JPH0417705A - Valve actuating device of multi-cylinder engine - Google Patents

Valve actuating device of multi-cylinder engine

Info

Publication number
JPH0417705A
JPH0417705A JP11604990A JP11604990A JPH0417705A JP H0417705 A JPH0417705 A JP H0417705A JP 11604990 A JP11604990 A JP 11604990A JP 11604990 A JP11604990 A JP 11604990A JP H0417705 A JPH0417705 A JP H0417705A
Authority
JP
Japan
Prior art keywords
cam
valve
oil
engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11604990A
Other languages
Japanese (ja)
Inventor
Shigeru Kamegaya
亀ヶ谷 茂
Hiroshi Komatsu
宏 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11604990A priority Critical patent/JPH0417705A/en
Publication of JPH0417705A publication Critical patent/JPH0417705A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2270/00Controlling
    • F16N2270/20Amount of lubricant
    • F16N2270/22Amount of lubricant with restrictions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To ease the engine torque fluctuation along with cam switching actuation by providing orifice means for reducing the cross section areas of oil passages at positions between cylinders in the middle of a main oil passage for distributing the specified pressure working oil to a drive means for switching the cams. CONSTITUTION:A main working oil passage 11 is provided to distribute the specified pressure working oil to the drive means for switching the cam of each cylinder according to engine driving state. Orifices 21 to 23 are provided at the positions between junction passages 12 in the middle of the main passage 11 to reduce the cross section areas of oil flow passages. By this constitution, even when a cam is changed-over at a driving point where generated torque is different from each other, the torque generated by the engine steppingly varies for each cylinder. Therefore, the torque shock of the engine generated at the time of switching cams can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は多気筒エンジンの弁作動装置、特にエンジン
の運転条件に応じて複数のカムを切換えるものに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a valve actuation device for a multi-cylinder engine, and particularly to one that switches a plurality of cams according to engine operating conditions.

(従来の技術) 従来からエンジンの出力性能を向上させる目的で、運転
状態に応じて吸気弁または排気弁のり7ト特性を異なら
せ、これによって@排気のタイミングあるいは吸排気量
を制御することが知られている。
(Prior art) Conventionally, in order to improve the output performance of an engine, it has been possible to vary the intake valve or exhaust valve characteristics depending on the operating condition, and thereby control the exhaust timing or intake/exhaust amount. Are known.

例えば特開昭62−294709号公報では、多気筒エ
ンジンにおいて弁り7ト特性の異なる2つのカムと、弁
の開閉作動に携わるカムを切換えるカム切換駆動手段と
が各気筒毎に備え、各気筒のカム切換駆動手段に連通す
る油通路を備え、この油通路を通して供給される加圧作
動油に応動して各気前毎にカムの切換えが行われるもの
が開示されている。
For example, in Japanese Unexamined Patent Publication No. 62-294709, in a multi-cylinder engine, two cams with different valve opening characteristics and a cam switching drive means for switching the cams involved in opening and closing the valves are provided for each cylinder. An oil passageway communicating with a cam switching drive means is disclosed, and the cam is switched for each position in response to pressurized hydraulic oil supplied through the oil passage.

(発明が解決しようとする課題) ところで、このような従来装置では、カムの切換え時に
エンジンの発生トルクが大きく変化することを防止する
ために、各カムによる発生トルクが一致する運転点で切
換えを行う必要があった。
(Problem to be Solved by the Invention) By the way, in such a conventional device, in order to prevent the torque generated by the engine from changing greatly when switching the cams, switching is performed at an operating point where the torque generated by each cam is the same. It needed to be done.

したがって、各カムによりトルク特性の設定に制約を受
け、例えば一方のカムを低負荷運松時に対応して小さい
弁作動角に設定して燃費の向上をはかるとともに、他方
のカムを高負荷運転時に対応して発生トルクを高めるよ
うな比較的に大きな弁作動角に設定した場合、各カムの
切換え時に大きなトルク変化が生じるという問題点が起
こった。
Therefore, the setting of torque characteristics is restricted depending on each cam. For example, one cam is set to a small valve operating angle for low-load operation to improve fuel efficiency, and the other cam is set for high-load operation. If a relatively large valve operating angle is set to correspondingly increase the generated torque, a problem arises in that a large torque change occurs when each cam is switched.

例えば第10図に示すように、弁作動角が互いに異なる
3つのカム1,2.3を備え、各カム】。
For example, as shown in FIG. 10, there are three cams 1, 2.3 with different valve operating angles, each cam].

2.3による発生トルクが互いに大幅に異なる場合、あ
る回転数n、で小作動角カム1から中作動角カム2に切
換えられた場合、大きなトルク変化が生じる。第11図
は回転数n+において発生トルクの増大に伴って各カム
1.2.3が順に切換えられた場合に要求されるスロッ
トル開度の変化特性を示しており、弁作動角の大きいカ
ムから小さいカムに切換えられた場合に、発生トルクを
維持しようとすると、開弁期間の短縮に対応してより少
ない時間で空気を吸入する必要があり、スロットル開度
を大きくしなければならない。
If the generated torques according to 2.3 are significantly different from each other, a large torque change will occur when switching from the small working angle cam 1 to the medium working angle cam 2 at a certain rotation speed n. Figure 11 shows the throttle opening change characteristics required when each cam 1, 2, 3 is switched in turn as the generated torque increases at the rotation speed n+, starting with the cam with the larger valve operating angle. When switching to a smaller cam and trying to maintain the generated torque, it is necessary to take in air in a shorter amount of time in response to the shortened valve opening period, and the throttle opening must be increased.

また、前記従米装置のようにトルク変化の少ない運転点
でカムの切換えが行われるように設定された場合でも、
弁作動装置の経時劣化等によりカム切換え時のトルク変
化が増大する可能性があった。
In addition, even if the cam is set to switch at an operating point where there is little change in torque, as in the slave device described above,
There was a possibility that the torque change during cam switching would increase due to deterioration of the valve operating device over time.

