JPH041778B2 - - Google Patents
Info
- Publication number
- JPH041778B2 JPH041778B2 JP60223678A JP22367885A JPH041778B2 JP H041778 B2 JPH041778 B2 JP H041778B2 JP 60223678 A JP60223678 A JP 60223678A JP 22367885 A JP22367885 A JP 22367885A JP H041778 B2 JPH041778 B2 JP H041778B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- amorphous
- resins
- vinyl chloride
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 claims description 79
- 239000011347 resin Substances 0.000 claims description 79
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical class O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 41
- 239000000654 additive Substances 0.000 claims description 40
- 230000000996 additive effect Effects 0.000 claims description 28
- 239000010457 zeolite Substances 0.000 claims description 28
- 229910021536 Zeolite Inorganic materials 0.000 claims description 24
- 239000002243 precursor Substances 0.000 claims description 19
- 239000000843 powder Substances 0.000 claims description 17
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 claims description 15
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 13
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 claims description 12
- 239000000429 sodium aluminium silicate Substances 0.000 claims description 12
- 235000012217 sodium aluminium silicate Nutrition 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000005341 cation exchange Methods 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 229920001577 copolymer Polymers 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 229920005672 polyolefin resin Polymers 0.000 description 12
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000011342 resin composition Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000003963 antioxidant agent Substances 0.000 description 8
- 238000004040 coloring Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- -1 organic acid salts Chemical class 0.000 description 8
- 239000004014 plasticizer Substances 0.000 description 8
- 229910052736 halogen Inorganic materials 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000000740 bleeding effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000012760 heat stabilizer Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920003002 synthetic resin Polymers 0.000 description 5
- 239000000057 synthetic resin Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000002981 blocking agent Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001768 cations Chemical group 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920013716 polyethylene resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000012756 surface treatment agent Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 239000012690 zeolite precursor Substances 0.000 description 2
- 229920003067 (meth)acrylic acid ester copolymer Polymers 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- IVRFYNSETZKRSJ-UHFFFAOYSA-N ClC=C.N#CC=CC=CC1=CC=CC=C1 Chemical compound ClC=C.N#CC=CC=CC1=CC=CC=C1 IVRFYNSETZKRSJ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- KZIKDWMVGLXOTB-UHFFFAOYSA-N chloranylethene Chemical compound ClC=C.ClC=C KZIKDWMVGLXOTB-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- ZJPJECQPVMSILT-UHFFFAOYSA-N chloroethene 3-(2-phenylethenyl)furan-2,5-dione Chemical compound ClC=C.O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 ZJPJECQPVMSILT-UHFFFAOYSA-N 0.000 description 1
- IEJNAGSUKYCWCR-UHFFFAOYSA-N chloroethene;1,1-dichloroethene;ethenyl acetate Chemical compound ClC=C.ClC(Cl)=C.CC(=O)OC=C IEJNAGSUKYCWCR-UHFFFAOYSA-N 0.000 description 1
- VSJDEWYENWWMAV-UHFFFAOYSA-N chloroethene;2-methylprop-2-enoic acid Chemical compound ClC=C.CC(=C)C(O)=O VSJDEWYENWWMAV-UHFFFAOYSA-N 0.000 description 1
- KRGNPJFAKZHQPS-UHFFFAOYSA-N chloroethene;ethene Chemical group C=C.ClC=C KRGNPJFAKZHQPS-UHFFFAOYSA-N 0.000 description 1
- SQNNHEYXAJPPKH-UHFFFAOYSA-N chloroethene;prop-2-enoic acid Chemical compound ClC=C.OC(=O)C=C SQNNHEYXAJPPKH-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000037074 physically active Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920005671 poly(vinyl chloride-propylene) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
[産業上の利用分野]
本発明は樹脂添加剤に関し、更に詳しくは合成
ゼオライトの前駆体である非晶質ナトリウムアル
ミノシリケートのカチオン交換体である非晶質金
属置換アルミノシリケート粉末からなる樹脂添加
剤に関するものである。
[従来の技術]
従来、塩化ビニル樹脂及びオレフイン樹脂はす
ぐれた物理化学的特性があるために種々の成型又
は紡糸の方法によつて、成型品、フイルム又は繊
維などの形態で多くの分野で使用されている。
周知のように塩化ビニル樹脂及びオレフイン樹
脂の成型加工は、通常200℃以上で行われており、
また加工時又は使用時に熱や光による経時的な酸
化、劣化を受けるために、分子量の低下による機
械的性質の低下、着色あるいは悪臭の発生などの
欠点がある。
従つて、従来より塩化ビニル樹脂及びオレフイ
ン樹脂はその単独使用は殆どなく、通常熱や光に
対する耐性を与えるために種々の熱安定剤、酸化
防止剤、紫外線吸収剤や滑剤党の樹脂添加剤を不
可欠な配合剤として含有している。
かかる、樹脂添加剤において無機系化合物も数
多く知られているが、各種の合成樹脂に、天然又
は合成ゼオライトの結晶性粉末が使用されてい
る。
例えば、Na−A型ゼオライトがハロゲン含有
樹脂に対して熱安定剤として用いられることが提
案されている。(特開昭54−34356号公報)
また、Na−A型ゼオライトを他の金属カチオ
ン、特にCa,Mg,Zn,Pbなどの二価の金属カ
チオンで置換したA型ゼオライトがハロゲン含有
樹脂に対する熱安定性を改善することが提案され
ている。(特開昭55−142043号公報、特開昭57−
28145号公報)
更に、ポリオレフイン樹脂に対して金属置換A
型ゼオライトが劣化防止作用をもたらすことが提
案されている。(特開昭57−67638号公報)
一方、無機系の非晶質粉末としては主にシリカ
粉末が用いられ、他には僅かに金属シリケートが
用いられている。
最近、アルミナ−シリカ系樹脂配合剤として、
X線回析では非晶質を示す非晶質粉末がポリオレ
フインなどの樹脂のブロツキング防止性を有する
ことが提案されている。(特開昭58−213031号公
