JPH0417699B2 - - Google Patents

Info

Publication number
JPH0417699B2
JPH0417699B2 JP2370683A JP2370683A JPH0417699B2 JP H0417699 B2 JPH0417699 B2 JP H0417699B2 JP 2370683 A JP2370683 A JP 2370683A JP 2370683 A JP2370683 A JP 2370683A JP H0417699 B2 JPH0417699 B2 JP H0417699B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
fluid catalytic
cracking catalyst
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2370683A
Other languages
Japanese (ja)
Other versions
JPS59150540A (en
Inventor
Motohiko Iwata
Kazuo Hirabayashi
Ryoji Oonishi
Toshimitsu Matsuyae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP2370683A priority Critical patent/JPS59150540A/en
Publication of JPS59150540A publication Critical patent/JPS59150540A/en
Publication of JPH0417699B2 publication Critical patent/JPH0417699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質石油系原料油の流動接触分解で金
属で汚染された触媒の脱金属再生方法に関するも
ので、さらに詳しく述べれば汚染金属のうちバナ
ジウムを比較的温和な条件で前処理し、溶媒抽出
して除去し、流動接触分解触媒の活性成分である
ゼオライトを損うことなく再生する方法に関する
ものである。 流動接触分解は石油系原料油を触媒と接触させ
て分解し、ガソリンその他の価値ある軽質留分を
得るものである。従来流動接触分解では軽油また
は減圧軽油との混合物を主とする原料油が処理さ
れてきたが、産出原油が重質化の傾向にあるとと
もに灯軽油等の軽質油の需要が増加傾向にあるた
め、重質油対策の一つとして残油を含む原料油の
流動接触分解は有力な手段である。 残油中にはニツケル、バナジウム等の有機金属
化合物が含まれ、接触分解の際に分解してこれら
の金属は触媒に付着する。付着金属は一部触媒表
面を覆い、かつ脱水素能を持つため、原料油から
分解生成物への転化率の低下、主生成物のガソリ
ン収率の低下、および水素とコーク生成量の増加
をきたし、接触分解に悪影響を与える。すなわち
主生成物の収率低下と同時に水素生成量が増加す
るためリーンガスの圧縮操作に付加的設備を必要
とし、またコーク生成量の増加にともなつて液収
率の低下とコークの燃焼除去に付加的設備が必要
となる。この様に金属含有量の大きな原料油を接
触分解する場合には触媒中の金属濃度が増加し操
業上の制約から決まる限界値に早急に達する。し
たがつて触媒の活性と選択性のレベルを一定に保
つためには流動接触分解装置内を循環している平
衡触媒を抜出し、新触媒を補う置換操作が必要で
高価な触媒の消費量が増すことになる。 しかし、金属が付着して劣化した流動接触分解
触媒を脱金属再生処理して不都合な接触分解挙動
を抑えることができれば比較的豊富な低品位の重
質原料油から価値の高いガソリンその他の軽質留
分に安定して継続的に転換することが可能で、新
規かつ改良された脱金属再生法の開発が望まれ
る。 金属で汚染された流動接触分解触媒の脱金属再
生法として不定形のシリカ・アルミナ系触媒につ
いてはすぐにいくつかの処理法が考案されている
(例えば米国特許322229号)が、ゼオライト系触
媒の脱金属処理においては結晶性アルミノシリケ
ートであるゼオライトの結晶を損うことなく汚染
金属を除去する工夫が必要である。ゼオライト系
流動接触分解触媒の脱金属法としては米国特許第
3985639号および同第4013546号に開示されてい
る。これらの特許は汚染触媒のコークを燃焼除去
して還元し、加圧下で一酸化炭素と接触させ、触
媒上のニツケルをニツケルカルボニル化合物とし
て分離し、ついで塩素ガスと接触させてバナジウ
ムを塩化物として分離して再生する方法を開示し
ている。しかしこの方法では有毒な気体である一
炭化炭素で触媒を処理し、猛毒なニツケルカルボ
ニルが生成するため実用化する場合にはそのため
の配慮が必要であり、脱金属処理にともなうゼオ
ライト結晶の保存について明記されていない。 本発明による脱バナジウム処理は以下の工程か
らなる。接触分解で原料油中の金属の付着した触
媒を流動接触分解装置の再生塔から一部バイパス
して抜出し、再生塔内温度とほぼ同等の比較的温
和な条件すなわち600℃ないし700℃で空気または
酸素気流中で残存コークの燃焼除去と同時に付着
金属を酸化する。この工程でバナジウムは高酸化
状態へと変化する。酸化処理された触媒はメタノ
ール、エタノール、および水からなる群から選ば
れる少なくとも1種類の触媒を用いて常圧ないし
10Kg/cm2の圧力で常温ないし200℃の条件下で洗
浄され、バナジウムは抽出処理される。抽出処理
されたた触媒は加熱乾燥または乾燥窒素ガスによ
るパージ操作により溶媒が除去され、脱バナジウ
ム処理は完了する。脱バナジウム処理された触媒
