JPH0417891B2 - - Google Patents

Info

Publication number
JPH0417891B2
JPH0417891B2 JP2833787A JP2833787A JPH0417891B2 JP H0417891 B2 JPH0417891 B2 JP H0417891B2 JP 2833787 A JP2833787 A JP 2833787A JP 2833787 A JP2833787 A JP 2833787A JP H0417891 B2 JPH0417891 B2 JP H0417891B2
Authority
JP
Japan
Prior art keywords
silane
solvent
reaction
fluorinating agent
partially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2833787A
Other languages
Japanese (ja)
Other versions
JPS63201013A (en
Inventor
Hiroyuki Momotake
Isao Harada
Nobuhiko Koto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2833787A priority Critical patent/JPS63201013A/en
Publication of JPS63201013A publication Critical patent/JPS63201013A/en
Publication of JPH0417891B2 publication Critical patent/JPH0417891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、一般式SiHxF4-x(ただしx=1〜3
の整数)で表わされる部分フツ素化シランの製造
方法に関する。さらに詳しくは、バロゲン交換法
による部分フツ素化シランの改良された製造方法
に関する。 部分フツ素化シランは、弗素化アモルフアスシ
リコン薄膜を形成させる材料とガスとして近年注
目されている。 (従来の技術及び発明が解決しようとする問題
点) 部分フツ素化シランの製造方法としては、対応
する部分塩素化シランを金属フツ化物であるフツ
素化剤でフツ素化する、いわゆるハロゲン交換法
が公知である。その際使用されるフツ素化剤とし
てはSbF3、AsF3、TiF4、SnF4、CuF2、ZnF2
どが知られている。これら固体状のフツ素化剤と
部分塩素化シランを反応させる方法としては、上
記フツ素化剤にガス状または液状の部分塩素化シ
ランを接触させる方法が一般的である。しかしな
がら、この方法では反応収率が低いと云う問題が
あり、また副反応生成物が生成し易く、従つて得
られる製品である部分フツ素化シランの純度が低
いという欠点をもつている。 フツ素化剤をエーテル、ペンタンなどの溶媒に
懸濁させて部分塩素化シランと反応させる方法も
公知である(特開昭56−167693)。しかしながら、
この方法では上記方法に比べ反応収率はかなり改
善されるものの、工業的に実用化するには満足の
いく状態ではなく、品質的にも製品中に塩素を完
全にフツ素に置換しえなかつた中間体(クロロフ
ルオロシラン類)や四フツ化ケイ素(SiF4)、モ
ノシラン(SiH4)などの分解生成物が存在して、
製品の純度を低下させるという問題点があつた。 また、本発明者等は先にフルオロシラン類の製
造方法としてフツ素化剤をアニソールに懸濁させ
て反応を行なう方法を発明し特許出願した(特開
昭61−151016号)。この方法はSiHF3、SiH2F2
SiH3Fなどの部分フツ素化シランの製造には非常
に有効であり、高収率かつ高純度で製品が得られ
る。しかしながら、この方法の唯一の欠点は溶媒
であるアニソールが比較的高価である点であり、
さらに安価な溶媒が望まれていた。 (問題点を解決するための手段及び作用) 本発明者らは、上記問題点に鑑み、反応収率が
高く、高純度でかつ安価な部分フツ素化シランの
製造方法について鋭意検討を重ねた結果、特定の
溶媒を用いてフツ素化剤をこの溶媒に懸濁させた
状態で部分塩素化シランのフツ素化を行なえば、
上記目的が達成出来ることを見出し、本発明を完
成するに至つた。 すなわち、本発明は、一般式SiHxCl4-x(ただし
x=1〜3の整数)で表わされる部分塩素化シラ
ンとフツ素化剤とを反応させて対応する部分フツ
素化シランを製造する方法において、フツ素化剤
及び部分フツ素化シランに対する溶解度が低く、
かつ部分塩素化シラン並びに反応によつて生成す
る金属塩化物に対する溶解度が高い溶媒にフツ素
化剤を懸濁させた後、該フツ素化剤と部分塩素化
シランとを反応させることを特徴とする部分フツ
素化シランの製造方法であつて、特には溶媒が一
般式CnH2o+1Cl(ただしn=3〜8の整数)で表
わされる塩化アルキル、ベンゼン、トルエン、キ
シレン、エチルベンゼン、クロロベンゼンの一種
以上を用いる方法である。 本発明を更に詳細に説明する。 本発明で使用するフツ素化剤としては、三フツ
化アンチモン(SbF3)、三フツ化ヒ素(AsF3)、
四フツ化チタン(TiF3)、四フツ化スズ(SnF4)、
フツ化銅(CuF2)、フツ化亜鉛(ZnF2)などの
金属フツ化物である従来公知のフツ素化剤が使用
出来るが、価格面及び取扱い易さの点からZnF2
を用いるのが好ましい。 部分塩素化シラン及び部分フツ素化シランは、
何れも水が存在すると容易に加水分解する性質を
もつているので、反応に使用する溶媒、フツ素化
剤はもちろん反応装置も水分を十分除去しておく
必要がある。例えば、フツ素化剤は使用前に200
℃、4時間程度加熱処理するなどによつて完全に
脱水しておくのが、高収率に製品を得る上で好ま
しい。 本発明において使用する溶媒としては、フツ素
化剤及び部分フツ素化シランに対する溶解度が低
く、かつ部分塩素化シラン並びに反応によつて生
成する金属塩化物に対する溶解度が高い性質を示
す溶媒を用いる必要がある。 フツ素化剤あるいは反応によつて生成する金属
塩化物に対する溶解度は、これらを溶媒に飽和溶
解させ溶媒中の金属イオン量を測定するか、ある
いはこの溶媒に溶解したフツ素化剤もしくは金属
塩化物を水で抽出して、フツ素イオンもしくは塩
素イオンを測定する方法などで知ることが出来
る。 部分塩素化シランあるいは部分フツ素化シラン
の溶媒に対する溶解度はこれらを飽和溶解量まで
溶媒に溶解させたのち、水を添加してシリカとし
て固定させ、ケイ素分を定量するなどの方法で測
定可能であるが、溶解度パラメータを用いること
でも判定出来る。すなわち、溶媒の溶解度パラメ
ータが部分塩素化シランのそれに近く、部分フツ
素化シランのそれから離れているもの、具体的に
は溶解度パラメータが9付近のものが上記条件を
満たし好ましい。 上記2つの条件をみたすような具体的な溶媒と
しては、一般式CnH2o+1Cl(ただしn=3〜8の
整数)で表わされる塩化アルキル、ヘンゼン、ト
ルエン、キシレン、エチルベンゼン、クロロベン
ゼンなどが挙げられる。塩化アルキルの具体的な
例としては、塩化n−プロピル、塩化イソプロピ
ル、塩化n−ブチル、塩化イソブチル、塩化s−
ブチル、塩化t−ブチル、塩化n−ペンテル、塩
化n−ヘキシルなどを挙げることが出来る。キシ
レンはオルソ、メタ、パラの3種の異性体がある
が、その何れでも良くまた混合物でも差支えな
い。 本発明において、上記溶媒を使用すればなぜ好
結果が得られるかは定かではないが、これはおそ
らく次の理由によるものと考えられる。すなわ
ち、反応は溶媒に溶解した部分塩素化シランと固
体であるフツ素化剤との固液反応と考えられる
が、反応によつてフツ素化剤の表面に生成した金
属塩化物を溶媒が溶解し、フツ素化剤の表面を常
に活性に保つことと、反応によつて発生する熱を
溶媒が分散させて反応温度の上昇を防止する点に
あると考えられる。従つて、その点からすると、
溶媒中に懸濁させるフツ素化剤のスラリー濃度は
低い方が好ましく、実用上は5重量%(以下、単