報)
[発明が解決しようとする問題点]
しかしながら、塩化ビニル樹脂及びオレフイン
樹脂に熱安定化剤、酸化防止剤や紫外線吸収剤等
の劣化防止剤を単独で配合すると、劣化防止剤と
樹脂との相溶性が悪いため成型品表面にブリード
し易く、製品を汚染する傾向があり、あるいは一
般に低沸点のものが多く、樹脂の加熱による加工
に際して蒸散し易く、劣化防止剤を添加した効果
を十分に発揮することができないばかりか悪臭等
の発生により作業環境の悪化を招来する等の欠点
がある。しかも、これらの添加剤は高価であるの
で本来の目的を十分に発揮せしめることが必要不
可欠である。
この様なことから、塩化ビニル樹脂及びオレフ
イン樹脂に劣化防止剤とある種の合成ゼオライト
等の無機質の結晶性粉末を併用すると、上記の欠
点は改善される事実がある。
この理由は、ゼオライト等の結晶性粉末はその
結晶構造に基づくモレキユラーシーブ性、また、
結晶構造中に包含されている置換性金属イオン等
の作用により、樹脂の安定化等の改善効果が発揮
されるもので推定されている。言うまでもなく、
ゼオライトは独特な三次元結晶構造をもつアルミ
ノシリケートであるが、従来、非晶質アルミノシ
リケートの樹脂に対する知見は不思議なことに全
く得られていない。即ち、合成ゼオライトは、前
駆体の非晶質ナトリウムアルミノシリケートを加
熱熟成して結晶化して得られるものであるが、非
晶質アルミノシリケートはゼオライトと同様の化
学組成を有しているにも拘らず、樹脂添加剤とし
ての研究は皆無であつた。
本発明者等はこの様な従来の技術に鑑み、A型
ゼオライトの如き合成ゼオライトの結晶構造及び
その結晶構造中に包含されている置換性金属イオ
ンに基づく作用とは全く異なり、その前駆体であ
るゲル状の非晶質物質も、すなわちゼオライトと
同様にカチオン交換性の性質を有する事実に基づ
き、その金属置換体もゼオライトと同様に機能的
な樹脂添加剤として利用することができるのでは
ないかと想到し、鋭意研究を行つた。
その結果、合成ゼオライトの前駆体である非晶
質ナトリウムアルミノシリケートをカチオン交換
処理した非晶質アルミノシリケート粉末を樹脂添
加剤として樹脂に配合することにより、あるいは
劣化防止剤等と併用することにより、従来の天然
又は合成ゼオライトと同等あるいはそれ以上の樹
脂の安定化剤、触媒の中和剤、アンチブロツキン
グ剤、抗菌剤、充填剤等としての著しい効果を発
揮することを知見し本発明を完成した。
[問題点を解決するための手段]および[作用]
すなわち、本発明は合成ゼオライトの前駆体で
ある非晶質ナトリウムアルミノシリケートをカチ
オン交換処理した非晶質アルミノシリケート粉末
からなることを特徴とする樹脂添加剤にかかるも
のである。
以下、本発明について詳述する。
本発明にかかる樹脂添加剤は、
(a)合成ゼオライトの前駆体である非晶質ナトリ
ウムアルミノシリケートであること、(b)該前駆体
をカチオン交換処理したものであること、の条件
を満足する非晶質アルミノシリケート粉末からな
るものである。
まず、(a)の要件を満足する非晶質ナトリウムア
ルミノシリケートは合成ゼオライトの前駆体であ
るゲル状物質からなり、合成ゼオライトの製法は
公知であり、従つて、その前駆体の製法も公知で
あり、特に製造履歴に限定はなく得ることができ
る。
例えば、珪酸ソーダ水溶液とアルミン酸ソーダ
とを所定の割合で反応させることにより、非晶質
アルミノシリケートのゲルが直ちに生成する。
他の方法としては、シリカ又はシリカ−アルミ
ナ原料を苛性アルカリと反応させゲルを生成せし
める方法がある。
本発明における非晶質ナトリウムアルミノシリ
ケート、即ち前駆体は、酸化物で表わしたとき、
次の一般式
(1.0±0.2)Na2O・Al2O3・
(0.8〜5)SiO2・(0〜10)H2O
で表わされるものがよい。
これらのうち、A型、X型、Y型の合成ゼオラ
イトの前駆体がよく、特にA型ゼオライトの前駆
体、すなわち一般式
(1.0±0.2)Na2O・Al2O3・
(2・±0.10)SiO2・(0〜10)H2O
で表わされるものが工業的に最も有利である。
なお、合成ゼオライトは、上記の非晶質ゲルを
常圧又は加圧による水熱処理して結晶化すること
により得られるものであるが、本発明における前
駆体とは、この水熱処理前の出発原料の反応によ
り生成する非晶質ゲル状生成物のことをいう。
次に、(b)の要件を満足する非晶質金属置換アル
ミノシリケートは前記の前駆体をカチオン交換処
理して生成するものである。
前記の前駆体は一般の天然又は合成ゼオライト
と同様にカチオン交換能があり、本発明にかかる
樹脂添加剤は前駆体スラリーを金属イオンの水溶
液でイオン交換処理して金属置換した非晶質のア
ルミノシリケートを言う。
置換すべき金属としてはCa,Mg,Ba等のア
ルカリ土類金属、その他のものとしてZn,Pb又
はCu等の2価あるいはK,Li,Agなどの1価金
属から選ばれた1種又は2種以上のものがあげら
れる。イオン交換処理は上記のイオン交換すべき
金属の可溶性塩水溶液と前記の前駆体のスラリー
とを充分に接触混合させることにより行う。金属
の可溶性塩として塩化物、硝酸塩、硫酸塩又は有
機酸塩等があげられる。
また、このイオン交換はM2/nO/Na2O(但
し、Mは置換金属、nは原子価を示す)のモル比
が0.4以上、好ましくは0.5〜8の範囲の値になる
ように金属置換したアルミノシリケートが得られ
るように行うのがよい。この理由は、0.4未満で
は樹脂添加剤としての機能的作用が期待できない
ためである。又、上限は特に限定はないが、多く
の場合前記モル比が8以上の金属置換が工業的に
得がたいことによる。
金属置換処理後は、置換体スラリー(5g/
100ml)の平衡PH(25℃)が10.5以下になるとい
うように、充分水洗することが好ましい。
上記のように、この置換体スラリーは、ゼオラ
イトと異なつて非晶質の極めて微細な粒子である
ため、乾燥後は充分に粉砕する必要がある。
光透過法による沈降分析に基づくストークス相
当径で平均粒子径は3μm以下、好ましくは2.5〜
0.1μmの範囲になるように、強力セン断分散によ
り脱アグロメレーシヨンして粒度調整するのがよ
い。
なお、このようにして得られた非晶質金属置換
アルミノシリケート粉末の分散性をより一層改善
するために、必要に応じシランカツプリング剤、
シリコーンオイル等の有機珪素化合物、金属石け
ん、酸性燐酸エステル又はその金属塩等の表面処
理剤を適宜使用して金属置換体の表面改質をする
ことができる。
以上に説明した本発明における非晶質金属置換
アルミノシリケート粉末は各種樹脂に対する樹脂
添加剤として有用である。
本発明にかかる樹脂添加剤を配合できる樹脂と
しては各種の合成樹脂を用いることができ、特に
限定されるものではない。
例えばハロゲン含有樹脂、ポリエチレン、ポリ
プロピレン、ポリブテンなどのα−オレフイン重
合体、エチレン−酢酸ビニル共重合体、エチレン
−プロピレン共重合体、エチレン−アクリレート
共重合体等のα−オレフインと他の単量体との共
重合体のポリオレフイン系樹脂、ポリアセタール
樹脂、ポリアミド樹脂、シリコーン樹脂、ポリエ
ステル樹脂などがあげられる。
本発明に用いられるハロゲン含有樹脂としては
次のようなものがある。例えば、ポリ塩化ビニ
ル、塩化ビニル−酢酸ビニル共重合体、塩化ビニ
ル−エチレン共重合体、塩化ビニル−プロピレン
共重合体、塩化ビニル−スチレン共重合体、塩化
ビニル−イソブチレン共重合体、塩化ビニル−塩
化ビニリデン共重合体、塩化ビニル−スチレン−
無水マレイン酸三元共重合体、塩化ビニル−スチ
レン−アクリロニトリル共重合体、塩化ビニル−
ブタジエン共重合体、塩化ビニル−イソプレン共
重合体、塩化ビニル−塩素化プロピレン共重合
体、塩化ビニル−塩化ビニリデン−酢酸ビニル三
元共重合体、塩化ビニル−アクリル酸エステル共
重合体、塩化ビニル−マレイン酸エステル共重合
体、塩化ビニル−メタクリル酸エステル共重合
体、塩化ビニル−アクリロニトリル共重合体、内
部可塑化ポリ塩化ビニルなどの塩化ビニル合成樹
脂及びこれらの含塩化ビニル系樹脂とポリエチレ
ン、ポリプロピレン、ポリブテン、ポリ−3−メ
チルブテンなどのα−オレフイン重合体又はエチ
レン−酢酸ビニル共重合体、エチレン−プロピレ
ン共重合体などのポリオレフイン及びこれらの共
重合体、ポリスチレン、アクリル樹脂、スチレン
と他の単量体(例えば無水マレイン酸、ブタジエ
ン、アクリロニトリルなど)との共重合体、アク
リロニトリル−ブタジエン−スチレン共重合体、
アクリル酸エステル−ブタジエン−スチレン共重
合体、メタクリル酸エステル−ブタジエン−スチ
レン共重合体とのブレンド品をあげることができ
る。
本発明にかかる樹脂添加剤は、塩化ビニル樹脂
等のハロゲン含有樹脂の熱安定化剤、エチレン、
プロピレン等オレフイン樹脂に含有する触媒の中
和作用に基づく安定化剤、樹脂フイルムに対する
アンチブロツキング剤(以上は、Ca,Mg,Ba,
Zn,Pb置換体、特にCaが好ましい)、抗菌剤
(Cu置換体)、その他各種合成樹脂に対する充填
剤として使用することができる。
本発明において、樹脂添加剤の樹脂に対する使
用量は、その使用目的、樹脂の種類、添加剤の物
性等により一様ではないが、樹脂100重量部に対
して0.01〜50重量部、好ましくは0.05〜30重量部
が望ましく、0.01重量部未満では効果が不充分で
あり、50重量部をこえると各種特性の改善効果は
頭打ち傾向となり、経済的でない。
さらに、樹脂の各種の特性を改善するのに好適
な樹脂添加剤の配合量を例示すると、樹脂100重
量部に対して、充填剤として50重量部以下、好ま
しくは0.5〜3重量部、また充填剤以外の熱安定
化剤、触媒の中和作用にに基づく安定化剤、アン
チブロツキング剤、抗菌剤等の機能的使用におい
ては0.01〜5重量部、好ましくは0.05〜3重量部
の範囲が望ましい。
なお、本発明にかかる樹脂添加剤を使用する場
合、他の樹脂用添加剤、例えば熱安定剤、可塑
剤、滑剤、酸化防止剤、紫外線防止剤、帯電防止
剤、着色剤、充填剤等と併用することは何ら差支
えなく、むしろ、併用することによりそれらの添
加剤の機能をより助長発現させる場合が多い。
その他必要に応じて、例えば顔料、発泡剤、帯
電防止剤、防曇剤、プレードアウト防止剤、表面
処理剤、滑剤、難燃剤、蛍光剤、防黴菌、殺菌
剤、金属不活性剤、光劣化剤、非金属安定化剤、
硼酸エステル、チオ尿素誘導体、加工助剤、離型
剤、補強剤などを包含させることができる。
また、使用の際に、これらの周知の他の樹脂用
添加剤と本発明にかかる樹脂添加剤とを予め混合
して、いわゆるワンパツク型の樹脂添加剤として
使用することもできる。
本発明にかかる樹脂添加剤を用いて、ハロゲン
含有樹脂を調製する場合に使用する可塑剤として
はフタル酸エステル系可塑剤、ポリエステル系可
塑剤、燐酸エステル系可塑剤、エポキシ系可塑剤
その他の可塑剤をその用途に応じて適宜使用する
ことができる。
他方、オレフイン樹脂が酸化、熱、光、オゾ
ン、銅、マンガン等の重金属あるいは機械的疲労
等によつて生ずる劣化を防止するために、フエノ
ール系又は含硫黄化合物の酸化防止剤、ベンゾフ
エノン系、ベンゾトリアゾール系、サリシレート
系、置換アクリロニトリル系、トリアジン系、金
属キレート系等の紫外線吸収剤、オゾン劣化防止
剤、耐光安定剤などの劣化防止剤と本発明にかか
る樹脂添加剤を併用して使用すると、劣化防止剤
の本来の機能を助長して非常に優れた安定性を付
与することができる。
このような作用機構については明らかでない
が、樹脂添加剤が非晶質の微細粉末で非常に活性
があるために劣化防止剤を吸着保持することによ
つて、オレフイン樹脂の加熱成型時や製品樹脂の