二の発明はこのような従来の課題に着目してなされたも
ので、カムの切換作動に伴うエンジンのトルク変動を緩
和する弁作動装置を提供することを目的とする。
The second invention has been made in view of the above-mentioned conventional problems, and aims to provide a valve actuation device that alleviates engine torque fluctuations caused by cam switching operations.

(課題を解決するための手段) 二の発明は、共通の弁に討して互いに異なる弁り7ト特
性を有する複数のカムと、弁のWRwi作動に携わるカ
ムを油圧力により切換えるカム切換駆動手段とを各気筒
毎に備え、各気筒のカム切換駆動手段に対してエンジン
運転条件に応じて所定の加圧作動油を分配する主油通路
を備えるとともに、この主油通路の途中に各気前のカム
切換駆動手段の間に位置しで流路断面積を作動油加圧方
向に沿って次第に減少する絞り手段を備えた。
(Means for Solving the Problems) The second invention provides a common valve with a plurality of cams having different valve characteristics, and a cam switching drive that switches the cams involved in the WRwi operation of the valve using hydraulic pressure. A main oil passage is provided for distributing a predetermined amount of pressurized hydraulic oil to the cam switching drive means of each cylinder according to the engine operating conditions. A throttle means is provided between the front cam switching drive means and gradually reduces the cross-sectional area of the flow path along the hydraulic oil pressurizing direction.

(作用) 主油通路の作動油圧が所定値より低い運転状態では、各
気前毎に備えられるカム切換駆動手段を介して所定のカ
ムにより各弁を#41IP!駆動しているが、エンジン
運転条件に応じて主油通路に所定の加圧作動油圧が供給
されると、この加圧作動油が主油通路を通って各気筒毎
に備えられるカム切換駆動手段に分配され、この作動油
圧に応動してカムの切換えが行われる。
(Function) In an operating state where the working oil pressure of the main oil passage is lower than a predetermined value, each valve is switched to #41IP by a predetermined cam via a cam switching drive means provided for each valve. When a predetermined pressurized hydraulic pressure is supplied to the main oil passage depending on the engine operating conditions, this pressurized hydraulic oil passes through the main oil passage to the cam switching drive means provided for each cylinder. The cams are switched in response to this hydraulic pressure.

主油通路の途中に気前間に位置して流路断面積を作動油
加圧方向に沿って次第に減少する絞り手段を備えたため
、絞り手段は主油通路を通って各気筒のカム切換駆動手
段に分配される作動油の流れに抵抗を付与して、絞り手
段より下流側に位置する気筒のカム切換駆動手段に導か
れる作動油圧の立ち上がりを遅らせる。これにより、各
気筒のカム切換駆動手段は所定の時間差をもって作動す
るので、たとえ互いに発生トルクの大きく異なる運転点
でカムの切換えが行われる場合もエンジンの発生トルク
は各気筒毎に段階的に変化し、急激なトルク変動を緩和
できる。また、気筒毎にカムの切換わり時間を相異させ
ることにより、スロットル開度を急激に変化させる必要
もなくなる。
The throttle means is located in the middle of the main oil passage and gradually reduces the flow passage cross-sectional area along the hydraulic oil pressurizing direction.The throttle means passes through the main oil passage and drives the cam switching of each cylinder. Resistance is applied to the flow of hydraulic oil distributed to the means, thereby delaying the rise of the hydraulic pressure guided to the cam switching drive means of the cylinder located downstream of the throttle means. As a result, the cam switching drive means for each cylinder operates with a predetermined time difference, so even if the cams are switched at operating points where the generated torque is significantly different from each other, the generated torque of the engine will change in stages for each cylinder. This can alleviate sudden torque fluctuations. Furthermore, by making the cam switching time different for each cylinder, there is no need to suddenly change the throttle opening.

(実施トシリ) 以下、本発明の実施例を添付図面に基づいて説明する。(Implementation) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図、第2図、@3図は4つの気前を有するエンジン
にお(1て、各気筒毎に2つの動力重視型カム6.7が
切換え可能に設けられている動弁系に本発明を適用した
場合の実施例を示してν・る。
Figures 1, 2, and 3 show an engine with four generosities (1) a valve train in which two power-oriented cams 6.7 are switchably provided for each cylinder; An example in which the present invention is applied will be shown below.

これ1こついて説明すると、メインロッカアーム1はそ
の揺動先端が2本の吸気弁9に当接するとともに、比較
的に小さなプロフィールを有する低速高負荷用カム6に
摺接可能とする一方、メインロッカアーム1の両側に設
けられる2つのサブロッカアーム2は吸気弁9に当接す
る部位を持たず、ロストモーンヲンスプリング3の付勢
力により比較的に大きなプロフィールを有する高速高負
荷用カム7に摺接する。
To explain this one point, the main rocker arm 1 has its swinging tip contacting the two intake valves 9, and is also able to come into sliding contact with the low-speed, high-load cam 6 which has a relatively small profile. The two sub-rocker arms 2 provided on both sides of the sub-rocker arm 1 do not have a portion that contacts the intake valve 9, but slide into contact with the high-speed, high-load cam 7 having a relatively large profile due to the biasing force of the lost bone spring 3.

第1図のように、メインロッカアーム1に形成された凹
部1aと各サブロッカアーム2に形成された各凸部の2
aとが互いに嵌合した拘束位置では、両口ツカアーム1
,2は一体となって揺動し、高速高負荷用カム7のプロ
フィールに従って各吸気弁9を開閉駆動する。このとき
、メインロッカアーム1は比較的に小さいプロフィール
を有する低速高負荷用カム6から浮き上がっている。
As shown in FIG.
In the restraint position where a and a are fitted together, the double-ended hook arm 1
, 2 swing together as one, and drive each intake valve 9 to open and close according to the profile of the cam 7 for high speed and high load. At this time, the main rocker arm 1 is floating above the low-speed, high-load cam 6 which has a relatively small profile.