に%と記す。)程度、高くとも50%程度である。 反応温度は、ハロゲン交換の反応性あるいは生
成する部分フツ素化シランの熱安定性を考慮して
決められるが、通常−10〜40℃で実施される。反
応温度が高すぎると副反応生成物を生じ易くな
り、従つて製品の純度が低下する。逆に反応温度
が低すぎるとハロゲン交換反応の反応率が低下す
る。 (実施例) 以下、実施例及び比較例によつて本発明を具体
的に説明する。 実施例 1 200℃で4時間脱水処理したフツ化亜鉛
(ZnF2)100gを、還流コンデンサーを取付けた
1の撹拌機付きガラス製フラスコに入れ、400
mlの塩化n−ブチル(n−C6H9Cl)に懸濁させ
た。フラスコのフタを完全にシールしたのち、こ
のフラスコを氷水浴中に浸し反応温度を0℃に維
持するとともに、還流コンデンサーに冷媒を流し
て溶媒である塩化n−ブチルの蒸発を防止した。 次に系内を窒素ガスで十分に置換させたのち、
撹拌しながら三塩化シラン(SiHCl3)を0.5g/
min.の速度で合計50gフラスコ内にフイードし、
フイード完了後更に2時間反応させた。尚、反応
中はキアリヤーガスとして窒素ガスを50ml/
min.の流量でフラスコ中にフイードした。 フラスコから発生した反応生成ガスとキヤリヤ
ーガスは、ドライアイス−アセトントラツプで不
純物を除去した後、液体窒素トラツプ中に回収し
た。更に液体窒素トラツプ内を真空ポンプで真空
排気し、キヤリアーガスとして使用した窒素ガス
を除去した。 回収量は28g(収率88%)で、このものはIR
吸収チヤートから三フツ化シラン(SiHF3)と同
定された。また、この三フツ化シランをガス状で
HF水溶液に通気させた後、三フツ化シランガス
中の塩素濃度を測定したところ、わずか110ppm
に過ぎず、製品の純度は非常に高いものであつ
た。 実施例 2〜4 塩化n−ブチルの代わりに第1表に示す溶媒を
使用する以外は、実施例1と全く同様な方法で、
三フツ化シランを製造した。結果は第1表に示す
通りで、何れの場合も高収率で、かつ高純度の製
品が得られた。
(Industrial Application Field) The present invention is based on the general formula SiH x F 4-x (where x=1 to 3
(an integer of ). More specifically, the present invention relates to an improved method for producing partially fluorinated silanes using a balogen exchange method. Partially fluorinated silane has recently attracted attention as a material and gas for forming fluorinated amorphous silicon thin films. (Prior art and problems to be solved by the invention) As a method for producing partially fluorinated silanes, the so-called halogen exchange method involves fluorinating a corresponding partially chlorinated silane with a fluorinating agent that is a metal fluoride. The law is known. Known fluorinating agents used in this case include SbF 3 , AsF 3 , TiF 4 , SnF 4 , CuF 2 and ZnF 2 . A common method for reacting these solid fluorinating agents with partially chlorinated silanes is to bring the fluorinating agent into contact with gaseous or liquid partially chlorinated silanes. However, this method has the disadvantage that the reaction yield is low, side reaction products are likely to be produced, and the purity of the partially fluorinated silane obtained is low. A method is also known in which a fluorinating agent is suspended in a solvent such as ether or pentane and reacted with a partially chlorinated silane (Japanese Patent Application Laid-Open No. 167693/1983). however,
Although this method improves the reaction yield considerably compared to the above method, it is not in a satisfactory state for industrial practical use, and in terms of quality, it is not possible to completely replace chlorine with fluorine in the product. Decomposition products such as intermediates (chlorofluorosilanes), silicon tetrafluoride (SiF 4 ), and monosilane (SiH 4 ) are present.
There was a problem that the purity of the product was reduced. In addition, the present inventors previously invented and filed a patent application for a method for producing fluorosilanes in which a fluorinating agent is suspended in anisole and the reaction is carried out (Japanese Patent Application Laid-Open No. 151016/1983). This method uses SiHF 3 , SiH 2 F 2 ,
It is very effective in producing partially fluorinated silanes such as SiH 3 F, and products can be obtained in high yield and purity. However, the only drawback of this method is that the solvent, anisole, is relatively expensive;
An even cheaper solvent was desired. (Means and effects for solving the problems) In view of the above problems, the present inventors have conducted extensive studies on a method for producing partially fluorinated silane that has a high reaction yield, high purity, and is inexpensive. As a result, if a partially chlorinated silane is fluorinated using a specific solvent and the fluorinating agent is suspended in this solvent,