使用時における酸化防止剤等の分解や揮発を防止
し、その本来の機能を持続させるものと思われ
る。また、樹脂表面へ酸化防止剤等がブリードす
るのを防ぐ作用もするが、これも前記と同様の理
由によるものと思われる。
次に、本発明にかかる樹脂組成物は押出成形、
キヤスチング、真空成形、低圧成形等の通常の成
形方法により、フイルム、シート、板状、ペレツ
ト状その他所望の成形体等に成形することができ
る。
これらの成形方法においては、まず樹脂と樹脂
添加剤及び可塑剤、安定剤、着色剤等の他の樹脂
用添加剤を配合してマスターバツチを形成し、さ
らに該マスターバツチを樹脂とブレンドして押出
すか、その他の熱配合によつて成形することによ
り、樹脂添加剤が均一に分散、分布した成形品を
得ることができる。本発明にかかる樹脂添加剤は
オレフイン樹脂等の合成樹脂と屈折率がほぼ一致
するので、該樹脂添加剤を配合したオレフイン樹
脂は透明性にすぐれ、また、その機能に基づく、
耐候性、保温性もあるところから、農業用塩化ビ
ニルフイルムに代つて無公害の農業用フイルムと
しての利用に好適である。
本発明にかかる樹脂添加剤が上記のように樹脂
に対して機能的な作用を行う詳細な機構は全く不
明であるが、合成ゼオライトのゲル状物の前駆体
からなる非晶質粉末であるためにその一次粒子は
極めて微細であり、ゼオライトのモレキユラーシ
ーブ性とは異なるカチオン交換性を有する化学物
理的に活性粉末であること、かつ弱塩基性である
ために樹脂に劣化を抑制するものと思われる。
[実施例]
以下、実施例を示し本発明をさらに具体的に説
明する。
実施例 1
Γ試料調製
珪酸ソーダ水溶液(Na2O:8.1重量%、SiO2:
6.6重量%)およびアルミン酸ソーダ水溶液
(Na2O:9.3重量%、Al2O3:5.6重量%)を反応
系のモル比(SiO2/Al2O3)が2.0となるように温
度60℃にて、混合反応させてゲル状の反応生成物
(非晶質ナトリウムアルミノシリケートでA型ゼ
オライト前駆体)を得た。
上記で得られたA型ゼオライト前駆体を用い
て、第1表に示す各種の試料を調製した。
[Industrial Application Field] The present invention relates to a resin additive, and more specifically, a resin additive comprising an amorphous metal-substituted aluminosilicate powder that is a cation exchanger of amorphous sodium aluminosilicate, which is a precursor of synthetic zeolite. It is related to. [Prior Art] Vinyl chloride resins and olefin resins have been used in many fields in the form of molded products, films, fibers, etc. by various molding or spinning methods because of their excellent physicochemical properties. has been done. As is well known, the molding process of vinyl chloride resin and olefin resin is usually carried out at temperatures above 200℃.
Furthermore, since they are subject to oxidation and deterioration over time due to heat and light during processing or use, they have drawbacks such as a decrease in mechanical properties due to a decrease in molecular weight, coloring, and generation of bad odors. Therefore, conventionally, vinyl chloride resins and olefin resins have rarely been used alone, and are usually mixed with various heat stabilizers, antioxidants, ultraviolet absorbers, and lubricant additives to provide resistance to heat and light. Contains it as an essential compounding agent. Although many inorganic compounds are known as such resin additives, crystalline powders of natural or synthetic zeolites are used in various synthetic resins. For example, it has been proposed that Na-A zeolites be used as heat stabilizers for halogen-containing resins. (Japanese Unexamined Patent Publication No. 54-34356) In addition, A-type zeolite, which is Na-A-type zeolite substituted with other metal cations, especially divalent metal cations such as Ca, Mg, Zn, and Pb, has a high heat resistance against halogen-containing resins. It is proposed to improve stability. (Unexamined Japanese Patent Publication No. 142043/1983, Unexamined Japanese Patent Publication No. 57-
28145) Furthermore, metal substitution A for polyolefin resin
It has been proposed that type zeolites provide anti-degradation effects. (Japanese Unexamined Patent Publication No. 57-67638) On the other hand, as the inorganic amorphous powder, silica powder is mainly used, and a small amount of metal silicate is also used. Recently, as an alumina-silica resin compounding agent,
It has been proposed that amorphous powder, which exhibits amorphous properties in X-ray diffraction, has anti-blocking properties for resins such as polyolefins. (Unexamined Japanese Patent Publication No. 58-213031) [Problems to be solved by the invention] However, deterioration inhibitors such as heat stabilizers, antioxidants, and ultraviolet absorbers are solely blended with vinyl chloride resins and olefin resins. In this case, the anti-deterioration agent has poor compatibility with the resin, so it tends to bleed onto the surface of the molded product and contaminate the product.In addition, the anti-deterioration agent tends to bleed onto the surface of the molded product, contaminating the product.In addition, since the anti-deterioration agent is often low-boiling, it easily evaporates during processing by heating the resin, causing deterioration. There are disadvantages in that not only the effect of adding the inhibitor cannot be fully exhibited, but also the working environment deteriorates due to the generation of foul odors. Moreover, since these additives are expensive, it is essential that they fully demonstrate their intended purpose. For this reason, the above-mentioned drawbacks can be improved by using a deterioration inhibitor and an inorganic crystalline powder such as a certain type of synthetic zeolite in combination with the vinyl chloride resin and olefin resin. The reason for this is that crystalline powders such as zeolite have molecular sieving properties based on their crystal structure, and
It is assumed that the effect of improving the resin, such as stabilization, is exerted by the action of substitutable metal ions and the like included in the crystal structure. Needless to say,