これに対して、各スプリング4の付勢力により各サブロ
ッカアーム2がメインロッカアーム1から罷れて、凹部
1aと各凸部2aの嵌合が解かれた非拘束位置では、両
口ツカアーム1,2は互(・に独立的に揺動し、低速高
負荷用カム6のプロフィールに従って各吸気弁9を開閉
駆動する。
On the other hand, each sub-rocker arm 2 is separated from the main rocker arm 1 by the biasing force of each spring 4, and in the unrestricted position where the recess 1a and each protrusion 2a are disengaged, the double-ended lock arms 1, 2 swing independently from each other, and drive each intake valve 9 to open and close according to the profile of the low-speed, high-load cam 6.

各カム6.7の切換えを行うカム切換駆動手段として、
各サブロッカアーム2の移動に伴って伸縮する油室10
が画成され、油室10に導かれる作動油圧が所定値を越
えて上昇すると各サブロッカアーム2が各スプリング4
に抗して拘束位置に移動し、作動油圧が所定値を越えて
低下した状態では各サブロッカアーム2がスプリング4
の付勢力により非拘束位置に保持される。
As a cam switching drive means for switching each cam 6.7,
Oil chamber 10 that expands and contracts as each sub-rocker arm 2 moves
is defined, and when the hydraulic pressure led to the oil chamber 10 rises above a predetermined value, each sub-rocker arm 2 releases each spring 4.
When the sub-rocker arm 2 moves to the restraining position against the
It is held in the unrestricted position by the urging force of.

この4気筒エンジンは、各気筒毎に上述したカム切換駆
動手段を備え、ロッカシャフト8内を通る主油通路11
は各気筒の油室10に連通する4つの分岐油通路12が
分岐する。主油通路11の一端には栓体19が圧入され
ている。
This four-cylinder engine is equipped with the above-mentioned cam switching drive means for each cylinder, and has a main oil passage 11 passing through the rocker shaft 8.
Four branch oil passages 12 are branched to communicate with the oil chambers 10 of each cylinder. A plug body 19 is press-fitted into one end of the main oil passage 11.

主油通路11の作動油圧をエンジン運転条件に応じて制
御する油圧調整手段として、主油通路11は電磁切換弁
13を介してオイルポンプ14の吐出側通路15と、オ
イルパン16に連通するドレーン通路17とに選択的に
接続される。
The main oil passage 11 serves as a hydraulic pressure adjustment means for controlling the working oil pressure of the main oil passage 11 according to engine operating conditions, and the main oil passage 11 is a drain communicating with a discharge side passage 15 of an oil pump 14 and an oil pan 16 via an electromagnetic switching valve 13. The passage 17 is selectively connected to the passage 17.

電磁式切換弁13の切換作動を電子制御する図示しない
コントロールユニットは、エンジン図1信号、冷却水温
信号、潤滑油の温度信号、過給機による吸気の過給圧力
信号、スロットルバルブの開度信号等を入力して、これ
らの検出値に基づいて、低速高負荷用カム6と高速高負
荷用カム7の切換えを行うようになっている。
A control unit (not shown) that electronically controls the switching operation of the electromagnetic switching valve 13 receives an engine diagram 1 signal, a cooling water temperature signal, a lubricating oil temperature signal, an intake boost pressure signal from a supercharger, and a throttle valve opening signal. etc., and the low-speed, high-load cam 6 and the high-speed, high-load cam 7 are switched based on these detected values.

本発明の要旨とする、主油通路11の途中で各気筒間に
位置して流路断面を縮小する絞り手段として、主油通路
11には各分岐油通路12の間に位置して3つのオリフ
ィス21,22,23がそれぞれ設けられる。
As a gist of the present invention, the main oil passage 11 has three throttle means located between each branch oil passage 12 and arranged between each cylinder in the main oil passage 11 to reduce the cross section of the flow passage. Orifices 21, 22, and 23 are provided, respectively.

各オリフィス21,22.23の流路断面積は作動油加
圧方向に沿って次第に縮小して形成され、すなわち電磁
切換弁13から各気筒に送られる作動油の流れに対して
下流側に位置するほど所定の比率で小さく設定される。
The flow passage cross-sectional area of each orifice 21, 22, 23 is formed to gradually decrease along the hydraulic oil pressurizing direction, that is, it is located downstream with respect to the flow of hydraulic oil sent from the electromagnetic switching valve 13 to each cylinder. The smaller the ratio is, the smaller the ratio is set.

低速高負荷用カム6と高速高負荷用カム7はそれぞれ共
通のカムシャフトに一体形成され、エンジンに同期して
回転駆動される。低速高負荷用カム6は弁り7ト量と弁
作動角を共に比較的に小さくしてエンジンの低速高負荷
運転時に対応して発生トルクの向上をはかる一方、高速
用カム7は弁り7ト量と弁作動角を共に比較的に大きく
して高負荷運転時に対応して発生トルクの向上をはかる
ようになっている。
The low-speed, high-load cam 6 and the high-speed, high-load cam 7 are each integrally formed on a common camshaft, and are rotationally driven in synchronization with the engine. The low-speed, high-load cam 6 has relatively small valve depth and valve operating angle to improve generated torque in response to low-speed, high-load operation of the engine, while the high-speed cam 7 has a relatively small valve depth and valve operating angle. Both the amount of torque and the valve operating angle are made relatively large in order to improve the generated torque during high-load operation.

次に作用について説明する。Next, the effect will be explained.

