JPH04177410A - Automatic tracking device for mobile object - Google Patents

Automatic tracking device for mobile object

Info

Publication number
JPH04177410A
JPH04177410A JP2303348A JP30334890A JPH04177410A JP H04177410 A JPH04177410 A JP H04177410A JP 2303348 A JP2303348 A JP 2303348A JP 30334890 A JP30334890 A JP 30334890A JP H04177410 A JPH04177410 A JP H04177410A
Authority
JP
Japan
Prior art keywords
elevation
turning
signal
acceleration
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2303348A
Other languages
Japanese (ja)
Inventor
Tatsuya Endo
遠藤 辰也
Katsutoshi Yamaji
山地 克俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2303348A priority Critical patent/JPH04177410A/en
Publication of JPH04177410A publication Critical patent/JPH04177410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To detect an accurate direction of an optical axis of an image pickup device and to automatically track a mobile object by providing a turning angle acceleration sensor and an elevation angle acceleration sensor at the places near the turning axis of the image pickup device. CONSTITUTION:An image pickup device 1 using an ITV camera, etc., is set on a drive stage 2 in a controllable way for turning and the angle of elevation. An image processor 5 inputs the image signal 3 outputted from the device 1 and outputs a geometric centroid 9 of a mobile object. The centroid 9 is processed by a position arithmetic unit 6 and a measurement value output signal. 8 is outputted. A drive stage controller 7 outputs a drive stage control signal 4 in order to catch the mobile object at the center position of an image of the device 1 based on the coordinates of the centroid 9. The angle acceleration sensor units 38-1-and 38-2 are attached at the places near a turning axis and an elevation angle axis of the device 1 respectively. A direction changed variable computing element 40 generates the image pickup direction of the device 1 and outputs it to the processor 5.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、移動物体をTV右カメラの撮像装置によっ
て撮像し、画像処理により移動物体の位置を求めこれを
繰り返すことで、連続的に移動物体を追尾する移動物体
の自動追尾装置に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention captures an image of a moving object with the imaging device of the TV right camera, determines the position of the moving object through image processing, and repeats this process, thereby continuously moving the object. The present invention relates to an automatic tracking device for a moving object that tracks an object.

[従来の技術] この発明は出願人が先に出願した特願昭61−2119
20号、特願昭63−277162号に関するものであ
る。これらの出願では移動物体の追尾のパラメータとな
る撮像装置の撮像方位を構成する俯仰角、回転角等を駆
動台の回転軸、俯仰軸等の変移をパルスジェネレータ、
アブソリュートエンコーダ、シンクロトランスミッタ等
の固定軸に対する回転軸の角度検出機構により直接検出
する方式を取っていた。
[Prior Art] This invention is based on the patent application No. 61-2119 previously filed by the applicant.
No. 20 and Japanese Patent Application No. 63-277162. In these applications, the elevation angle, rotation angle, etc. that constitute the imaging direction of the imaging device, which is a parameter for tracking a moving object, are determined by a pulse generator, the rotation axis of the drive base, the displacement of the elevation axis, etc.
A method of directly detecting the angle of a rotating axis relative to a fixed axis, such as an absolute encoder or synchro transmitter, was used.

[発明が解決しようとする問題点コ このため、駆動台の回転軸回りの剛性が低いと、検出方
位とカメラ光軸方位との間にズレが生じ、正確な検出が
出来ない場合があった。また、駆動台が移動台車等に設
置されて運用される場合には、前述の検出方法ではカメ
ラ光軸方位が原理的に検出出来ないことになる。そこで
この発明では、これらの問題を解決して、駆動台の回転
軸回りの剛性が充分高く無い場合や、駆動台が移動台車
等のような移動体上で利用される場合でも、正確に撮像
装置の光軸方位を検出出来得る移動物体の自動追尾装置
を提供することを目的とする。
[Problems to be solved by the invention] For this reason, if the rigidity of the drive base around the rotation axis is low, a misalignment will occur between the detection direction and the camera optical axis direction, and accurate detection may not be possible. . Further, when the driving platform is installed and operated on a mobile cart or the like, the camera optical axis direction cannot be detected in principle using the above-mentioned detection method. Therefore, in this invention, we have solved these problems and can accurately capture images even when the rigidity of the drive base around the rotation axis is not high enough or when the drive base is used on a moving body such as a mobile trolley. An object of the present invention is to provide an automatic tracking device for a moving object that can detect the optical axis direction of the device.