Zeolite is an aluminosilicate with a unique three-dimensional crystal structure, but strangely, no knowledge of amorphous aluminosilicate resins has been obtained so far. In other words, synthetic zeolite is obtained by heating and aging the precursor amorphous sodium aluminosilicate to crystallize it, but although amorphous aluminosilicate has the same chemical composition as zeolite, First, there was no research on it as a resin additive. In view of such conventional technology, the present inventors discovered that the crystal structure of synthetic zeolite such as A-type zeolite and the action based on the substitutable metal ions included in the crystal structure are completely different, and the action is based on the precursor. Based on the fact that certain gel-like amorphous substances also have cation-exchanging properties, similar to zeolites, their metal substitutes can also be used as functional resin additives in the same way as zeolites. I came up with this idea and did some intensive research. As a result, by blending amorphous aluminosilicate powder, which is obtained by cation-exchanging amorphous sodium aluminosilicate, which is a precursor of synthetic zeolite, into resin as a resin additive, or by using it in combination with anti-deterioration agents, etc. It was discovered that zeolite exhibits remarkable effects as a resin stabilizer, a catalyst neutralizer, an anti-blocking agent, an antibacterial agent, a filler, etc. that are equivalent to or better than conventional natural or synthetic zeolites, and the present invention was developed. completed. [Means for Solving the Problems] and [Operation] That is, the present invention is characterized by comprising an amorphous aluminosilicate powder obtained by cation exchange treatment of amorphous sodium aluminosilicate, which is a precursor of synthetic zeolite. This applies to resin additives. The present invention will be explained in detail below. The resin additive according to the present invention satisfies the following conditions: (a) it is amorphous sodium aluminosilicate, which is a precursor of synthetic zeolite, and (b) it is a product obtained by subjecting the precursor to cation exchange treatment. It is made of amorphous aluminosilicate powder. First, the amorphous sodium aluminosilicate that satisfies the requirement (a) consists of a gel-like substance that is a precursor of synthetic zeolite, and the method for producing synthetic zeolite is known, and therefore the method for producing the precursor is also known. Yes, there are no particular restrictions on the manufacturing history. For example, by reacting an aqueous sodium silicate solution and sodium aluminate at a predetermined ratio, an amorphous aluminosilicate gel is immediately generated. Another method involves reacting silica or silica-alumina raw materials with caustic to form a gel. In the present invention, the amorphous sodium aluminosilicate, that is, the precursor, when expressed as an oxide, has the following properties:
Preferably, it is represented by the following general formula (1.0±0.2) Na2O.Al2O3 . (0.8-5) SiO2 . (0-10) H2O . Among these, precursors of synthetic zeolites of type A, 0.10) SiO 2 ·(0-10)H 2 O is industrially most advantageous. The synthetic zeolite is obtained by crystallizing the above-mentioned amorphous gel through hydrothermal treatment under normal pressure or increased pressure.The precursor in the present invention refers to the starting material before this hydrothermal treatment. It refers to an amorphous gel-like product produced by the reaction of Next, an amorphous metal-substituted aluminosilicate that satisfies the requirement (b) is produced by subjecting the aforementioned precursor to a cation exchange treatment. The above-mentioned precursor has cation exchange ability like general natural or synthetic zeolite, and the resin additive according to the present invention is amorphous aluminium-substituted metal substituted by ion-exchanging the precursor slurry with an aqueous solution of metal ions. Say silicate. Metals to be replaced include alkaline earth metals such as Ca, Mg, and Ba, and other metals selected from divalent metals such as Zn, Pb, or Cu, and monovalent metals such as K, Li, and Ag. More than seeds can be given. The ion exchange treatment is carried out by sufficiently contacting and mixing the soluble salt aqueous solution of the metal to be ion-exchanged with the slurry of the precursor. Examples of soluble salts of metals include chlorides, nitrates, sulfates, and organic acid salts. In addition, this ion exchange is performed using metals such that the molar ratio of M 2 /nO/Na 2 O (where M is a substituent metal and n is a valence) is 0.4 or more, preferably a value in the range of 0.5 to 8. It is preferable to carry out the reaction so as to obtain a substituted aluminosilicate. The reason for this is that if it is less than 0.4, no functional effect as a resin additive can be expected. The upper limit is not particularly limited, but in many cases it is because metal substitution with a molar ratio of 8 or more is difficult to obtain industrially. After the metal substitution treatment, the substitute slurry (5g/
