JPH04178172A - Voltage multiplying rectifier circuit - Google Patents

Voltage multiplying rectifier circuit

Info

Publication number
JPH04178172A
JPH04178172A JP30205790A JP30205790A JPH04178172A JP H04178172 A JPH04178172 A JP H04178172A JP 30205790 A JP30205790 A JP 30205790A JP 30205790 A JP30205790 A JP 30205790A JP H04178172 A JPH04178172 A JP H04178172A
Authority
JP
Japan
Prior art keywords
capacitor
rectifier circuit
power supply
column
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30205790A
Other languages
Japanese (ja)
Inventor
Akinobu Nara
奈良 彰信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP30205790A priority Critical patent/JPH04178172A/en
Publication of JPH04178172A publication Critical patent/JPH04178172A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower voltage fluctuation rate and ripple by sandwichingly connecting a pair of 4-terminal boosting columns consisting of diode arrays having the equal number of serial connections which are chain-connected to the serial connecting points of a pair of capacitor arrays having the equal number of serial connections with a bridge-connected rectifying circuit. CONSTITUTION:Capacitors K1, K2, C1, C2 of a boosting column 3 are respectively charged up to E in the predetermined polarity with an AC power supply 1. When a voltage of AC input power supply 1 is positive, a current flows in the loop of AC input power supply 1 capacitor C1 capacitor C2 diode 23 capacitor C0 diode 22 AC power supply 1. Thereby, the capacitor C0 is charged to 3E. Moreover, when a voltage of the AC input power supply 1 is negative (when an arrow mark indicates negative), a current flows in the loop of AC input power supply 1 capacitor K1 capacitor K2 diode 24 capacitor C0 diode 21 AC power supply 1 and the capacitor C0 is charged up to 3E. As explained above, the AC input power supply 1 provides an output of both waves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は倍電圧整流回路、特に両波形で、多段。[Detailed description of the invention] [Industrial application field] The present invention is a voltage doubler rectifier circuit, especially a multi-stage voltage doubler rectifier circuit with both waveforms.

多出力に適した倍電圧整流回路に関する。This article relates to a voltage doubler rectifier circuit suitable for multiple outputs.

〔従来の技術〕[Conventional technology]

多段の倍電圧整流回路としては、第5図に示す。 A multi-stage voltage doubler rectifier circuit is shown in FIG.

コツククロフト・ウオルトン回路か従来よく知られてい
る。この回路は入力交流電源lを順次ダイオードD1.
D2...D2nの電気弁で押し上げコラムと呼ばれる
コンデンサ列C1,C2,、、、Cnを介して電圧を半
サイクル毎に汲み上げて1平滑コラムと呼ばれるコンデ
ンサ列K1. K2. 、 、 、 Knの各コンデン
サにそれぞれ2Eづつの電圧を充電して、n段では2n
Eの直流出力を与える回路である。この回路は各構成要
素のコンデンサ、ダイオードの耐圧はそれぞれ入力交流
電源lの電圧の波高値の2倍で充分てあり、任意の倍数
の直流出力電圧か得られる長所かある。しかしながら出
力コンデンサには交流の半波しか充電されないので、電
圧変動率とりプルか大きくなる問題かある。
The Kotscroft-Walton circuit is well known. This circuit sequentially connects the input AC power source l to the diode D1.
D2. .. .. The electric valve D2n pumps the voltage every half cycle through the capacitor arrays C1, C2, . K2. , , , Kn capacitors are each charged with a voltage of 2E, and in the n stage, 2n
This is a circuit that provides a DC output of E. This circuit has the advantage that the withstand voltage of the capacitors and diodes of each component is twice the peak value of the voltage of the input AC power supply l, and that an arbitrary multiple of the DC output voltage can be obtained. However, since the output capacitor is charged only by a half wave of alternating current, there is a problem that the voltage fluctuation rate and pull increase.