[問題点を解決する為の手段] この発明による移動物体の自動追尾装置によれば、移動
物体を撮像して映像信号を出力する撮像装置と、当該撮
像装置からの撮像信号を処理して前記移動物体の自動追
尾を制御する制御信号を発生する制御装置と、前記撮像
装置を支承して前記制御装置からの制御信号に基づいて
撮像装置の撮像方向を制御する駆動台と、からなる移動
物体の自動追尾装置において、撮像装置の旋回軸近傍に
旋回角加速度を検出する旋回角加速度センサと、撮像装
置の俯仰軸近傍に俯仰角加速度を検出する俯仰角加速度
センサとをそれぞれ設け、旋回角加速度と俯仰角加速度
及び撮像信号を入力するとともに当該撮像信号に同期し
て前記旋回角加速度と俯仰角加速度を積分して俯仰方位
変移量と旋回方位変移量を生成し前記制御装置に出力す
る方位変化量演算器を設けた点に特徴を有するものであ
る。
[Means for Solving the Problems] According to the automatic tracking device for a moving object according to the present invention, there is provided an imaging device that images a moving object and outputs a video signal, and an imaging device that processes the imaging signal from the imaging device to output the video signal. A moving object comprising: a control device that generates a control signal to control automatic tracking of the moving object; and a drive base that supports the imaging device and controls the imaging direction of the imaging device based on the control signal from the control device. In this automatic tracking device, a turning angular acceleration sensor for detecting turning angular acceleration is provided near the turning axis of the imaging device, and an elevation angle acceleration sensor for detecting elevation angular acceleration is provided near the elevation axis of the imaging device, and the turning angular acceleration and an elevation angle acceleration and an imaging signal, and in synchronization with the imaging signal, integrate the turning angular acceleration and elevation angle acceleration to generate an elevation azimuth displacement amount and a turning azimuth displacement amount, and output them to the control device. The feature is that a quantity calculator is provided.

[実施例] 以下、この発明を図示する実施例に基づいて説明する。[Example] The present invention will be described below based on illustrated embodiments.

第1図にこの発明の実施例の構成側図を示した。FIG. 1 shows a side view of the configuration of an embodiment of the present invention.

この第1図の構成中において、ITVカメラ等が用いら
れる撮像装置1、この撮像装置1を旋回及び俯仰制御自
在に支承する駆動台2、撮像装置1から出力される画像
信号3を入力して処理し移動物体の幾何学重心9を出力
する画像処理装置5、この幾何学重心9を処理して計測
値出力信号8を出力する位置演算装置6、さらにこの位
置演算装置6からの幾何学重心座標に基づいて撮像装置
の画像中心で移動物体を補足するよう駆動台2に駆動台
制御信号4を出力する駆動台制御装置7は、これまでに
出願人が開示した特願昭61−211920号、特願昭
63−277162号と同等の構成であり、その詳細な
説明は省略する。さらに、この発明の構成においては撮
像装置1の旋回軸と俯仰軸の近傍にそれぞれ角加速度セ
ンサユニット38−1.38−2が取付けられている。
In the configuration shown in FIG. 1, an imaging device 1 in which an ITV camera or the like is used, a drive stand 2 that supports the imaging device 1 in a manner that allows rotation and elevation control, and an image signal 3 output from the imaging device 1 are input. An image processing device 5 that processes and outputs a geometric center of gravity 9 of a moving object; a position calculation device 6 that processes this geometric center of gravity 9 and outputs a measurement value output signal 8; and a geometric center of gravity from this position calculation device 6. A driving table control device 7 that outputs a driving table control signal 4 to a driving table 2 so as to capture a moving object at the center of an image of an imaging device based on coordinates is disclosed in Japanese Patent Application No. 61-211920 previously disclosed by the applicant. , has the same structure as that of Japanese Patent Application No. 63-277162, and detailed explanation thereof will be omitted. Furthermore, in the configuration of the present invention, angular acceleration sensor units 38-1 and 38-2 are attached near the rotation axis and the elevation axis of the imaging device 1, respectively.