It is preferable to wash thoroughly with water so that the equilibrium pH (25°C) of 100ml) is 10.5 or less. As mentioned above, unlike zeolite, this substitute slurry is amorphous and extremely fine particles, so it needs to be thoroughly pulverized after drying. The average particle size in Stokes equivalent diameter based on sedimentation analysis using light transmission method is 3 μm or less, preferably 2.5 ~
It is preferable to adjust the particle size by deagglomeration by intensive shear dispersion so that the particle size falls within the range of 0.1 μm. In addition, in order to further improve the dispersibility of the amorphous metal-substituted aluminosilicate powder obtained in this way, a silane coupling agent,
The surface of the metal substituted product can be modified by appropriately using a surface treatment agent such as an organic silicon compound such as silicone oil, a metal soap, an acidic phosphoric acid ester or a metal salt thereof. The amorphous metal-substituted aluminosilicate powder of the present invention described above is useful as a resin additive for various resins. Various synthetic resins can be used as the resin that can be blended with the resin additive according to the present invention, and there are no particular limitations. For example, halogen-containing resins, α-olefin polymers such as polyethylene, polypropylene, polybutene, α-olefins such as ethylene-vinyl acetate copolymers, ethylene-propylene copolymers, ethylene-acrylate copolymers, etc., and other monomers. Examples include polyolefin resins, polyacetal resins, polyamide resins, silicone resins, and polyester resins that are copolymers with . Examples of the halogen-containing resin used in the present invention include the following. For example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride- Vinylidene chloride copolymer, vinyl chloride-styrene-
Maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-
Butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride- Vinyl chloride synthetic resins such as maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer, vinyl chloride-acrylonitrile copolymer, internally plasticized polyvinyl chloride, and these chlorinated vinyl resins and polyethylene, polypropylene, α-olefin polymers such as polybutene, poly-3-methylbutene, polyolefins such as ethylene-vinyl acetate copolymers, ethylene-propylene copolymers, and their copolymers, polystyrene, acrylic resins, styrene and other monomers (e.g. maleic anhydride, butadiene, acrylonitrile, etc.), acrylonitrile-butadiene-styrene copolymers,
Blend products with acrylic acid ester-butadiene-styrene copolymer and methacrylic acid ester-butadiene-styrene copolymer can be mentioned. The resin additive according to the present invention is a heat stabilizer for halogen-containing resin such as vinyl chloride resin, ethylene,
Stabilizers based on the neutralizing effect of catalysts contained in olefin resins such as propylene, anti-blocking agents for resin films (the above include Ca, Mg, Ba,
It can be used as a filler for Zn, Pb substituted products (particularly Ca is preferred), antibacterial agents (Cu substituted products), and various other synthetic resins. In the present invention, the amount of the resin additive used in the resin varies depending on the purpose of use, the type of resin, the physical properties of the additive, etc., but is 0.01 to 50 parts by weight, preferably 0.05 parts by weight, based on 100 parts by weight of the resin. -30 parts by weight is desirable; if it is less than 0.01 parts by weight, the effects are insufficient; if it exceeds 50 parts by weight, the effects of improving various properties tend to reach a plateau, making it uneconomical. Further, examples of the amount of resin additives suitable for improving various properties of the resin include 50 parts by weight or less as a filler, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the resin. For functional uses such as thermal stabilizers other than agents, stabilizers based on the neutralizing action of catalysts, anti-blocking agents, antibacterial agents, etc., the amount is in the range of 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight. is desirable. When using the resin additive according to the present invention, it may be used in combination with other resin additives such as heat stabilizers, plasticizers, lubricants, antioxidants, ultraviolet inhibitors, antistatic agents, colorants, fillers, etc. There is no problem in using these additives in combination, and in fact, in many cases, the functions of these additives are further promoted by using them together. Others as necessary, such as pigments, foaming agents, antistatic agents, antifogging agents, playout prevention agents, surface treatment agents, lubricants, flame retardants, fluorescent agents, antifungal agents, bactericidal agents, metal deactivators, photodeterioration agent, nonmetallic stabilizer,