エンジン回転数または負荷が設定値より低ν・所定の運
転条件では、主油通路11は電磁切換弁13によりオイ
ルポンプ14の吐出側通路15が遮断されてドレーン通
路17が連通されており、各油室10に導かれる作動油
圧が低下して各サブロッカアーム2がスプリング4の付
勢力によりメインロノ7−ム1と独立的に揺動可能な非
拘束位置に保持され、これにより低速低負荷用カム6の
プロフィールに従って各吸気弁9が開閉駆動される。
When the engine speed or load is lower than the set value ν and under predetermined operating conditions, the main oil passage 11 is closed off from the discharge side passage 15 of the oil pump 14 by the electromagnetic switching valve 13 and communicated with the drain passage 17. The hydraulic pressure led to the oil chamber 10 decreases, and each sub-rocker arm 2 is held in an unrestricted position where it can swing independently from the main rotor arm 1 by the biasing force of the spring 4. Each intake valve 9 is driven to open and close according to the profile shown in FIG.

エンジン回転数または負荷が設定値より高い所定の運転
条件では、電磁切換弁13の作動により主油通路11に
対してドレーン通路17が遮断されるとともにオイルポ
ンプ14の吐出側通路15か遅進し、高圧の作動油が主
油通路11から分岐油通路]2を通って各油室10に供
給されると、各サブロッカアーム2が各スプリング4に
抗してメインロツアーム1と一体化する拘束位置に移動
し、これにより、各高速高負荷用カム7のプロフィール
に従って各吸気弁9が開閉駆動される。
Under predetermined operating conditions where the engine speed or load is higher than the set value, the electromagnetic switching valve 13 operates to shut off the drain passage 17 from the main oil passage 11, and at the same time, the discharge side passage 15 of the oil pump 14 moves slowly. When high-pressure hydraulic oil is supplied from the main oil passage 11 to each oil chamber 10 through the branch oil passage 2, each sub-rocker arm 2 resists each spring 4 and is restrained to be integrated with the main rotary arm 1. As a result, each intake valve 9 is driven to open and close according to the profile of each high-speed, high-load cam 7.

主油通路11の途中に各気筒間に位置して流路断面積を
減少するオリフィス21,22,23が設けられている
ため、各オリフィス21,22,23は主油通路11を
通って各気筒の油室10に分配される作動油の流れに抵
抗を付与して、各オリアイス21,22.23の前後で
圧力降下が生じ、各オ17 フイス21,22.23よ
り下流側に位置するそれぞれの気筒の各油室10に導か
れる作動油圧の立ち上がりを遅らせる。
Orifices 21, 22, and 23 are provided in the middle of the main oil passage 11 to reduce the cross-sectional area of the flow passage by being located between the cylinders. By adding resistance to the flow of the hydraulic oil distributed to the oil chamber 10 of the cylinder, a pressure drop occurs before and after each orifice 21, 22. The rise of the working oil pressure guided to each oil chamber 10 of each cylinder is delayed.

これにより、各気筒の油室10の油圧力は所定の時間差
をもって立ち上がり、電磁切換弁13に近い側の気筒か
ら順に所定の時間差をもって高速高負荷用カム7に切換
えられるので、エンジンの発生トルクは各気筒毎の4段
階に高められ、急激なトルク変動を緩和で鯵る。
As a result, the hydraulic pressure in the oil chamber 10 of each cylinder rises with a predetermined time difference, and the cylinders closest to the electromagnetic switching valve 13 are switched to the high-speed, high-load cam 7 with a predetermined time difference, so that the torque generated by the engine is reduced. The torque is increased to four levels for each cylinder, and sudden torque fluctuations are mitigated.

したがって、トルク変化の少ない運軟点でカム6.7の
切換えが行われるように設定された場合でも、弁作動装
置の経時劣化等によりカム切換え時のトルク変化が増大
することを防止できる。
Therefore, even if the cams 6 and 7 are set to be switched at a soft point where torque changes are small, it is possible to prevent the torque change at the time of cam switching from increasing due to aging deterioration of the valve actuation device or the like.

次に、#14図に示す池の実施例について説明すると、
主油通路11の途中に各オリフィス21゜22.23の
間に位置して所定容積を有する油溜室24をそれぞれ設
けるものである。
Next, we will explain the example of the pond shown in Figure #14.
An oil reservoir chamber 24 having a predetermined volume is provided between each orifice 21, 22, and 23 in the middle of the main oil passage 11.

この場合、電磁切換弁13の作動により高圧の作動油が
主油通路11から各分岐油通路12を通って各油室10
に分配されるとき、各油溜室24に作動油を充填された
後に各分岐油通路12を通りて各油室10に作動油力f
流入するので、各気筒間で行われるカム切換えの時間差
を油溜室24の容積により任意に設定できる。
In this case, high-pressure hydraulic oil is passed from the main oil passage 11 through each branch oil passage 12 to each oil chamber 10 by the operation of the electromagnetic switching valve 13.
When the hydraulic oil is distributed to each oil chamber 24, the hydraulic oil force f passes through each branch oil passage 12 and enters each oil chamber 10 after being filled with hydraulic oil in each oil reservoir chamber 24.
Since the oil flows in, the time difference in cam switching performed between each cylinder can be arbitrarily set depending on the volume of the oil reservoir chamber 24.

次に、第5図に示す他の実施例について説明すると、主
油通路11の途中に各オリフィス21゜22.23の間
に位置して油溜室24がそれぞれ設けられるとともに、
各油溜室24をドレーン通路26に解放可能なチエツク
弁25がそれぞれ設けられる。
Next, another embodiment shown in FIG. 5 will be described. Oil reservoir chambers 24 are provided in the middle of the main oil passage 11 between the orifices 21, 22, 23, and
A check valve 25 is provided which can open each oil reservoir chamber 24 to a drain passage 26.

第6図にも示すように、球状のチエツク弁25は円筒状
のハウジング30内に収装され、ハウジング30の両端
に設けられる2つのバルブシート31.32の間に介装
され、バルブシート31側にはこのチエツク弁25を開
弁方向に付勢するリターンスプリング34が介装されて
いる。
As shown in FIG. 6, the spherical check valve 25 is housed in a cylindrical housing 30, and is interposed between two valve seats 31 and 32 provided at both ends of the housing 30. A return spring 34 is interposed on the side to bias the check valve 25 in the opening direction.