The inventors have discovered that the above object can be achieved and have completed the present invention. That is, the present invention produces a corresponding partially fluorinated silane by reacting a partially chlorinated silane represented by the general formula SiH x Cl 4-x (where x = an integer of 1 to 3) with a fluorinating agent. In the method of
The fluorinating agent is suspended in a solvent having high solubility for the partially chlorinated silane and the metal chloride produced by the reaction, and then the fluorinating agent and the partially chlorinated silane are reacted. A method for producing a partially fluorinated silane, in particular a method for producing a partially fluorinated silane, in which the solvent is an alkyl chloride represented by the general formula CnH 2o+1 Cl (where n = an integer of 3 to 8), benzene, toluene, xylene, ethylbenzene, or chlorobenzene. This method uses one or more types. The present invention will be explained in more detail. The fluorinating agents used in the present invention include antimony trifluoride (SbF 3 ), arsenic trifluoride (AsF 3 ),
Titanium tetrafluoride (TiF 3 ), tin tetrafluoride (SnF 4 ),
Conventionally known fluorinating agents such as metal fluorides such as copper fluoride (CuF 2 ) and zinc fluoride (ZnF 2 ) can be used, but ZnF 2 is preferred from the viewpoint of cost and ease of handling.
It is preferable to use Partially chlorinated silanes and partially fluorinated silanes are
Since both have the property of being easily hydrolyzed in the presence of water, it is necessary to sufficiently remove water from the solvent and fluorinating agent used in the reaction as well as the reaction equipment. For example, fluorinating agents should be used at 200%
In order to obtain a product with a high yield, it is preferable to completely dehydrate the product by heat treatment at ℃ for about 4 hours. As the solvent used in the present invention, it is necessary to use a solvent that has low solubility for the fluorinating agent and partially fluorinated silane, and high solubility for partially chlorinated silane and the metal chloride produced by the reaction. There is. The solubility of the fluorinating agent or metal chloride produced by the reaction can be determined by dissolving these in a solvent to saturation and measuring the amount of metal ions in the solvent, or by measuring the amount of the fluorinating agent or metal chloride dissolved in this solvent. This can be determined by extracting it with water and measuring the fluorine ions or chlorine ions. The solubility of partially chlorinated silanes or partially fluorinated silanes in solvents can be measured by dissolving them in the solvent to a saturation level, then adding water to fix it as silica, and quantifying the silicon content. However, it can also be determined using solubility parameters. That is, a solvent whose solubility parameter is close to that of partially chlorinated silane and far from that of partially fluorinated silane, specifically, one whose solubility parameter is around 9, satisfies the above conditions and is preferable. Specific solvents that meet the above two conditions include alkyl chlorides represented by the general formula CnH 2o+1 Cl (where n = an integer of 3 to 8), Hensen, toluene, xylene, ethylbenzene, chlorobenzene, etc. It will be done. Specific examples of alkyl chloride include n-propyl chloride, isopropyl chloride, n-butyl chloride, isobutyl chloride, and s-chloride.