Borate esters, thiourea derivatives, processing aids, mold release agents, reinforcing agents, and the like can be included. Further, when used, these other well-known resin additives and the resin additive according to the present invention can be mixed in advance and used as a so-called one-pack type resin additive. Plasticizers used when preparing halogen-containing resins using the resin additive according to the present invention include phthalate plasticizers, polyester plasticizers, phosphate plasticizers, epoxy plasticizers, and other plasticizers. The agent can be used as appropriate depending on the purpose. On the other hand, in order to prevent olefin resins from deteriorating due to oxidation, heat, light, ozone, heavy metals such as copper and manganese, or mechanical fatigue, antioxidants such as phenolic or sulfur-containing compounds, benzophenone, and benzophenone are used. When the resin additive according to the present invention is used in combination with anti-deterioration agents such as triazole-based, salicylate-based, substituted acrylonitrile-based, triazine-based, and metal chelate-based ultraviolet absorbers, ozone deterioration inhibitors, and light stabilizers, It can promote the original function of the anti-deterioration agent and impart excellent stability. Although the mechanism of action is not clear, the resin additive is an amorphous fine powder that is highly active, and by adsorbing and retaining the anti-deterioration agent, it is used during heat molding of olefin resins and product resins. It is thought that this prevents the decomposition and volatilization of antioxidants and the like during use, allowing them to maintain their original functions. It also acts to prevent antioxidants and the like from bleeding onto the resin surface, and this is probably due to the same reason as mentioned above. Next, the resin composition according to the present invention is extruded,
It can be formed into films, sheets, plates, pellets, and other desired molded products by ordinary forming methods such as casting, vacuum forming, and low-pressure forming. In these molding methods, first a masterbatch is formed by blending the resin with resin additives and other resin additives such as plasticizers, stabilizers, and colorants, and then the masterbatch is blended with the resin and extruded. By molding by , or other thermal compounding, a molded article in which the resin additive is uniformly dispersed and distributed can be obtained. Since the resin additive according to the present invention has a refractive index almost the same as that of a synthetic resin such as an olefin resin, the olefin resin blended with the resin additive has excellent transparency, and based on its function,
Due to its weather resistance and heat retention properties, it is suitable for use as a non-polluting agricultural film in place of agricultural vinyl chloride film. Although the detailed mechanism by which the resin additive according to the present invention has a functional effect on the resin as described above is completely unknown, it is because it is an amorphous powder made of a precursor of a gel-like substance of synthetic zeolite. Its primary particles are extremely fine, and it is a chemically and physically active powder with cation exchange properties that are different from the molecular sieving properties of zeolite, and it is weakly basic, so it suppresses the deterioration of resins. I think that the. [Examples] Hereinafter, the present invention will be explained in more detail by showing examples. Example 1 Γ sample preparation Sodium silicate aqueous solution (Na 2 O: 8.1% by weight, SiO 2 :
6.6% by weight) and an aqueous solution of sodium aluminate (Na 2 O: 9.3% by weight, Al 2 O 3 : 5.6% by weight) at a temperature of 60°C so that the molar ratio of the reaction system (SiO 2 /Al 2 O 3 ) was 2.0. A mixed reaction was carried out at 0.degree. C. to obtain a gel-like reaction product (amorphous sodium aluminosilicate and type A zeolite precursor). Using the type A zeolite precursor obtained above, various samples shown in Table 1 were prepared.
【表】
第1表に示した各試料のハロゲン含有樹脂用安
定剤としての性能を調べるために、塩化ビニル樹
脂(ゼオン103EP)100重量部に対して第2表に
示す配合割合(重量部、以下同じ)で各ゼオライ
ト試料と他の安定剤及び滑剤をそれぞれ添加した
塩化ビニル樹脂組成物を諸特性を下記の方法で測
定、評価してその結果を第2表に併せて示した。
(1) 静的熱安定性
各配合割合の塩化ビニル樹脂組成物を160℃
のテストロールで5分間混練したのち厚さ0.5
mmのシート状にとり出した。得られたシートを
2cm×5cmの矩型に切り取つて試験片とした。
試験片を200℃に保たれたギアオープン中に入
れ、熱着色の経時変化を観察し下記6段階の数
値で塩化ビニル樹脂組成物の熱劣化を評価し
た。
0.0 無着色
1.0 やや着色
2.0 淡黄色
3.0 黄色
4.0 褐色
5.0 黒色|
|
|
|
|
|
|
↓ 熱劣化大
尚、ギア・オーブン中20分までの着色を特に
耐初期着色性として別に評価した。着色の無い
ものを耐初期着色性良好とした。
(2) 動的熱安定性(ロング・ラン性)
各配合割合の塩化ビニル樹脂組成物を190℃
のテストロールで継続して60分間混練しその間
10分毎にシート状に取り出して着色の度合を上
記6段階で評価した。
(3) 耐ブルーミング性
上記試験片を70℃の温水に24時間浸漬したの
ち風乾し、試験片の表面への白色吐出状態を観
察して耐ブルーミング性を評価した。白化の程
度が少ないものを耐ブルーミング性良好と判定
した。[Table] In order to investigate the performance of each sample shown in Table 1 as a stabilizer for halogen-containing resins, the proportions shown in Table 2 (parts by weight, The various properties of the vinyl chloride resin compositions to which each zeolite sample and other stabilizers and lubricants were added (the same applies hereinafter) were measured and evaluated by the following methods, and the results are also shown in Table 2. (1) Static thermal stability The vinyl chloride resin composition of each blending ratio was heated to 160°C.