また、これらの角加速度センサユニット38−1.38
−2の出力39−1.39−2及び画像信号3を入力し
て撮像装置1の撮像方位10を生成し、その撮像方位を
画像処理装置に出力する方位変化量演算器40が新たに
設けられている。
In addition, these angular acceleration sensor units 38-1.38
-2 output 39-1.39-2 and the image signal 3 are input to generate the imaging orientation 10 of the imaging device 1, and an orientation change amount calculation unit 40 is newly provided which outputs the imaging orientation to the image processing device. It is being

第2図に、旋回軸の近傍に取付けられた旋回角の角加速
度センサユニット38−1の詳細な構成図を示したが、
この角加速度センサユニット38−1は旋回軸に関して
相互に1の距離を取って点対象となる様に一組の加速度
センサ41A141Bが配置されている。この為、角加
速度センサユニット38−1の検出出力としては、それ
ぞれ一組の加速度センサ信号aAsaBが方位変化量演
算器40に出力される。俯仰中心軸の近傍に取付けられ
る俯仰計測用の角加速度センサユニッ)38−2も同様
な構成であり、一組の加速度センサ41.41Bから、
同様に加速度センサ化A 号a4.aBiが出力されるもので図示を省略する。
FIG. 2 shows a detailed configuration diagram of the turning angle angular acceleration sensor unit 38-1 installed near the turning axis.
In this angular acceleration sensor unit 38-1, a set of acceleration sensors 41A141B are arranged so as to be symmetrical with each other at a distance of 1 with respect to the rotation axis. Therefore, each set of acceleration sensor signals aAsaB is output to the azimuth change amount calculator 40 as the detection output of the angular acceleration sensor unit 38-1. The angular acceleration sensor unit 38-2 for measuring elevation and elevation, which is installed near the elevation center axis, has a similar configuration, and from a set of acceleration sensors 41.41B,
Similarly, acceleration sensor A No. a4. Since aBi is output, illustration thereof is omitted.

次に、第3図に基づいて方位変化量演算器40の構成に
ついて説明する。この方位変化量演算器40は、図示し
たブロック構成からも明らかな様に、旋回中心軸回りの
角加速度センサユニット38−1の検出信号aASaB
を入力して最終的に旋回方位変移量Δθ を出力するブ
ロック中の上半分側の系と、俯仰中心軸回りの角加速度
センサユニット38−2の検出信号a^、aBを入力し
て最終的に旋回方位遷移量Δθ を生成する下側半分の
系とから構成されるが、双方の構成は同じなので旋回方
位遷移量Δθ を出力するブロックについてその構成と
動作について説明する。この方位変化量演算器40の入
力段にはストレインゲージアンプ47.48が設けられ
ており、ライン39−1を介して角加速度センサユニッ
ト38−1の検出信号aASaBを入力してそれぞれ信
号処理に適切な値まで増幅して出力“aA″、“aB”
をライン43.44を介して加速度・角変換器45に入
力する。
Next, the configuration of the azimuth change amount calculator 40 will be explained based on FIG. As is clear from the illustrated block configuration, this azimuth change amount calculator 40 uses the detection signal aASaB of the angular acceleration sensor unit 38-1 around the turning center axis.
is input, and the upper half system in the block that finally outputs the amount of turning azimuth displacement Δθ is input, and the detection signals a^ and aB of the angular acceleration sensor unit 38-2 around the elevation center axis are input, and the final result is and a lower half system that generates the turning azimuth transition amount Δθ, but since the configurations of both are the same, the configuration and operation of the block that outputs the turning azimuth transition amount Δθ will be explained. Strain gauge amplifiers 47 and 48 are provided at the input stage of this azimuth change amount calculator 40, and the detection signal aASaB of the angular acceleration sensor unit 38-1 is inputted through the line 39-1 and processed for signal processing. Amplify to appropriate value and output “aA”, “aB”
is input to the acceleration/angle converter 45 via lines 43 and 44.