Butyl, t-butyl chloride, n-pentyl chloride, n-hexyl chloride, etc. can be mentioned. Xylene has three isomers: ortho, meta, and para, and any one of them may be used, or a mixture thereof may be used. In the present invention, it is not clear why good results can be obtained by using the above-mentioned solvents, but this is probably due to the following reasons. In other words, the reaction is considered to be a solid-liquid reaction between the partially chlorinated silane dissolved in the solvent and the solid fluorinating agent, but the solvent dissolves the metal chloride generated on the surface of the fluorinating agent by the reaction. However, it is thought that the reason for this is that the surface of the fluorinating agent is kept active at all times, and that the solvent disperses the heat generated by the reaction to prevent the reaction temperature from rising. Therefore, from that point of view,
The slurry concentration of the fluorinating agent suspended in the solvent is preferably low, and in practical terms is about 5% by weight (hereinafter simply referred to as %), or at most about 50%. The reaction temperature is determined in consideration of the reactivity of halogen exchange or the thermal stability of the partially fluorinated silane produced, but it is usually carried out at -10 to 40°C. If the reaction temperature is too high, side reaction products are likely to be produced, thus reducing the purity of the product. Conversely, if the reaction temperature is too low, the reaction rate of the halogen exchange reaction will decrease. (Examples) Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples. Example 1 100 g of zinc fluoride (ZnF 2 ) that had been dehydrated at 200°C for 4 hours was placed in a glass flask equipped with a stirrer (No. 1) equipped with a reflux condenser.
ml of n-butyl chloride (n-C 6 H 9 Cl). After the lid of the flask was completely sealed, the flask was immersed in an ice water bath to maintain the reaction temperature at 0° C., and a refrigerant was passed through a reflux condenser to prevent evaporation of n-butyl chloride as a solvent. Next, after sufficiently replacing the inside of the system with nitrogen gas,
Add 0.5g/silane trichloride (SiHCl 3 ) while stirring.
Feed a total of 50g into the flask at a speed of min.
After the feed was completed, the reaction was continued for an additional 2 hours. During the reaction, add 50ml of nitrogen gas as a carrier gas.
It was fed into the flask at a flow rate of min. The reaction product gas and carrier gas generated from the flask were collected in a liquid nitrogen trap after removing impurities in a dry ice-acetone trap. Furthermore, the inside of the liquid nitrogen trap was evacuated using a vacuum pump to remove the nitrogen gas used as a carrier gas. The amount recovered was 28g (yield 88%), which was IR
It was identified as silane trifluoride (SiHF 3 ) from the absorption chart. In addition, this trifluorosilane can be used in gaseous form.
When the chlorine concentration in trifluorosilane gas was measured after being aerated into the HF aqueous solution, it was found to be only 110 ppm.
The purity of the product was very high. Examples 2-4 In exactly the same manner as in Example 1, except that the solvents shown in Table 1 were used instead of n-butyl chloride,
Trifluorosilane was manufactured. The results are shown in Table 1, and in all cases, high yield and high purity products were obtained.