After kneading for 5 minutes with a test roll, the thickness was 0.5
It was taken out in the form of a mm sheet. The obtained sheet was cut into a rectangular shape of 2 cm x 5 cm to prepare a test piece.
The test piece was placed in a gear opener kept at 200°C, and the change in thermal coloring over time was observed, and the thermal deterioration of the vinyl chloride resin composition was evaluated using the following six numerical values. 0.0 Uncolored 1.0 Slightly colored 2.0 Light yellow 3.0 Yellow 4.0 Brown 5.0 Black | | | | | | ↓ Severe thermal deterioration In addition, the coloring in the gear oven for up to 20 minutes was evaluated separately as the initial coloring resistance. Those without coloring were considered to have good initial coloring resistance. (2) Dynamic thermal stability (long run property) The vinyl chloride resin composition of each blending ratio was heated to 190°C.
Knead continuously for 60 minutes using a test roll.
A sheet was taken out every 10 minutes and the degree of coloring was evaluated on the above 6 scales. (3) Blooming resistance The above test piece was immersed in hot water at 70°C for 24 hours, air-dried, and the blooming resistance was evaluated by observing the state of white discharge on the surface of the test piece. Those with a small degree of whitening were judged to have good blooming resistance.
【表】【table】
【表】
実施例 2
未安定化高密度ポリエチレン樹脂粉末(メルト
インデツクス0.9)100重量部に対して第3表に示
す配合割合(重量部)で、各ゼオライト試料、酸
化防止剤類及び滑性物質を添加したポリエチレン
樹脂組成物の諸特性を下記の方法で測定、評価し
てその結果を第3表に併せて示した。
(1) 耐熱安定性
各配合割合のポリエチレン樹脂組成物を前ロ
ール表面温度160℃、後ロール表面温度120℃に
調節したテストロールで5分間混練したのち厚
さ0.5mmのシート状にとり出した。得られたシ
ートを3cm×5cmの矩型に切り取つて試験片と
した。試験片を200℃に保たれたギア・オープ
ン中に入れ、熱着色の経時変化を観察し下記3
段階の数値でポリエチレン樹脂組成物の耐熱変
色性を評価した。
1.0 無色
2.0 微黄色
3.0 黄色|
|
|
|
↓ 熱変色性大
(2) 耐ブリーデイング
上記試験片を殺菌灯で24時間照射し、表面へ
の滲出度(ブリーデイング)を肉眼で観察して
下記3段階の数値で評価した。
1.0 ブリーデイングなし
2.0 わずかに認められる
3.0 ブリーデイングあり
(3) 耐ブルーミング
上記試験片を70℃の温水に24時間浸漬したの
ち風乾して表面への吐出度(ブルーミング)を
肉眼で観察して下記3段階の数値で評価した。
1.0 ブルーミングなし
2.0 わずかに認められる
3.0 ブルーミングあり[Table] Example 2 Each zeolite sample, antioxidants and lubricant were mixed at the proportions (parts by weight) shown in Table 3 for 100 parts by weight of unstabilized high-density polyethylene resin powder (melt index 0.9). Various properties of the polyethylene resin composition to which the substance was added were measured and evaluated by the following methods, and the results are also shown in Table 3. (1) Heat resistance stability Polyethylene resin compositions of various blending ratios were kneaded for 5 minutes using test rolls whose front roll surface temperature was adjusted to 160°C and rear roll surface temperature to 120°C, and then taken out in the form of a 0.5 mm thick sheet. The obtained sheet was cut into a rectangular shape of 3 cm x 5 cm to prepare a test piece. The test piece was placed in a gear open kept at 200℃, and the change in heat coloring over time was observed.
The heat discoloration resistance of the polyethylene resin composition was evaluated using numerical values in stages. 1.0 Colorless 2.0 Slight yellow 3.0 Yellow | | | ↓ High thermochromicity (2) Bleeding resistance The above test piece was irradiated with a germicidal lamp for 24 hours, and the degree of bleeding on the surface was observed with the naked eye. Evaluation was made on a three-level numerical scale. 1.0 No bleeding 2.0 Slightly observed 3.0 Bleeding (3) Blooming resistance The above test piece was immersed in hot water at 70℃ for 24 hours, air-dried, and the degree of discharge (blooming) on the surface was observed with the naked eye. Evaluation was made on a three-level numerical scale. 1.0 No blooming 2.0 Slight blooming 3.0 Blooming
【表】
注 ビスフエノールを配合した場合は、灰色に変色す
る。
[発明の効果]
本発明にかかる樹脂添加剤を配合した樹脂組成
物は各種の樹脂特性、例えば熱安定性、酸化防止
性、耐ブロツキング性等の改善をもたらすことが
できる。
すなわち、樹脂の熱や光による酸化劣化が防止
され、樹脂の変色、着色が著しく抑制され、また
酸化防止剤、その分解生成物等の樹脂表面への移
行(ブルーミング)を抑制することができる。
さらに、樹脂添加剤の添加によりフイルム状の
樹脂組成物の透明性を阻害することなく、むしろ
透明性を向上させる傾向にあり、またブロツキン
グ防止効果があることからも、特に農業用フイル
ム等に有用である。
特に劣化防止剤と併用すると、その機能を効率
よく発揮することから高価な劣化防止剤の添加量
を実質的に低減することができ、工業的に極めて
有利である。
また、本発明にかかる樹脂組成物はペレツト、
フイルム、シート、板等に容易に成形することが
できると共に織物、紙等の樹脂加工も容易に行う
ことができる。
したがつて、本発明にかかる樹脂添加剤は従来
広く使用されている結晶性の天然又は合成ゼオラ
イトの代りに使用することができることは勿論、
使用目的によつてはそれ以上の優れた効果を発揮
するものである。[Table] Note: If bisphenol is added, the color will turn gray.