この加速度・角変換器45は前記旋回中心軸に関する点
対象の距離パラメーターを入力して、の演算を行って、
旋回中心軸の軸回りの回転角速度以外の重力等の加速度
を除外して当該軸回りの回転角速度のみを取り出すよう
構成されたものである。
This acceleration/angle converter 45 inputs the point-symmetric distance parameter regarding the turning center axis, and performs the calculation of
It is configured to exclude accelerations such as gravity other than the rotational angular velocity around the central axis of rotation and extract only the rotational angular velocity around the axis.

この加速度・角変換器45で生成された角速度θは2段
に直列接続された積分器49.50によって積分されて
θに生成される。この2段に直列接続された積分器49
.50の出力端には、画像信号3を受けるアナログラッ
チ回路46が設けられており、当該画像信号3より抽出
される水平同期信号の水平同期期間だけ前記出力θをラ
ッチした後旋回方位変移量Δθ を出力する。このアナ
ログラッチ回路46は、このラッチ動作とともに前記2
段に直列接続された積分器49.50のそれぞれにリセ
ット信号を送り、次の撮像フレームの追尾対象物体の走
査時のθ積分の為のリセットを行う。
The angular velocity θ generated by this acceleration/angle converter 45 is integrated by integrators 49 and 50 connected in series in two stages to generate θ. An integrator 49 connected in series with these two stages
.. An analog latch circuit 46 that receives the image signal 3 is provided at the output end of the image signal 3, and after latching the output θ for the horizontal synchronization period of the horizontal synchronization signal extracted from the image signal 3, the turning azimuth displacement amount Δθ Output. This analog latch circuit 46 performs the above-mentioned two operations together with this latch operation.
A reset signal is sent to each of the integrators 49 and 50 connected in series in the stage to perform reset for θ integration when scanning the object to be tracked in the next imaging frame.

この加速度・角速度変換器45の図中下側半分のブロッ
クにおいても上記と同様に俯仰中心軸回りの角加速度セ
ンサユニット38−2の検出信号弓、a iを入力して
最終的に俯仰方位遷移量Δθ が生成される。
Similarly to the above, in the lower half block of the acceleration/angular velocity converter 45 in the figure, the detection signal ai of the angular acceleration sensor unit 38-2 around the central axis of elevation is input, and the elevation/elevation direction is finally changed. A quantity Δθ is generated.

以上の様に、撮像装置1で追尾対象の移動物体を撮像画
面の中心で捉えるべく駆動台が旋回、俯仰すると、角加
速度センサユニット38−1.2の加速度センサ41.
41Bが加速度を検出し^ で加速度信号aA ’ aB Sa 1 、 B Eを
出力する。
As described above, when the driving base rotates and rises in order to capture a moving object to be tracked at the center of the imaging screen by the imaging device 1, the acceleration sensor 41 of the angular acceleration sensor unit 38-1.2.
41B detects acceleration and outputs acceleration signals aA' aB Sa 1 and BE.