また、第6図に示す回路は特公昭48−25143号公
報に示されていた。いわゆるバランス形コツククロフト
・ウオルトン回路である。この回路は、二つの入力交流
電源を用いて、!圧変動率を改善した直流出力を得る回
路である。しかし、この回路は入力交流電源を2つ必要
とする点て、不利である。
Further, the circuit shown in FIG. 6 was disclosed in Japanese Patent Publication No. 48-25143. This is a so-called balanced Kotscroft-Walton circuit. This circuit uses two input AC power supplies! This is a circuit that obtains DC output with improved pressure fluctuation rate. However, this circuit has the disadvantage of requiring two input AC power supplies.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本発明はひとつの入力交流電源により構成される。全波
形の倍電圧整流回路を得ることを課題とする。
The present invention is configured with one input AC power source. The objective is to obtain a voltage doubler rectifier circuit for all waveforms.

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決するため、一対の互いに等しい直列数の
コンデンサ列と、これらコンデンサ列の直列接続点に鎖
交接続する一対の互いに等しい直列数のダイオード列と
からなる。4端子押し上げコラムを設け、この4端子押
し上げコラムをブリッジ接続整流回路で挟み込み接続す
ることを提案するものである。
In order to solve this problem, it consists of a pair of capacitor strings with an equal number of series connections and a pair of diode strings with an equal number of series connections that are interlinked to the series connection points of these capacitor strings. It is proposed that a 4-terminal push-up column be provided and that this 4-terminal push-up column be sandwiched and connected by a bridge-connected rectifier circuit.

〔作用〕[Effect]

本発明は以上のように構成されているので、単一の入力
交流電源は、一対の4端子押し上げコラムを介して、入
力交流の正方向と負方向の両波について電圧を昇圧駆動
し、この両波についてブリッジ整流回路を駆動するので
、出力には両波の直流を送出することができる。
Since the present invention is configured as described above, a single input AC power source boosts and drives the voltage for both positive and negative waves of input AC via a pair of four-terminal push-up columns. Since the bridge rectifier circuit is driven for both waves, it is possible to send both waves of direct current to the output.

〔実施例〕〔Example〕

第1図は本発明の一実□施例である。同図において、先
ずコンデンサCI、C2か直列接続されて、コンデンサ
列を形成している。 またコンデンサKl。
FIG. 1 shows an embodiment of the present invention. In the figure, first, capacitors CI and C2 are connected in series to form a capacitor array. Also, capacitor Kl.

K2も直列接続されて、コンデンサ列を形成している。K2 is also connected in series to form a capacitor string.

これら一対のコンデンサ列の直列接続点にはダイオード
列旧、 C2とダイオード列V1. V2とが鎖交接続
される。このようにして4端子の押し上げコラムか形成
される。この4端子の押し上げコラムを挟み込むように
、ダイオード21.22.23.24からなるブリッジ
接続整流回路か接続される。これらの各ダイオード21
.22.23.24の極性は、押し上げコラム3の電圧
を順方向とするような極性である。そしてブリッジ接続
整流回路の出力となる。ダイオード21.22のカソー
ドと、ダイオード23、24のアノードとかこれらの倍
電圧整流回路の出力端子となる。入力交流lは図示の如
く、押し上げコラムの基部に接続される。
At the series connection point of these pair of capacitor strings, there is a diode string V1.C2 and a diode string V1. V2 is interlinked. In this way, a four-terminal push-up column is formed. A bridge-connected rectifier circuit consisting of diodes 21, 22, 23, and 24 is connected so as to sandwich this four-terminal push-up column. Each of these diodes 21
.. The polarities of 22, 23, and 24 are such that the voltage of the push-up column 3 is in the forward direction. This becomes the output of the bridge-connected rectifier circuit. The cathodes of the diodes 21 and 22 and the anodes of the diodes 23 and 24 serve as output terminals of these voltage doubler rectifier circuits. The input AC l is connected to the base of the lift column as shown.