第5図に示すように、一方のバルブシート32は、チエ
ツク弁25を着座させる4つの突起35が突呂して、第
6図に示すようにリターンスプリング34の付勢力によ
りチエツク弁25が各突起35に着座した開弁位置では
、油溜室24からの作動油がチエツク弁25とバルブシ
ート32の開隔とバルブシート31の通孔37を通って
ドレーン通路26に流出するようになっている。
As shown in FIG. 5, one valve seat 32 has four projections 35 on which the check valve 25 is seated, and as shown in FIG. In the open position where the valve is seated on the protrusion 35, the hydraulic oil from the oil reservoir chamber 24 flows out into the drain passage 26 through the gap between the check valve 25 and the valve seat 32 and the through hole 37 in the valve seat 31. There is.

他方のバルブシート31にはシート面36が円錐状に形
成され、このシート面36にチエツク弁25が着座した
閉位置で通孔27を閉塞し、作動油が主油通路11から
ドレーン通路26へ流出するのを遮断するようになって
いる。
The other valve seat 31 has a conical seat surface 36 , and in the closed position where the check valve 25 is seated on this seat surface 36 , the through hole 27 is closed, and the hydraulic oil flows from the main oil passage 11 to the drain passage 26 . It is designed to prevent leakage.

リターンスプリング34のバネ定数および初期収縮量お
よび各パルプシー)31.32間の長さはそれぞれ任意
に設定されて、電磁切換弁13を介してオイルポンプ1
4の吐出圧が主油通路11に導かれている運転状態では
、TIJIJ4図に示すように、最収縮状態にあるリタ
ーンスプリング34の付勢力よりチエツク弁25が受け
る油圧力が大きくなってドレーン通路26へ流出する作
動油を遮断する一方、電磁切換弁13を介して主油通路
13がドレーン通路17に連通される運転状態では、第
6図に示すように、最伸張状態にあるリターンスプリン
グ34の付勢力よりチエツク弁25の受ける油圧力が小
さく、作動油をドレーン通路26に流出させるようにな
っている。
The spring constant and initial contraction amount of the return spring 34 and the length between each pulp seat 31 and 32 are set arbitrarily, and the oil pump 1 is
In the operating state in which the discharge pressure of No. 4 is led to the main oil passage 11, as shown in Figure TIJIJ4, the hydraulic pressure received by the check valve 25 becomes greater than the urging force of the return spring 34 in the most contracted state, and the oil pressure is applied to the drain passage. In the operating state in which the main oil passage 13 is communicated with the drain passage 17 via the electromagnetic switching valve 13 while the hydraulic oil flowing out to the drain passage 17 is blocked, the return spring 34 is in the fully extended state as shown in FIG. The hydraulic pressure received by the check valve 25 is smaller than the biasing force of the check valve 25, so that the hydraulic oil flows out into the drain passage 26.

エンン°ンの高負荷あるいは高速運転時は、電磁切換弁
13を介してオイルポンプ14の吐出圧が主油通路11
に導かれると、チエツク弁25がリターンスプリング3
4に抗してドレーン通路19へ流出する作動油を遮断す
るので、高圧の作動油が各気筒毎に所定の時間差をもっ
て各油室10に供給され、電磁切換弁13から近い気筒
から順に各高速高負荷用カム7に切換えられる。
During high load or high speed operation of the engine, the discharge pressure of the oil pump 14 is reduced to the main oil passage 11 via the electromagnetic switching valve 13.
When the check valve 25 is guided to the return spring 3
4 is blocked from flowing into the drain passage 19, high-pressure hydraulic oil is supplied to each oil chamber 10 with a predetermined time difference for each cylinder, and the high-pressure hydraulic oil is supplied to each oil chamber 10 in order from the cylinder closest to the electromagnetic switching valve 13. It is switched to the high load cam 7.

エンジン回転数または負荷の低下に伴って、高速高負荷
用カム7から低速高負荷用カム6に切換えられる際は、
電磁切換弁13の作動に上り主油通路11に対してオイ
ルポンプ14の吐出側通路15が遮断されてドレーン通
路17が連通されると、主油通路11の油圧の低下に伴
って各油室10の作動油が主油通路11に流出し、この
ときチエツク弁25が開弁して主油通路11からの作動
油を各油溜室24を通して速やかに流出させるので、低
速高負荷用カム6への切換えに要する時間を短縮するこ
とができる。
When switching from the high-speed, high-load cam 7 to the low-speed, high-load cam 6 as the engine speed or load decreases,
When the electromagnetic switching valve 13 is activated and the discharge side passage 15 of the oil pump 14 is cut off from the main oil passage 11 and the drain passage 17 is opened, each oil chamber opens as the oil pressure in the main oil passage 11 decreases. 10 hydraulic oil flows into the main oil passage 11, and at this time the check valve 25 opens and the hydraulic oil from the main oil passage 11 quickly flows out through each oil reservoir chamber 24, so that the low speed high load cam 6 The time required for switching can be shortened.

各カム6.7の切換えが頻繁に行われる運転状態でも、
各油溜室24からチエツク弁25を介して作動油の排出
が速やかに行われるので、各オリフィス21,22.2
3により気筒間に生じるカム切換えの時間差を確保する
ことができる。
Even in operating conditions where each cam 6.7 is frequently switched,
Since the hydraulic oil is quickly discharged from each oil reservoir chamber 24 via the check valve 25, each orifice 21, 22.2
3, it is possible to secure the time difference in cam switching that occurs between cylinders.

第8図、第9図は、4気筒エンジンにおいて、各気筒毎
に1つの燃費重視型カム1と2つの動力重視カム2,3
が切換え可能に設けられている動弁系に本発明を適用し
た場合の実施例を示している。
Figures 8 and 9 show one fuel efficiency-oriented cam 1 and two power-oriented cams 2 and 3 for each cylinder in a four-cylinder engine.
1 shows an embodiment in which the present invention is applied to a valve train system in which the valve train is switchably provided.