方位変化量演算器40ではストレインアンプ47.48
.47′、48−により適切な電圧値まで加速度信号a
AN aB s aA% aBを増幅した後に、加速度
・角速度変換器45により加速度から角速度に変換する
。こうして得られた角速度θはリセット信号でリセット
される2段の積分器49.50でθからθ、さらにθに
変換され、アナログラッチ回路46で水平同期期間ラッ
チされた後に旋回方位変移量Δθ 及び、俯仰方位遷移
量Δθ。
The strain amplifier 47.48 in the direction change amount calculator 40
.. Acceleration signal a to an appropriate voltage value by 47', 48-
AN aB s aA% After aB is amplified, the acceleration/angular velocity converter 45 converts the acceleration into angular velocity. The angular velocity θ obtained in this way is converted from θ to θ and further to θ by a two-stage integrator 49.50 which is reset by a reset signal, and is latched by an analog latch circuit 46 for a horizontal synchronization period, after which the turning azimuth displacement amount Δθ and , the elevational direction transition amount Δθ.

が生成される。is generated.

この様に撮像袋a1での水平同期信号に同期した各映像
のスキャン毎に角速度dからθを積分して抽出すること
を繰り返して行い、方位変化量10(旋回方位変移量Δ
θ 及び、俯仰方位遷移量Δθ )が連続的に求められ
る。こうして得られる方位変化量10を画像処理装置5
に供給して幾何学重心9を的確に求めることができる。
In this way, integrating and extracting θ from the angular velocity d is repeated for each image scan synchronized with the horizontal synchronization signal in the imaging bag a1, and the azimuth change amount 10 (turning azimuth displacement amount Δ
θ and the elevation/direction transition amount Δθ) are continuously determined. The amount of azimuth change 10 obtained in this way is transferred to the image processing device 5.
The geometric center of gravity 9 can be determined accurately by supplying

この発明は撮像方位10を生成することに要旨があるの
で、画像処理装置5及び位置演算装置6の構成について
は特に詳述しないが、本出願人により先に出願された特
願昭61−211920号、又は特願昭63−2771
62号等の構成が利用出来ることは言うまでもない。ま
た、この実施例では触れなかったが、加速度・角速度変
換器45の出力である角速度θを駆動台制御装置7に出
力するように構成すれば、駆動台2の角速度をより高精
度に制御することが可能となり加速度外乱に対する駆動
台2の制御性能が向上し、安定なぶれの少ない画像信号
が得られ、システム全体の自動追尾性能の向上を図るこ
とも出来る。
Since the gist of this invention is to generate the imaging orientation 10, the configurations of the image processing device 5 and the position calculation device 6 will not be described in detail. No. 63-2771
It goes without saying that configurations such as No. 62 can be used. Although not mentioned in this embodiment, if the angular velocity θ, which is the output of the acceleration/angular velocity converter 45, is configured to be output to the drive base control device 7, the angular velocity of the drive base 2 can be controlled with higher precision. This makes it possible to improve the control performance of the drive base 2 against acceleration disturbances, obtain a stable image signal with less blurring, and improve the automatic tracking performance of the entire system.

[発明の効果コ この発明により移動物体の自動追尾装置の実施例は以上
の通りであり、次に述べる効果を挙げることが出来る。
[Effects of the Invention] The embodiments of the automatic tracking device for moving objects according to the present invention are as described above, and the following effects can be achieved.

