method of claim 1, wherein each of the three antifreeze agents is used in a 1:1 ratio. 5. The method of claim 1, wherein the buffered saline contains a biologically active substance. 6. The method according to claim 5, wherein a choline chloride solution is used as biologically active substance. 7. The method of claim 6, wherein the choline chloride solution has a concentration of 0.4%.
JP63174821A 1988-07-13 1988-07-13 Low temperature preservation of germ Granted JPH0225401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174821A JPH0225401A (en) 1988-07-13 1988-07-13 Low temperature preservation of germ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174821A JPH0225401A (en) 1988-07-13 1988-07-13 Low temperature preservation of germ

Publications (2)

Publication Number Publication Date
JPH0225401A JPH0225401A (en) 1990-01-26
JPH0417921B2 true JPH0417921B2 (en) 1992-03-26

Family

ID=15985253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174821A Granted JPH0225401A (en) 1988-07-13 1988-07-13 Low temperature preservation of germ

Country Status (1)

Country Link
JP (1) JPH0225401A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276847B2 (en) * 1996-05-31 2002-04-22 株匏䌚瀟湯山補䜜所 Pill feeder
JP2909433B2 (en) * 1996-05-31 1999-06-23 株匏䌚瀟湯山補䜜所 Pill feeder
JP4498260B2 (en) * 2005-10-21 2010-07-07 敬䞀郎 冚氞 Method for sealing vitrification tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029471A (en) * 1983-07-28 1985-02-14 Fuji Electric Corp Res & Dev Ltd Formation of thin film
JPS60105601A (en) * 1983-08-26 1985-06-11 プリツクス・フランクス Low temperature preservation
JPS6335501A (en) * 1986-07-30 1988-02-16 Snow Brand Milk Prod Co Ltd Freeze-storage of early embryo of rat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029471A (en) * 1983-07-28 1985-02-14 Fuji Electric Corp Res & Dev Ltd Formation of thin film
JPS60105601A (en) * 1983-08-26 1985-06-11 プリツクス・フランクス Low temperature preservation
JPS6335501A (en) * 1986-07-30 1988-02-16 Snow Brand Milk Prod Co Ltd Freeze-storage of early embryo of rat

Also Published As

Publication number Publication date
JPH0225401A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
US4965185A (en) Method for low-temperature preservation of embryos
Rajan et al. Development and application of cryoprotectants
US20060046243A1 (en) Method for vitrification of mammalian cells
Isachenko et al. Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide as a cryoprotectant
JP2000189155A (en) Preservation of mammalian embryo or ovum and thawing dilution of frozen mammalian embryo or ovum
JP3694730B2 (en) Tissue cold preservation solution
Posillico et al. Ovarian tissue vitrification: Modalities, challenges and potentials
Liu et al. Advances in cryopreservation of organs
Coriell et al. Historical development of cell and tissue culture freezing
Brockbank et al. Storage of tissues by vitrification
US20080286863A1 (en) Method and solutions for cryopreserving oocytes, especially fresh human oocytes
Barun A review on applications & advantages of cryopreservation in different fields of science
JPH0417921B2 (en)
JP2005261413A (en) Animal embryo freezing and storing liquid and animal embryo freezing and storing method using the same
Dupesh et al. Human Sperm Freezing: Mini Update
JP2008118997A (en) Method and composition for reanimating cryopreserved oocytes
KR20160001454A (en) Composition for cryopreservating sperm of ankole cow and uses thereof
JP2000239101A (en) Refrigeration of rat sperm
Songsasen et al. -A Historical Overview of Embryo and Oocyte Preservation in the World of Mammalian In Vitro Fertilization and Biotechnology
Sugishita et al. Methods of ovarian tissue cryopreservation: vitrification
WO2008061148A2 (en) Methods and compositions for cryopreserving oocytes
Castellon et al. Vitrification Solutions: Historical Development
JP2005002058A (en) Cryopreservation method for rat sperm, liquid for cryopreservation usable for the cryopreservation method, and kit for cryopreservation
Nagashima et al. 27 Assisted Reproduction Techniques in
KÌçÌk et al. Cryopreservation of female fertility: a review on the basics of cryobiology for obstetrics and gynecology residents