【表】 実施例 5〜6 反応温度を第2表に示す温度に維持した以外
は、実施例1と全く同様な方法で、三フツ化シラ
ンを製造した。結果は第2表に示す通りで、何れ
の場合も高収率で、かつ高純度の製品が得られ
た。
[Table] Examples 5-6 Silane trifluoride was produced in exactly the same manner as in Example 1, except that the reaction temperature was maintained at the temperature shown in Table 2. The results are shown in Table 2, and in all cases high yield and high purity products were obtained.

【表】 比較例 1 フツ化亜鉛(ZnF2)100gを内径30mmのガラス
製カラムに充填し、窒素ガス気流下200℃で4時
間脱水処理を行なつた。しかる後カラムの温度を
60℃に維持しながらこのカラムに三塩化シランを
0.5g/min.の速度で合計50gフイードした。尚、
三塩化シランは、液状の三塩化シラン中に窒素ガ
スを50ml/min.の流量でバブリングさせること
により窒素ガスをキヤリヤーとした気体としてフ
イードした。 反応生成ガスとキヤリヤーガスはドライアイス
−アセトントラツプで不純物を除去した後、液体
窒素トラツプ中に回収した。さらに、液体窒素ト
ラツプ内を真空ポンプで真空排気し、キヤリヤー
ガスとして使用した窒素ガスを除去した。 回収された物質はIRチヤートから三フツ化シ
ランと同定されたが、回収量が13gと少なく、収
率が41%と低い結果であつた。また、得られた三
フツ化シランは、実施例1と同様にHF水溶液に
通気させた後塩素濃度を測定したところ、1.52%
と非常に高く、純度も低い結果であつた。 比較例 2〜4 塩化n−ブチルの代わりに第3表に示す溶媒を
用いた以外は、実施例6と全く同様な方法で三フ
ツ化シランを製造した。結果は第3表に示す通り
で、収率、純度とも非常に低い結果となつた。
尚、溶媒にアセトニトリルを用いた場合は他のも
のより収率は良好であつたが、製品のIR分析の
結果、四フツ化ケイ素(SiF4)がかなり多量に混
入していることがわかり、従つて純度が低い結果
となつた。
[Table] Comparative Example 1 100 g of zinc fluoride (ZnF 2 ) was packed into a glass column with an inner diameter of 30 mm, and dehydrated at 200° C. for 4 hours under a nitrogen gas flow. After that, the temperature of the column is
Add trichlorosilane to this column while maintaining it at 60°C.
A total of 50 g was fed at a rate of 0.5 g/min. still,
Silane trichloride was fed as a carrier gas by bubbling nitrogen gas into liquid silane trichloride at a flow rate of 50 ml/min. The reaction product gas and carrier gas were collected in a liquid nitrogen trap after removing impurities in a dry ice-acetone trap. Furthermore, the inside of the liquid nitrogen trap was evacuated using a vacuum pump to remove the nitrogen gas used as a carrier gas. The recovered substance was identified as trifluorosilane from the IR chart, but the amount recovered was small at 13g, and the yield was low at 41%. In addition, the obtained trifluorosilane was aerated into an HF aqueous solution in the same manner as in Example 1, and then the chlorine concentration was measured, and it was found to be 1.52%.
The results showed that the purity was very high and the purity was low. Comparative Examples 2 to 4 Silane trifluorides were produced in exactly the same manner as in Example 6, except that the solvents shown in Table 3 were used instead of n-butyl chloride. The results are shown in Table 3, and the yield and purity were both very low.
Furthermore, when acetonitrile was used as the solvent, the yield was better than other methods, but as a result of IR analysis of the product, it was found that a considerable amount of silicon tetrafluoride (SiF 4 ) was mixed in. Therefore, the purity was low.