撮像装置を支承する駆動台の剛性が低い場合や、撮像装
置が移動体の上に設置される場合でも正確に撮像方位の
変化量が算出出来る。
Even when the rigidity of the drive base that supports the imaging device is low, or when the imaging device is installed on a moving body, the amount of change in the imaging orientation can be calculated accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の構成を示すブロック図、第
2図は角速度センサユニットの構成を示す拡大図、第3
図は方位変化量演算器の詳細ブロック構成図である。 1・・・撮像装置、2・・・駆動台、3・・・画像信号
、4・・・駆動台制御信号、5・・・画像処理装置、6
・・・位置演算装置、7・・・駆動台制御装置、8・・
・計測値出力信号、9・・・幾何学重心、10・・・撮
像方位、38−1.38−2・・・角速度センサユニッ
ト、39・・・加速度センサ信号、40・・・方位変化
量演算器、41.41B・・・加速度センサ、43.4
4・・・加速度センサ増幅信号、45・・・加速度・角
速度変換器、46・・・アナログラッチ回路、47.4
8・・・ストレインゲージアンプ、49.50・・・積
分器。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is an enlarged view showing the configuration of the angular velocity sensor unit, and FIG.
The figure is a detailed block diagram of the azimuth change amount calculator. DESCRIPTION OF SYMBOLS 1... Imaging device, 2... Drive stand, 3... Image signal, 4... Drive stand control signal, 5... Image processing device, 6
...Position calculation device, 7...Drive platform control device, 8...
・Measurement value output signal, 9...Geometric center of gravity, 10...Imaging direction, 38-1.38-2...Angular velocity sensor unit, 39...Acceleration sensor signal, 40...Amount of change in direction Arithmetic unit, 41.41B... Acceleration sensor, 43.4
4... Acceleration sensor amplified signal, 45... Acceleration/angular velocity converter, 46... Analog latch circuit, 47.4
8... Strain gauge amplifier, 49.50... Integrator.

Claims (2)

【特許請求の範囲】[Claims] (1)移動物体を撮像して映像信号を出力する撮像装置
と、当該撮像装置からの撮像信号を処理して前記移動物
体の自動追尾を制御する制御信号を発生する制御装置と
、前記撮像装置を支承して前記制御装置からの制御信号
に基づいて撮像装置の撮像方向を制御する駆動台と、か
らなる移動物体の自動追尾装置において、 前記撮像装置の旋回軸近傍に設けられて当該撮像装置の
旋回角加速度を検出する旋回角加速度センサと、前記撮
像装置の俯仰軸近傍に設けられて当該撮像装置の俯仰角
加速度を検出する俯仰角加速度センサと、前記旋回角加
速度と俯仰角加速度及び撮像信号を入力するとともに当
該撮像信号に同期して前記旋回角加速度と俯仰角加速度
を積分して俯仰方位変移量と旋回方位変移量を生成して
前記制御装置に出力する方位変化量演算器を備えたこと
を特徴とする移動物体の自動追尾装置。
(1) An imaging device that images a moving object and outputs a video signal, a control device that processes the imaging signal from the imaging device and generates a control signal to control automatic tracking of the moving object, and the imaging device an automatic tracking device for a moving object, comprising: a drive base that supports a drive base and controls the imaging direction of the imaging device based on a control signal from the control device; a turning angular acceleration sensor that detects the turning angular acceleration of the imaging device; an elevation angle acceleration sensor that is provided near the elevation axis of the imaging device and detects the elevation angular acceleration of the imaging device; and the turning angular acceleration and the elevation angular acceleration and imaging. an azimuth change amount calculator that receives a signal and integrates the turning angular acceleration and the elevation angle acceleration in synchronization with the imaging signal to generate an elevation azimuth displacement amount and a turning azimuth displacement amount and outputs the same to the control device. An automatic tracking device for moving objects characterized by:
(2)第1請求項において、前記旋回角加速度センサ及
び前記俯仰角加速度センサは各々前記撮像装置の旋回中
心軸及び俯仰中心軸に関して点対象となるように配置さ
れてそれぞれが2つの加速度信号を出力する一組づつの
加速度センサで構成され、前記方位変化量演算器は前記
一組づつの加速度センサから出力された2つづつの加速
度信号を処理して旋回中心軸及び俯仰中心軸回りの回転
角速度を取り出す加速度・角速度変換器と、当該回転角
速度を積分する直列接続された二つの積分器と、この積
分器出力を入力すると共に前記撮像信号から抽出される
水平同期信号の水平同期期間前記積分器出力をラッチし
て旋回変移量及び俯仰変移量を出力し、かつ前記水平同
期期間に同期させて前記二つの積分器にリセット信号を
出力するアナログラッチ回路とを備えていることを特徴
とする移動物体の自動追尾装置。
(2) In the first aspect, the turning angle acceleration sensor and the elevation angle acceleration sensor are arranged point-symmetrically with respect to the turning center axis and the elevation center axis of the imaging device, respectively, and each outputs two acceleration signals. The azimuth change calculation unit processes two acceleration signals output from each set of acceleration sensors to calculate the rotational angular velocity around the rotation center axis and the elevation center axis. an acceleration/angular velocity converter for extracting the rotational angular velocity, two integrators connected in series for integrating the rotational angular velocity, and a horizontal synchronization period of the horizontal synchronization signal extracted from the imaging signal to which the output of the integrator is inputted to the integrator. An analog latch circuit that latches an output and outputs a turning displacement amount and an elevation displacement amount, and outputs a reset signal to the two integrators in synchronization with the horizontal synchronization period. Automatic object tracking device.
JP2303348A 1990-11-08 1990-11-08 Automatic tracking device for mobile object Pending JPH04177410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303348A JPH04177410A (en) 1990-11-08 1990-11-08 Automatic tracking device for mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303348A JPH04177410A (en) 1990-11-08 1990-11-08 Automatic tracking device for mobile object