これについて説明すると、各気筒には2本の吸気弁9に
対応して単一のロッカアーム81が設けられる。ロッカ
アーム81の基端は各気筒に共通なロッカシャフト42
を介してシリングヘッドに揺動自在に支持され、ロッカ
アーム81の先端には各吸気弁9のステム頂部を当接さ
せる油圧ラッシュアノヤスタ51が設けられ、油通路6
2から導かれる作動油圧によりバルブクリアランスを自
動的に調節するようになっている。
To explain this, each cylinder is provided with a single rocker arm 81 corresponding to two intake valves 9. The base end of the rocker arm 81 is a rocker shaft 42 common to each cylinder.
The rocker arm 81 is swingably supported by the sill head via the rocker arm 81, and a hydraulic lash annoyaster 51 is provided at the tip of the rocker arm 81 to abut the top of the stem of each intake valve 9.
The valve clearance is automatically adjusted by the hydraulic pressure derived from 2.

口7カアーム81にはシャフト43にベアリングを介し
てローラ44が回転自在に連結され、このローラ44に
カム1を転接させるようになっている。
A roller 44 is rotatably connected to the shaft 43 via a bearing to the opening 7 arm 81, and the cam 1 is brought into rolling contact with the roller 44.

ロッカアーム81は平面図上はぼ矩形に形成され、ロッ
カアーム81にはローラ44と並んで2つの可動7オロ
ワ82.83が設けられる。この各可動7オロワ82.
83の基端はサブロッカシャフト46を介してロッカア
ーム81に対して相対回転可能に連結される。
The rocker arm 81 is formed into a substantially rectangular shape in a plan view, and two movable rollers 82, 83 are provided on the rocker arm 81 in line with the roller 44. Each of these movable 7 orrowers 82.
A base end of the rocker arm 83 is connected to the rocker arm 81 via the sub-rocker shaft 46 so as to be relatively rotatable.

各可動7オロワ82.83は吸気弁9に当接する部位を
持たず、各可動7オロワ82.83の先端には高負荷用
カム2,3に摺接するカム7才ロア部が円弧状に突出し
て形成され、その下側には各カム7才ロア部を各カム2
,3にそれぞれ押し付けるロストモーラ1ンスプリング
45が介装される。
Each movable 7-lower 82.83 does not have a part that comes into contact with the intake valve 9, and at the tip of each movable 7-lower 82.83, a cam 7-year-old lower part that slides into contact with the high-load cams 2 and 3 protrudes in an arc shape. The 7-year-old lower part of each cam is formed on the lower side of each cam 2.
, 3, respectively, are interposed with lost mora springs 45.

ロッカアーム81には可動7オロワ82の直下に位置し
てロストモーラ1ンスプリング45を介装する穴56が
一体形成される。コイル状のロストモーシタンスプリン
グ45はその下端が穴56に嵌められたストッパ58に
着座し、その上端が穴56に摺動自在に嵌合するリテー
ナ57を介して可動7オロワ82の下1llI7オロ7
部に当接する。
The rocker arm 81 is integrally formed with a hole 56 located directly below the movable roller 82 and into which the lost motor spring 45 is inserted. The lower end of the coiled lost motor spring 45 is seated on a stopper 58 fitted in a hole 56, and the upper end is seated on a lower end of the movable 7 lower 82 via a retainer 57 that is slidably fitted in the hole 56. 7
contact with the part.

なお、可動7オロワ83にもロッカアーム81との間に
ほぼ同様な構造をもってロストモーラ1ンスプリング4
5が介装される。
In addition, the movable 7 lowerer 83 has a similar structure between the rocker arm 81 and the lost mole 1 spring 4.
5 is interposed.

可動7オロワ82に形成される穴に結合ピン61を摺動
自在に嵌挿され、ロッカアーム81にはこの結合ビン6
1を挾んで形成される2つの穴に結合ピン63と戻しビ
ン64がそれぞれ摺動自在に嵌合され、戻しビン64の
背後にリターンスプリング68が介装される。
The coupling pin 61 is slidably inserted into the hole formed in the movable 7 lowerer 82, and the coupling pin 6 is inserted into the rocker arm 81.
A coupling pin 63 and a return pin 64 are slidably fitted into two holes formed by sandwiching the return pin 64, and a return spring 68 is interposed behind the return pin 64.

リターンスプリング68に抗して各結合ピン61.63
を可動7オロワ82の拘束位置に移動させる連結駆動手
段として、結合ピン63の背後に作動油圧を導く油通路
67が、ロッカアーム81およびロッカシャフト42の
内部を通して配設され、この油通路67から所定の作動
油圧が導かれるようになっている。作動油圧により各結
合ピン61.63が可動7オロワ82と口・2カアーム
81に渡って嵌合する拘束位置に保持されることにより
、口7カアーム81と可動7すロワ82とは互いに一体
となって揺動する。リターンスプリング63の付勢力に
より戻しビン64を介して各結合ピン61.63が各穴
内にそれぞれ収まる非拘束位置に保持されることにより
、可動7オロワ82はロッカアーム81の揺動を妨げな
い。
Each coupling pin 61.63 against the return spring 68
An oil passage 67 for guiding hydraulic pressure behind the coupling pin 63 is disposed through the inside of the rocker arm 81 and the rocker shaft 42 as a connecting drive means for moving the movable roller 82 to the restraining position. The hydraulic pressure of the valve is designed to be guided. By holding each coupling pin 61, 63 in a restraining position where it fits across the movable 7 lower 82 and the mouth/two arm 81 by the hydraulic pressure, the mouth 7 lower arm 81 and the movable 7 lower 82 are integrally formed with each other. It sways. Since the coupling pins 61 and 63 are held in the unrestricted position in each hole through the return pin 64 by the biasing force of the return spring 63, the movable 7 lower 82 does not impede the swinging of the rocker arm 81.