次に動作を説明すると、先ず入力交流電源1か矢印が正
方向の極性のときは、交流電源HaダイオードDIQコ
ンデンサKlφ交流電源lの経路で電流か流れ、コンデ
ンサKlを図示の極性で充電する。
Next, the operation will be described. First, when the input AC power supply 1 or the arrow indicates the positive polarity, a current flows through the path of the AC power supply Ha diode DIQ capacitor KlφAC power supply l, charging the capacitor Kl with the polarity shown.

入力交流電源の電圧をEs1nωtとすると、コンデン
サKlの充電電圧はその波高値Eとなる。(ωは角周波
数、tは時間を表す。)つぎに入力交流電源1か矢印か
負方向の極性のときは、交流電源lφダイオードVlφ
コンデンサC1φ交流電源lの経路で電流か流れ、コン
デンサCIを図示の極性で充電する。コンデンサCIの
充電電圧も同様にεとなる。さらに入力交流電源1か矢
印か正方向の極性のときは、交流電源lの電圧とコンデ
ンサCIの電圧Eとの和2EかコンデンサC1φダイオ
ードV2<コンデンサに2に)コンデンサKlに)交流
電源lの経路で電流か流れ、コンデンサKl、 K2を
図示の極性でそれぞれEに充電する。つぎに入力交流電
源1か矢印か負方向の極性のときは、交流電源1の電圧
とコンデンサに1の電圧Eとの和2EかコンデンサKl
に)ダイオードV2<コンデンサC2φコンデンサCI
===>交流電源lの経路て電流か流れ、コンデンサC
I、 C2を図示の極性でそれぞれEに充電する。この
ようにして押し上げられた電圧はさらに交流入力電源1
の電圧と和になり、交流入力電源lの電圧か矢印が正方
向のときは、交流入力電源1<コンデンサC1に)コン
デンサC2φダイオード23=)コンデンサCOに)ダ
イオード22呻交流電源1の経路で電流か流れ、コンデ
ンサCOは3Eに充電される。また交流入力電源1の電
圧が矢印が負方向のときは、交流入力電源IQコンデン
サKlφコンデンサに2−)ダイオ−)”24=)コン
デンサC1φダイオード21===>交流電源1の経路
で電流か流れ、コンデンサCOは3Eに充電される。こ
のように交流入力電源lの両波で出力を与える。
When the voltage of the input AC power source is Es1nωt, the charging voltage of the capacitor Kl becomes its peak value E. (ω represents angular frequency, t represents time.) Next, when the input AC power supply is 1 or the polarity is in the negative direction, the AC power supply lφ diode Vlφ
A current flows through the path of the capacitor C1φ AC power supply l, charging the capacitor CI with the polarity shown. Similarly, the charging voltage of the capacitor CI becomes ε. Furthermore, when the input AC power supply is 1 or the polarity is in the positive direction, the sum of the voltage of the AC power supply L and the voltage E of the capacitor CI is 2E or the capacitor C1φ diode V2<to the capacitor Kl) to the capacitor Kl) Current flows through the path, charging capacitors Kl and K2 to E with the polarity shown. Next, if the input AC power supply 1 is the arrow or the polarity is in the negative direction, the sum of the voltage of AC power supply 1 and the voltage E of capacitor 1 is 2E or the capacitor Kl
) Diode V2 < Capacitor C2φ Capacitor CI
===> Current flows through the path of AC power supply l, capacitor C
Charge I and C2 to E with the polarities shown. The voltage boosted in this way is further increased by the AC input power supply 1.
When the voltage of AC input power supply l or the arrow is in the positive direction, AC input power supply 1 < To capacitor C1) Capacitor C2 φ diode 23 =) To capacitor CO) Diode 22 In the path of AC power supply 1 Current flows and the capacitor CO is charged to 3E. Also, when the voltage of the AC input power supply 1 is in the negative direction of the arrow, the current is connected to the AC input power supply IQ capacitor Klφ capacitor 2-) diode-)"24=) capacitor C1φ diode 21 As a result, the capacitor CO is charged to 3E.In this way, both waves of the AC input power supply l provide an output.