[Effects of the Invention] A resin composition containing the resin additive according to the present invention can improve various resin properties, such as thermal stability, antioxidant properties, and anti-blocking properties. That is, oxidative deterioration of the resin due to heat and light is prevented, discoloration and discoloration of the resin are significantly suppressed, and migration of antioxidants, decomposition products thereof, etc. to the resin surface (blooming) can be suppressed. Furthermore, the addition of resin additives does not impede the transparency of film-like resin compositions, but rather tends to improve them, and has an anti-blocking effect, making them particularly useful for agricultural films, etc. It is. In particular, when used in combination with a deterioration inhibitor, the function is efficiently exhibited, and the amount of the expensive deterioration inhibitor added can be substantially reduced, which is extremely advantageous industrially. Further, the resin composition according to the present invention can be made of pellets,
It can be easily formed into films, sheets, plates, etc., and can also be easily processed with resin into textiles, paper, etc. Therefore, the resin additive according to the present invention can of course be used in place of conventionally widely used crystalline natural or synthetic zeolites.
Depending on the purpose of use, it can exhibit even more excellent effects.
Claims (1)
ウムアルミノシリケートをカチオン交換処理した
非晶質金属置換アルミノシリケート粉末からなる
ことを特徴とする樹脂添加剤。 2 非晶質ナトリウムアルミノシリケートは、酸
化物で表わしたとき、一般式 (1.0±0.2)Na2O・Al2O3・ (0.8〜5)SiO2・(0〜10)H2O で表わされる特許請求の範囲第1項記載の樹脂添
加剤。 3 非晶質ナトリウムアルミノシリケートはNa
−A型ゼオライトの前駆体である特許請求の範囲
第1項又は第2項記載の樹脂添加剤。 4 非晶質ナトリウムアルミノシリケートはCa,
Mg,Ba,Zn,Pb又はCuから選ばれた1種又は
2種以上の金属イオンの置換体である特許請求の
範囲第1項乃至第3項のいずれかの項記載の樹脂
添加剤。[Scope of Claims] 1. A resin additive comprising an amorphous metal-substituted aluminosilicate powder obtained by subjecting amorphous sodium aluminosilicate, which is a precursor of synthetic zeolite, to cation exchange treatment. 2 Amorphous sodium aluminosilicate, when expressed as an oxide, is expressed by the general formula ( 1.0 ±0.2) Na2O・Al2O3・(0.8~5) SiO2・(0~10) H2O The resin additive according to claim 1. 3 Amorphous sodium aluminosilicate is Na
-The resin additive according to claim 1 or 2, which is a precursor of type A zeolite. 4 Amorphous sodium aluminosilicate contains Ca,
The resin additive according to any one of claims 1 to 3, which is a substituted product of one or more metal ions selected from Mg, Ba, Zn, Pb, or Cu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22367885A JPS6284132A (en) | 1985-10-09 | 1985-10-09 | Resin additive and resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22367885A JPS6284132A (en) | 1985-10-09 | 1985-10-09 | Resin additive and resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6284132A JPS6284132A (en) | 1987-04-17 |
JPH041778B2 true JPH041778B2 (en) | 1992-01-14 |
Family
ID=16801932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22367885A Granted JPS6284132A (en) | 1985-10-09 | 1985-10-09 | Resin additive and resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6284132A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2578264Y2 (en) * | 1988-06-03 | 1998-08-06 | 中国パール販売 株式会社 | Aseptic stretch film |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6032836A (en) * | 1983-08-04 | 1985-02-20 | Nippon Chem Ind Co Ltd:The | Antiblocking agent |
-
1985
- 1985-10-09 JP JP22367885A patent/JPS6284132A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6032836A (en) * | 1983-08-04 | 1985-02-20 | Nippon Chem Ind Co Ltd:The | Antiblocking agent |
Also Published As
Publication number | Publication date |
---|---|
JPS6284132A (en) | 1987-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030008956A1 (en) | Novel highly versatile thermoplastic nucleators | |
JP4785134B2 (en) | Acid acceptor with improved electrical insulation, composition containing the same and molded article thereof | |
US5133899A (en) | Stabilizer composition for chlorine-containing polymers and process for preparation thereof | |
DE69509951T2 (en) | Complex lithium aluminum hydroxide salt, mixture additive for resin and resin compositions | |
JPH04288353A (en) | Amorphous silica filler | |
JPS6116735B2 (en) | ||
JPS58213031A (en) | Alumina/silica compounding ingredient for resin | |
JPS5818939B2 (en) | Method for thermal stabilization of chlorine-containing polymers | |
JPH041778B2 (en) | ||
US3894985A (en) | Non-coloring diatomite-filled polyolefins | |
JPS6270432A (en) | Resin composition | |
EP0085968B1 (en) | Nucleating agent for crystalline olefinic polymers | |
JP4351026B2 (en) | Stabilizer composition for chlorine-containing resin and chlorine-containing resin composition | |
JPS61113630A (en) | Production of stabilizer for chlorine-containing polymer | |
JP2763921B2 (en) | Flame retardant composition for chlorine-containing polymer with excellent dynamic thermal stability | |
JP3458622B2 (en) | Crystalline polyolefin composition | |
JP7382331B2 (en) | Antacid for polymers | |
JP2621431B2 (en) | Surfactant-containing resin composition with excellent thermal stability | |
JP4015250B2 (en) | Compounding agent for chlorine-containing polymer and resin composition containing the compounding agent | |
JP4610110B2 (en) | Zinc borate and its uses | |
JPH11323048A (en) | Chlorine-containing polymer composition | |
JP2911404B2 (en) | Heat insulating agent and heat insulating resin composition | |
KR19990063163A (en) | Film having a resin composition and layers made thereof | |
JPS59152941A (en) | Halogen-containing resin composition | |
JPH0312576B2 (en) |