【表】【table】

【表】 実施例 7 原料の部分塩素化シランとして三塩化シランの
代わりに二塩化シラン(SiH2Cl2)を用いる以外
は、実施例1と全く同様な方法で二フツ化シラン
(SiH2F2)を製造した。製品収量は30g(収率89
%)で、このものはIR吸着チヤートから二フツ
化シランと同定された。また、この二フツ化シラ
ンをガス状でHF水溶液に吸収させた後ガス中の
塩素濃度を測定したところ、わずか150ppmに過
ぎず、製品の純度は非常に高いものであつた。 (発明の効果) 以上詳細に説明した通り、本発明は、溶媒に懸
濁させたフツ素化剤を使用し、ハロゲン交換法に
よるフツ素化反応により部分フツ素化シランを製
造するに際し、溶媒の種類を特定するという方法
であるが、本発明の方法に従えば、フツ素化反応
が温和な条件で、かつ完全に行なわれるため、副
反応物の生成量が極めて少なく、従つてフツ素化
アモルフアスシリコン薄膜の材料として極めて好
適な高純度の製品が得られる。 また、反応収率も非常に高く溶媒のコストも安
いので、効率の良い生産が可能となつた。
[Table] Example 7 Silane difluoride (SiH 2 F 2 ) was manufactured. Product yield is 30g (yield 89
%), which was identified as silane difluoride from the IR adsorption chart. Furthermore, when this silane difluoride was absorbed in gaseous form into an HF aqueous solution and the chlorine concentration in the gas was measured, it was only 150 ppm, indicating that the purity of the product was extremely high. (Effects of the Invention) As explained in detail above, the present invention uses a fluorinating agent suspended in a solvent to produce a partially fluorinated silane through a fluorination reaction using a halogen exchange method. However, according to the method of the present invention, the fluorination reaction is completely carried out under mild conditions, so the amount of by-products produced is extremely small, and therefore the fluorination reaction is completely carried out under mild conditions. A highly purified product that is extremely suitable as a material for amorphous silicon thin films can be obtained. In addition, the reaction yield is very high and the cost of the solvent is low, making efficient production possible.