押し上げコラムの段数は図示の2段に限らず1段から任
意の大きい段数にまで、自由に選定できるのは言うまで
もない。また、交流入力電源1の接続位置は図示の位置
に限らず押し上げコラムの相対位置、 (A2.82)
あるいは(A3.83)間に、接続することかできる。
It goes without saying that the number of stages of the push-up column is not limited to the two stages shown in the figure, but can be freely selected from one stage to any larger number of stages. In addition, the connection position of the AC input power source 1 is not limited to the position shown in the figure, but the relative position of the push-up column, (A2.82)
Alternatively, it is possible to connect between (A3.83).

また同期をとる等の関係を持たせて、複数の交流入力を
印加することもてきる。
It is also possible to apply a plurality of alternating current inputs in a synchronized manner.

第2図は3倍電圧整流回路に単純ブリッジ整流回路を併
設した実施例である。この実施例は第1図に示す3倍電
圧整流回路において、ブリッジ接続整流回路の一部の構
成要素を共用して単純ブリッジ整流回路を併設したもの
である。
FIG. 2 shows an embodiment in which a simple bridge rectifier circuit is added to a triple voltage rectifier circuit. In this embodiment, in the triple voltage rectifier circuit shown in FIG. 1, a simple bridge rectifier circuit is added by sharing some of the components of the bridge-connected rectifier circuit.

′尚、ダイオード25.26の接続点を押し上げコラム
の途中(A2.82)あるいは(A3.83)間に接続
すれば、押し上げコラムの段数に応じた第2の出力か得
られる。その場合は、交流電源lはブリッジ接続整流回
路2の構成ダイオード21.22と23.24との間に
配置することか必要となる。
'If the connecting points of the diodes 25 and 26 are connected between (A2.82) or (A3.83) of the push-up columns, a second output corresponding to the number of stages of the push-up columns can be obtained. In that case, the alternating current power supply l must be placed between the constituent diodes 21.22 and 23.24 of the bridge-connected rectifier circuit 2.

第3図は本発明の技術思想をさらに拡張して。Figure 3 shows a further expansion of the technical idea of the present invention.

n倍の整流回路とn倍の整流回路とを合成した実施例で
ある。n−1段の押し上げコラムを含む第1のn倍電圧
整流回路100を構成し、この回路のブリッジ接続整流
回路のダイオード21.22の部分を共通にして第2の
倍電圧整流回路200を構成する。
This is an example in which an n-times rectifier circuit and an n-times rectifier circuit are combined. A first n-fold voltage rectifier circuit 100 including n-1 stages of push-up columns is configured, and a second voltage doubler rectifier circuit 200 is configured by using the diodes 21 and 22 of the bridge-connected rectifier circuit in common in this circuit. do.

ダイオード21.22には第1の倍電圧整流回路100
と第2の倍電圧整流回路200の双方の電流か流れるの
で、その電流に応じて部品選定か必要となる。
A first voltage doubler rectifier circuit 100 is connected to the diodes 21 and 22.
Since current flows through both the voltage doubler rectifier circuit 200 and the second voltage doubler rectifier circuit 200, it is necessary to select components depending on the current.

更に拡張して、一つの交流電源により任意の数の任意の
倍率の倍電圧整流回路を構成できる。
Further, it is possible to configure any number of voltage doubler rectifier circuits with any magnification using one AC power source.

第4図は本発明の別の実施例であって、押し上げコラム
のコンデンサの構成を直列形から並列形に変更したもの
である。構成を説明すると、まずコンデンサCI、 C
2,Cn−1の各一端を共通接続しておく。また、コン
デンサK1. K2. Kn−1の各一端を共通接続し
ておく。そしてこれら一対のコンデンサ列の共通接続端
子をそれぞれブリッジ接続整流回路2の端子A1. B
lに接続する。つぎにダイオード旧。
FIG. 4 shows another embodiment of the present invention, in which the configuration of the capacitor in the push-up column is changed from a series type to a parallel type. To explain the configuration, first, capacitors CI, C
2. Connect each end of Cn-1 in common. In addition, capacitor K1. K2. Each end of Kn-1 is connected in common. The common connection terminals of these pair of capacitor arrays are connected to the terminals A1. B
Connect to l. Next is the old diode.