なお、可動7オロワ83にもロッカアーム81との間に
ほぼ同様な構造をもって結合ピン71゜72と戻しビン
73およびリターンスプリング74が介装され、結合ピ
ン72に作動油圧を導く油通路76がロッカ7−ム81
およびロッカシャフト42の内部を通して設けられる。
The movable 7-lower 83 also has a connecting pin 71, 72, a return pin 73, and a return spring 74 interposed between the rocker arm 81 and the rocker arm 81. 7-m81
and is provided through the inside of the rocker shaft 42.

この4気筒エンジンは、各気筒毎に上述したカム切換駆
動手段を備え、ロッカシャフト8内を通る各油通路67
.76は電磁切換弁を介してオイルポンプと、オイルパ
ンとに選択的に接続される。
This four-cylinder engine includes the above-mentioned cam switching drive means for each cylinder, and each oil passage 67 passing through the rocker shaft 8.
.. 76 is selectively connected to an oil pump and an oil pan via an electromagnetic switching valve.

電磁式切換弁はコントロールユニットによりエンジン運
転状態に応じて作動し、各カム1.2.3の切換えを行
うようになっている。
The electromagnetic switching valve is operated by a control unit according to the engine operating state to switch each cam 1.2.3.

本発明の要旨とする、各油通路67.76の途中で各気
筒間に位置して流路断面を縮小する絞り手段として、各
気筒間に位置して3つのオリフィス(図示せず)がそれ
ぞれ形成され、各オリフィスの流路断面積は作動油加圧
方向に沿って次第に縮小して形成される。
As a gist of the present invention, three orifices (not shown) are located between each cylinder and serve as throttling means located between each cylinder in the middle of each oil passage 67, 76 to reduce the flow passage cross section. The cross-sectional area of each orifice is gradually reduced along the direction in which the hydraulic fluid is pressurized.

これにより、カム1から各カム2,3への切換作動時、
各油通路67.76には図示しない切換弁を介してオイ
ルポンプの吐出油圧が所定の運転条件に導かれ、各オリ
フィスの付与する抵抗により各気筒の各結合ピン63.
72に導かれる油圧力は所定の時間差をもって立ち上が
り、電磁切換弁に近い側の気筒から順に所定の時間差を
もって切換えられるので、エンジンの発生トルクは各気
筒毎の4段階に高められる。
As a result, when switching from cam 1 to each cam 2 and 3,
The discharge oil pressure of the oil pump is guided to the respective oil passages 67, 76 through switching valves (not shown) to meet predetermined operating conditions, and the resistance provided by each orifice causes each coupling pin 63, 76 of each cylinder to reach a predetermined operating condition.
The hydraulic pressure guided to 72 rises with a predetermined time difference, and is switched sequentially from the cylinder closer to the electromagnetic switching valve with a predetermined time difference, so that the torque generated by the engine is increased in four stages for each cylinder.

各カム1.2.3はそれぞれ共通のカムシャフトに一体
形成され、エンジンの部分負荷運転時、低速高負荷用カ
ム、高速高負荷運転時においてそれぞれ要求される弁り
7ト特性を満足するように異なるプロフィールで形成さ
れている。
Each cam 1, 2, and 3 is integrally formed on a common camshaft, and is designed to satisfy the valve torque characteristics required for engine partial load operation, low speed high load cam, and high speed high load operation. are formed with different profiles.

したがって、第10図に示すように、各カム1゜2.3
によるトルク特性の大幅に異なり、ある回転数11.で
小作動角カム1から中作動角カム2に切換えられた場合
、各油通路67.76に設けられるオリフィスによりエ
ンジンの発生トルクはTからT2へと各気筒毎に4段階
に変化し、急激なトルク変動を緩和できる。また、気筒
毎にカムの切換わり時間を相異させることにより、スロ
ットル開度を急激に変化させる必要もなくなる。
Therefore, as shown in FIG. 10, each cam 1°2.3
The torque characteristics differ significantly depending on the rotation speed of 11. When the small working angle cam 1 is switched to the medium working angle cam 2, the torque generated by the engine changes from T to T2 in four stages for each cylinder due to the orifices provided in each oil passage 67, 76, and the torque is suddenly changed. Torque fluctuations can be alleviated. Furthermore, by making the cam switching time different for each cylinder, there is no need to suddenly change the throttle opening.