Claims (1)

【特許請求の範囲】 1 一般式SiHxCl4-x(ただしx=1〜3の整数)
で表わされる部分塩素化シランとフツ素化剤とを
反応させて対応する部分フツ素化シランを製造す
る方法において、フツ素化剤及び部分フツ素化シ
ランに対する溶解度が低く、かつ部分塩素化シラ
ン並びに反応によつて生成する金属塩化物に対す
る溶解度が高い溶媒にフツ素化剤を懸濁させた
後、該フツ素化剤と部分塩素化シランとを反応さ
せることを特徴とする部分フツ素化シランの製造
方法。 2 溶媒が一般式CnH2o+1Cl(ただしn=3〜8
の整数)で表わされる塩化アルキル、ベンゼン、
トルエン、キシレン、エチルベンゼン、クロロベ
ンゼンの1種以上である特許請求の範囲第1項記
載の方法。
[Claims] 1 General formula SiH x Cl 4-x (where x = an integer from 1 to 3)
In a method for producing a corresponding partially fluorinated silane by reacting a partially chlorinated silane represented by the formula with a fluorinating agent, the partially chlorinated silane has low solubility in the fluorinating agent and the partially fluorinated silane, and and partial fluorination, which is characterized by suspending a fluorinating agent in a solvent that has high solubility for the metal chloride produced by the reaction, and then reacting the fluorinating agent with a partially chlorinated silane. Method of manufacturing silane. 2 The solvent has the general formula CnH 2o+1 Cl (where n = 3 to 8
alkyl chloride, benzene,
The method according to claim 1, wherein one or more of toluene, xylene, ethylbenzene, and chlorobenzene is used.
JP2833787A 1987-02-12 1987-02-12 Production of partially fluorinated silane Granted JPS63201013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2833787A JPS63201013A (en) 1987-02-12 1987-02-12 Production of partially fluorinated silane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2833787A JPS63201013A (en) 1987-02-12 1987-02-12 Production of partially fluorinated silane

Publications (2)

Publication Number Publication Date
JPS63201013A JPS63201013A (en) 1988-08-19
JPH0417891B2 true JPH0417891B2 (en) 1992-03-26

Family

ID=12245793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2833787A Granted JPS63201013A (en) 1987-02-12 1987-02-12 Production of partially fluorinated silane

Country Status (1)

Country Link
JP (1) JPS63201013A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599278B1 (en) * 1992-11-27 1996-01-31 MITSUI TOATSU CHEMICALS, Inc. Process for the preparation of partially-substituted fluorosilane

Also Published As

Publication number Publication date
JPS63201013A (en) 1988-08-19

Similar Documents

Publication Publication Date Title
EP2292627B1 (en) Aqueous catalytic process for the preparation of thiocarboxylate silane
US8722005B1 (en) Synthesis of hydrogen bis(fluorosulfonyl)imide
JP5358974B2 (en) Method for producing fluorinated 1,3-dioxolan-2-one
JP5135926B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
Ruff N-Haloiminosulfur Derivatives
EP0211578A2 (en) N-fluoro-N-perfluoromethyl sulfonamides
US4828764A (en) N-Fluoro-N-Perfluoromethyl sulfonamides
JP2914781B2 (en) Method for preparing silacycloalkane
US6781005B1 (en) Process for the fluorination of boron hydrides
JPH0417891B2 (en)
US4697011A (en) N-fluoro-N-perfluoromethyl sulfonamides
EP0344738B1 (en) Process for purification of hydrochloric acid
JP2845745B2 (en) Production method of high purity methanesulfonyl fluoride
JP3123698B2 (en) Manufacturing method of fluorinated silane
JPH0328370B2 (en)
WO2007004409A1 (en) Process for synthesis of halogenated nitrogen
JP3029278B2 (en) Post-treatment method of solution containing inert antimony halogenide catalyst and organic compound
JPS63195108A (en) Production of disilicon hexafluoride
JP2961457B2 (en) Method for producing fluorinated organic quaternary ammonium salts
JPS61151015A (en) Production of partially substituted fluorosilane
US4034069A (en) Method of preparing arsenic trifluoride
JP2664772B2 (en) Method for producing partially fluorinated silane
JPH05213812A (en) Purification of bromodifluoroacetyl fluoride
JPH02283610A (en) Production of disilicon hexafluoride
JPH05170422A (en) Production of zinc fluoride for fluorosilane