D2.・・・Dn−1とVl、 V2.・・・Vn−1
を直列接続して図示のようにコンデンサ列の各一端をそ
れぞれに鎖交接続する。このようにして押し上げコラム
か構成される。この押し上げコラムをダイオード21.
22゜23、24からなるブリッジ整流回路により挟み
込み接続される。動作については、第1図の実施例と同
様であるか、押し上げコラムの各コンデンサの充電電圧
か電圧の押し上げに伴って、 E、2E、・・・(n−
1)Eと一段づつ上昇する。尚、この実施例においては
入力交流電源lは押し上げコラムの基部AI。
D2. ...Dn-1 and Vl, V2. ...Vn-1
are connected in series, and one end of each capacitor array is linked to each other as shown. In this way a push-up column is constructed. This push-up column is connected to diode 21.
A bridge rectifier circuit consisting of 22, 23, and 24 is sandwiched and connected. The operation is the same as that of the embodiment shown in Fig. 1, or as the charging voltage of each capacitor in the push-up column is pushed up, E, 2E, ... (n-
1) Go up one step at a time with E. In this embodiment, the input AC power source l is the base AI of the push-up column.

B1間に接続することか必要条件となる。本実施例は、
第3図に示す実施例の如く、複数回路に拡張することも
可能である。
A necessary condition is to connect between B1. In this example,
It is also possible to expand to multiple circuits as in the embodiment shown in FIG.

尚、各出力端子に接続されるコンデンサCOは平滑用で
あり1回路構成上、必須の構成要素ではない。出力リプ
ルが許容される用途、またはりプルかある程度含有され
ていた方か好ましい用途においてほこのコンデンサは省
かれる。
Note that the capacitor CO connected to each output terminal is for smoothing purposes and is not an essential component in one circuit configuration. This capacitor is omitted in applications where output ripple is acceptable, or where some amount of ripple is preferred.

また、各実施例において、交流電源lはインバータによ
り、数十キロヘルツまたはそれ以上の高周波を用いるこ
ともてきる。また、各ダイオードの極性はそれぞれ反対
方向にすることも当然できる。
Further, in each embodiment, the AC power supply l can use a high frequency of several tens of kilohertz or more by using an inverter. Furthermore, the polarities of the diodes can of course be set in opposite directions.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述へたような特徴を存し、一つの交流源か
ら複数の直流電圧源を得ることかでき。
The present invention has the above-mentioned features and can obtain a plurality of DC voltage sources from one AC source.

しかも9両波形であるので、電圧変動率やりプルを低く
抑えることかできる。また、各ダイオードの耐圧は、す
べて等しく入力交流電圧の波高値の2倍あればよく製作
上、経済的である。
Moreover, since it is a 9-way waveform, the voltage fluctuation rate and pull can be kept low. In addition, it is sufficient for the diode to have the same breakdown voltage twice the peak value of the input AC voltage, which is economical in manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る3倍電圧整流回路の一実施例を示
す。第2図は3倍電圧整流回路に単純ブリッジ整流回路
を併設した実施例である。第3図は本発明をさらに拡張
して、n倍の整流回路とm倍の整流回路とを合成した実
施例である。第4図は押し上げコラムのコンデンサ列を
並列形で構成した実施例である。第5図および第6図は
従来の倍電圧整流回路の例を示す。 1・・・交流電源、2・・・ブリッジ接続整流回路3・
・・押し上げコラム C1,C2,、、、Cn、 Kl、に2.、、、Kn−
・・コンデンサD1.D2....Dn、 Vl、V2
.、、、Vn・・・ダイオード41、42・・・出力端
子 特許出願人 オリジン電気株式会社 第3図 第5図
FIG. 1 shows an embodiment of a triple voltage rectifier circuit according to the present invention. FIG. 2 shows an embodiment in which a simple bridge rectifier circuit is added to a triple voltage rectifier circuit. FIG. 3 shows an embodiment in which the present invention is further expanded to combine an n-times rectifier circuit and an m-times rectifier circuit. FIG. 4 shows an embodiment in which the capacitor rows of the push-up column are arranged in parallel. 5 and 6 show examples of conventional voltage doubler rectifier circuits. 1... AC power supply, 2... Bridge connection rectifier circuit 3.
・・Push-up columns C1, C2,..., Cn, Kl, 2. ,,,Kn-
...Capacitor D1. D2. .. .. .. Dn, Vl, V2
.. ,,,Vn...Diode 41, 42...Output terminal Patent applicant Origin Electric Co., Ltd. Figure 3 Figure 5