Publications (1)

Publication Number Publication Date
JPH04177410A true JPH04177410A (en) 1992-06-24

Family

ID=17919895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303348A Pending JPH04177410A (en) 1990-11-08 1990-11-08 Automatic tracking device for mobile object

Country Status (1)

Country Link
JP (1) JPH04177410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413267B1 (en) * 2001-11-14 2004-01-03 에스케이텔레텍주식회사 Mobile Communication Device including Camera-direction Automatic Control Apparatus using Recognition of Specific Part of Face
CN104524731A (en) * 2015-01-14 2015-04-22 南京国业科技有限公司 Multi-information fusion intelligent water monitor extinguishing system based on electric-optic turret

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413267B1 (en) * 2001-11-14 2004-01-03 에스케이텔레텍주식회사 Mobile Communication Device including Camera-direction Automatic Control Apparatus using Recognition of Specific Part of Face
CN104524731A (en) * 2015-01-14 2015-04-22 南京国业科技有限公司 Multi-information fusion intelligent water monitor extinguishing system based on electric-optic turret

Similar Documents

Publication Publication Date Title
US7633526B2 (en) Camera systems with vibration compensation and methods thereof
KR20090009172A (en) Method and apparatus for measuring position of the mobile robot
CN107756423A (en) Robot controller
JPH0328714A (en) Measuring and control system for sensor scanning
US20060138988A1 (en) Method and device for accurately detecting attitude of movable body
CN115903923A (en) Photoelectric turntable servo control system
JPH04177410A (en) Automatic tracking device for mobile object
CN210710213U (en) Device for detecting inclination angle of elevator car based on six-axis acceleration sensor
KR100237151B1 (en) Suspended load swing displacement detector
JPH06347365A (en) Three-dimensional locus measurement type ship testing equipment
JPH01133183A (en) Moving body position detector
JPH05272965A (en) Method and apparatus for displaying moving body posture angle
CN115325990B (en) Rotary beam angle monitoring system capable of eliminating eccentric influence
JP3073364B2 (en) Structure swing sensor
JPH103467A (en) Picture processor
JP2788039B2 (en) Automatic tracking device for moving objects
JP2006138804A (en) Method and apparatus for detecting speed of mobile object
JP2906516B2 (en) Moving object position detection device
KR100307694B1 (en) Apparatus for controlling a swing of an inverted pendulum using a hall sensor
JP2797318B2 (en) Unmanned vehicle speed position detection device
JPS6367087A (en) Automatic tracker for mobile object
JP3018208B2 (en) Method for detecting the position of a measurement target in an absolute type position detecting device
JPH0526674A (en) Space stabilizer
JPH0717987Y2 (en) Sighting device
CN117775077A (en) Whole-vehicle scanning method and system based on train rim intersection detection