(発明の効果) この発明は、各気筒のカム切換駆動手段にエンジン運転
条件に応じて所定の加圧作動油を分配する主油通路を備
える多気筒エンジンの弁作動装置において、主油通路の
途中に気筒間に位置して流路断面積を減少する紋り手段
を備える構成としたため、互いに発生トルクの大きく異
なる運献点でカムの切換えが行われる場合でもエンジン
の発生トルクは各気筒毎に段階的に変化し、カムの切換
え時に生じるエンジンのトルクショックを低減して、自
動車等の運転性を改善することができ、その結果、カム
の設定自由度を高められ、エンジンの燃費性能と出力性
能を両立して向上させることができる。
(Effects of the Invention) The present invention provides a valve actuation device for a multi-cylinder engine including a main oil passage that distributes a predetermined pressurized hydraulic oil to the cam switching drive means of each cylinder according to engine operating conditions. Since the configuration includes a curving means that is located between the cylinders and reduces the cross-sectional area of the flow path, even if the cams are switched at points where the generated torque is significantly different from each other, the generated torque of the engine will be the same for each cylinder. It changes in stages to reduce the engine torque shock that occurs when switching the cam, improving the drivability of automobiles, etc.As a result, the degree of freedom in setting the cam can be increased, improving the fuel efficiency of the engine. It is possible to simultaneously improve output performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す弁作動装置の構成図、
第2図、第3図はそれぞれ同じく横断面図である。第4
図は他の実施例を示す油圧回路図である。第5図はさら
に他の実施例を示す油圧回路図、第6図はチエツク弁の
断面図、第7図はバルブシートの正面図である。第8図
はさらに他の実施例を示す弁作動装置の平面図、第9図
は同図X−X線に沿う横断面図である。第10図は本発
明の詳細な説明するためのトルク特性図、第11図は同
じくスロットル開度特性図である。 1・・・ロッカアーム、2・−サブロッカアーム、6−
・・低速高負荷用カム、7・・・高負荷用カム、9・・
・吸気弁、】O・・・油室、11−・・主油通路、12
・・・分岐油通路、13・・・電磁切換弁、14・・・
オイルポンプ、21.22.23・・・オリフィス。 第4図 M5F!jA l あ 第6図 第 図 第10図 第11図 軸トルク −人
FIG. 1 is a configuration diagram of a valve operating device showing an embodiment of the present invention;
2 and 3 are cross-sectional views, respectively. Fourth
The figure is a hydraulic circuit diagram showing another embodiment. FIG. 5 is a hydraulic circuit diagram showing still another embodiment, FIG. 6 is a sectional view of the check valve, and FIG. 7 is a front view of the valve seat. FIG. 8 is a plan view of a valve operating device showing still another embodiment, and FIG. 9 is a cross-sectional view taken along line XX in the figure. FIG. 10 is a torque characteristic diagram for explaining the present invention in detail, and FIG. 11 is a throttle opening characteristic diagram. 1...Rocker arm, 2--sub rocker arm, 6-
...Cam for low speed and high load, 7...Cam for high load, 9...
・Intake valve, ]O...Oil chamber, 11-...Main oil passage, 12
...Branch oil passage, 13...Solenoid switching valve, 14...
Oil pump, 21.22.23... orifice. Figure 4 M5F! jA l Figure 6 Figure 10 Figure 11 Shaft torque - Person

Claims (1)

【特許請求の範囲】[Claims]  共通の弁に対して互いに異なる弁リフト特性を有する
複数のカムと、弁の開閉作動に携わるカムを油圧力によ
り切換えるカム切換駆動手段とを各気筒毎に備え、各気
筒のカム切換駆動手段に対してエンジン運転条件に応じ
て所定の加圧作動油を分配する主油通路を備えるととも
に、この主油通路の途中に各気筒のカム切換駆動手段の
間に位置して流路断面積を作動油加圧方向に沿って次第
に減少する絞り手段を備えたことを特徴とする多気筒エ
ンジンの弁作動装置。
Each cylinder is equipped with a plurality of cams that have different valve lift characteristics for a common valve, and a cam switching drive means that uses hydraulic pressure to switch the cams involved in opening and closing the valve. The main oil passage is equipped with a main oil passage that distributes a predetermined pressurized hydraulic oil according to the engine operating conditions, and is located between the cam switching drive means of each cylinder in the middle of this main oil passage to operate the flow passage cross-sectional area. A valve operating device for a multi-cylinder engine, characterized by comprising a throttle means that gradually decreases along the direction of oil pressurization.
JP11604990A 1990-05-02 1990-05-02 Valve actuating device of multi-cylinder engine Pending JPH0417705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11604990A JPH0417705A (en) 1990-05-02 1990-05-02 Valve actuating device of multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11604990A JPH0417705A (en) 1990-05-02 1990-05-02 Valve actuating device of multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPH0417705A true JPH0417705A (en) 1992-01-22

Family

ID=14677442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11604990A Pending JPH0417705A (en) 1990-05-02 1990-05-02 Valve actuating device of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPH0417705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010694A1 (en) * 1993-10-14 1995-04-20 Audi Ag Valve gear mechanism for a multi-cylinder internal combustion engine
WO2008141127A2 (en) * 2007-05-09 2008-11-20 Toyota Motor Engineering And Manufacturing North America, Inc. Lubricant delivery systems and methods for controlling flow in lubricant delivery systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010694A1 (en) * 1993-10-14 1995-04-20 Audi Ag Valve gear mechanism for a multi-cylinder internal combustion engine
US5832891A (en) * 1993-10-14 1998-11-10 Audi A.G. Valve gear mechanism for a multi-cylinder internal combustion engine
WO2008141127A2 (en) * 2007-05-09 2008-11-20 Toyota Motor Engineering And Manufacturing North America, Inc. Lubricant delivery systems and methods for controlling flow in lubricant delivery systems
WO2008141127A3 (en) * 2007-05-09 2009-10-22 Toyota Motor Engineering And Manufacturing North America, Inc. Lubricant delivery systems and methods for controlling flow in lubricant delivery systems

Similar Documents

Publication Publication Date Title
US6739293B2 (en) Hydraulic valve actuation systems and methods
EP0213759B1 (en) Valve operating mechanism
US4799463A (en) Valve operating mechanism for internal combustion engines
JPH0316483B2 (en)
US5651336A (en) Variable valve timing and lift mechanism
JPH03258904A (en) Valve system of engine
CA1148806A (en) Valve opening control device
JPS63100212A (en) Valve driving device for engine
US5924396A (en) Engine valve actuating system
US6053135A (en) Variable valve timing mechanism
JPH0417705A (en) Valve actuating device of multi-cylinder engine
JPH077524Y2 (en) Valve mechanism of internal combustion engine
JPH0417706A (en) Valve actuating device of engine
JPH08177432A (en) Variable valve system device of internal combustion engine
JPH041406A (en) Valve system for multicylinder engine
US20030213444A1 (en) Engine valve actuation system
EP0908604B1 (en) Variable valve timing mechanism
JP3518005B2 (en) Variable valve train for internal combustion engines
JPH041407A (en) Valve system for multicylinder engine
JPH08177433A (en) Variable valve system device of internal combustion engine
JPH08158828A (en) Valve system for engine
JP2850046B2 (en) Hydraulic clearance adjuster for valve actuator
JPH03156113A (en) Valve action system for engine
JPH08170513A (en) Variable valve system for internal combustion engine
JP2522207Y2 (en) Variable valve train for engines