Claims (6)

【特許請求の範囲】[Claims] (1)互いに等しい数のコンデンサを直列接続した一対
のコンデンサ列と、該コンデンサ列の直列接続点に鎖交
接続する互いに等しい数のダイオードを直列接続した一
対のダイオード列とからなる、4端子押し上げコラムと
、該4端子押し上げコラムを挟み込み接続されるブリッ
ジ接続整流回路とからなる倍電圧整流回路。
(1) A four-terminal push-up device consisting of a pair of capacitor strings in which equal numbers of capacitors are connected in series, and a pair of diode strings in which equal numbers of diodes are connected in series and linked to the series connection points of the capacitor strings. A voltage doubler rectifier circuit consisting of a column and a bridge-connected rectifier circuit connected to sandwich the four-terminal push-up column.
(2)前記ブリッジ接続整流回路の半分回路を共通にし
て構成される第2のブリッジ接続整流回路と、該第2の
ブリッジ接続整流回路の入力端子に接続される交流電源
とを含んで構成される第1項記載の倍電圧整流回路。
(2) A second bridge-connected rectifier circuit configured by using a half circuit of the bridge-connected rectifier circuit in common, and an AC power source connected to an input terminal of the second bridge-connected rectifier circuit. 2. The voltage doubler rectifier circuit according to item 1.
(3)互いに等しい数のコンデンサを直列接続した一対
のコンデンサ列と、該コンデンサ列の直列接続点に鎖交
接続する互いに等しい数のダイオードを直列接続した一
対のダイオード列とからなる、4端子押し上げコラムと
、該4端子押し上げコラムを挟み込み接続されるブリッ
ジ接続整流回路とからなる倍電圧整流回路と、 該倍電圧整流回路と同様構成で一部回路を共通にして構
成される他の倍電圧整流回路を含んで構成される倍電圧
整流回路。
(3) A 4-terminal push-up device consisting of a pair of capacitor arrays each having an equal number of capacitors connected in series, and a pair of diode arrays each having an equal number of diodes connected in series and linked to the series connection point of the capacitor array. A voltage doubler rectifier circuit consisting of a column and a bridge-connected rectifier circuit that is connected by sandwiching the four-terminal push-up column, and another voltage doubler rectifier that has the same configuration as the voltage doubler rectifier circuit and shares some circuits. A voltage doubler rectifier circuit that includes a circuit.
(4)前記押し上げコラムの相対対応点に接続される交
流電源を含んで構成される第1項または第3項記載の倍
電圧整流回路。
(4) The voltage doubler rectifier circuit according to item 1 or 3, which includes an AC power source connected to a relative corresponding point of the push-up column.
(5)各一端を共通接続した一対の互いに等しい数のコ
ンデンサ列と、該コンデンサ列の他の一端にそれぞれに
鎖交接続する互いに等しい数のダイオードを直列接続し
た一対のダイオード列とからなる、4端子押し上げコラ
ムと、該4端子押し上げコラムを挟み込み接続されるブ
リッジ接続整流回路と、前記押し上げコラムの基部に接
続される交流電源とからなる倍電圧整流回路。
(5) Consisting of a pair of capacitor rows having an equal number of capacitors connected in common at one end of each capacitor row, and a pair of diode rows having an equal number of diodes connected in series and linked to each other end of the capacitor row; A voltage doubler rectifier circuit comprising a four-terminal push-up column, a bridge-connected rectifier circuit connected to sandwich the four-terminal push-up column, and an AC power source connected to the base of the push-up column.
(6)出力端子に接続されるコンデンサを含んで構成さ
れる第1項乃至第5項記載の倍電圧整流回路。
(6) The voltage doubler rectifier circuit according to any one of items 1 to 5, which includes a capacitor connected to the output terminal.
JP30205790A 1990-11-07 1990-11-07 Voltage multiplying rectifier circuit Pending JPH04178172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30205790A JPH04178172A (en) 1990-11-07 1990-11-07 Voltage multiplying rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30205790A JPH04178172A (en) 1990-11-07 1990-11-07 Voltage multiplying rectifier circuit

Publications (1)

Publication Number Publication Date
JPH04178172A true JPH04178172A (en) 1992-06-25

Family

ID=17904397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30205790A Pending JPH04178172A (en) 1990-11-07 1990-11-07 Voltage multiplying rectifier circuit

Country Status (1)

Country Link
JP (1) JPH04178172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258601A (en) * 1994-03-23 1995-10-09 Fujikura Kasei Co Ltd Polyurethane resin coating composition
WO2007017793A1 (en) * 2005-08-08 2007-02-15 Philips Intellectual Property & Standards Gmbh Voltage multiplier with improved power efficiency and apparatus provided with such voltage multiplier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258601A (en) * 1994-03-23 1995-10-09 Fujikura Kasei Co Ltd Polyurethane resin coating composition
WO2007017793A1 (en) * 2005-08-08 2007-02-15 Philips Intellectual Property & Standards Gmbh Voltage multiplier with improved power efficiency and apparatus provided with such voltage multiplier
JP2009505617A (en) * 2005-08-08 2009-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Voltage multiplier circuit with improved power efficiency and equipment provided with such a voltage multiplier circuit
US7944719B2 (en) 2005-08-08 2011-05-17 Koninklijke Philips Electronics N.V. Voltage multiplier with improved power efficiency and apparatus provided with such voltage multiplier

Similar Documents

Publication Publication Date Title
US7800924B2 (en) Power converter apparatus and methods using neutral coupling circuits with interleaved operation
US11043899B2 (en) Zero inductor voltage converter topology with improved switch utilization
EP3050202B1 (en) An intra-module dc-dc converter and a pv-module comprising same
Vijayalakshmi Symmetric Multi-Level boost inverter with single dc source using reduced number of switches
TWI363266B (en) Multi-step charge pump and method for producing multi-step charge pumpping
JPH04178172A (en) Voltage multiplying rectifier circuit
CN211655748U (en) Single-phase voltage regulating circuit and charging equipment
Han et al. Asymmetrical (n/m) X DC-DC converter for finer voltage regulation
CN108599591B (en) Self-current-sharing modularized high-capacity high-boost rectifier
Elahi et al. A new double boost single DC source single-phase multilevel inverter
CN209526664U (en) The submodule unit and modularization multi-level converter of modularization multi-level converter
KR101123123B1 (en) Charge-pump multi-level inverter
SU1226588A1 (en) Polyphase rectifier with voltage multiplication
Chang et al. A Simple Greinacher-Doubler-Based Switched-Coupled-Inductor Boost DC-AC Inverter
JPH07230890A (en) Electric power supply device
SU1669068A1 (en) Polyphase rectifier with voltage multiplication
JPS62166783A (en) Multioutput, multivoltage rectifying circuit
RU2255410C1 (en) Multistage voltage multiplier (alternatives)
GB2148620A (en) Voltage multiplying rectifier
Kumar et al. Reduced switches 13-level multilevel inverter for PV array grid
Chatterjee et al. Intra-Module DC-DC converter: topology selection and analysis
CN114614679A (en) Multi-output boost rectifying circuit
JPS5848830Y2 (en) deflection circuit
SU1642568A1 (en) Full-wave rectifier with voltage doubling
JPH0487562A (en) Capacitor ac voltage step-up circuit