は流動接触分解装置の再生塔に戻されて再び接触
分解に使われる。本発明にしたがうならば酸化処
理と抽出処理条件を選ぶことにより触媒中のゼオ
ライトを損うことなく脱バナジウウ再生処理を行
うことができる。また抽出溶媒は蒸発操作で回収
されバナジウムは酸化物として取出され、再処理
が必要な廃液は生じない。 また本発明の脱バナジウム処理法を汚染金属の
不動態化処理の前処理として行うならば劣化触媒
の性能の向上に大きな効果が得られる。すなわち
脱バナジウム処理のあと金属不動態化剤で触媒を
処理するか、あるいは脱バナジウム処理のあと触
媒を流動接触分解装置に戻し、原料油に該処理剤
を添加してもよい。 ここで金属不動態化剤とは触媒に付着したニツ
ケル、バナジウム等の金属を不活性化し、汚染金
属の付着に起因する有害な接触分解挙動を低減す
るもので当業界では公知でありすでに特開昭52−
68002、同53−26801、同53−104588、同53−
142406、同56−144749、特公昭56−158149および
同57−39186に開示されている。金属不動態化剤
の代表例として油溶性アンチモン化合物あるいは
無機アンチモン化合物を油中に分酸させたものが
知られているが、本発明の前処理法はいずれにつ
いても有効である。以下本発明を実施例によつて
詳しく説明する。 脱バナジウム処理は、残油を含む原料油を処理
した流動接触分解の平衡触媒を実験室規模の流通
式反応器中で酸化処理し、ついでソツクスレー型
抽出器で洗浄処理して行つた。酸化処理は内径48
mmの石英製反応器に触媒200gを採り、流量300
ml/分の空気または酸素気流中で650℃3時間焼
成して行つた。冷却後触媒を取出し、常圧抽出の
場合はソツクスレー型抽出器を用い、加圧抽出の
場合はソツクスレー型抽出器を内蔵したオートク
レーブ中で溶媒としてメタノールまたは水を用い
て所定の条件で5時間洗浄処理を行つた。抽出処
理後触媒を150℃に保つた乾燥器中に移し、窒素
気流中で5時間乾燥して溶媒を除去し再生処理を
完了した。 不動態化処理の前処理として脱バナジウム処理
を行う場合は前記処理の後、触媒に不動態化剤を
金属アンチモン換算で0.1重量%になるように含
浸法で付け、同上の石英製反応器に触媒を移し、
同様に空気流中で650℃1時間焼成処理して行つ
た。 実験に供した流動接触分解の平衡触媒の性状を
第1表に示す。表から解るようにこの触媒は粘土
系鉱物をマトリツクスとするゼオライト系触媒
で、付着したニツケルとバナジウムは全量で
8000ppmありこの種の触媒としては高濃度に汚染
されている。触媒のゼオライトの定量はX線回析
法、ゼオライトカチオン種(RE2O3)の定量は蛍
光X線法で、その他を成分の分析と物性を測定は
通常の方法でそれぞれ行つた。触媒性能の評価は
ベンチスケールの流動触媒分解装置(触媒インベ
ントリー2.3Kg)を用い、原料油として脱硫減圧
The present invention relates to a method for demetallizing and regenerating catalysts contaminated with metals during fluid catalytic cracking of heavy petroleum feedstocks.More specifically, the present invention relates to a method for demetallizing catalysts contaminated with metals during fluid catalytic cracking of heavy petroleum feedstocks. The present invention relates to a method for extracting, removing, and regenerating zeolite, which is an active component of a fluid catalytic cracking catalyst, without damaging it. Fluid catalytic cracking involves cracking petroleum-based feedstocks by contacting them with a catalyst to obtain gasoline and other valuable light fractions. Conventionally, fluid catalytic cracking has processed feedstock oils mainly consisting of gas oil or a mixture with vacuum gas oil, but as the crude oil produced tends to become heavier, demand for light oils such as kerosene and diesel oil is increasing. , Fluid catalytic cracking of raw oil containing residual oil is an effective means of dealing with heavy oil. The residual oil contains organic metal compounds such as nickel and vanadium, which are decomposed during catalytic cracking and these metals adhere to the catalyst. Since the deposited metal partially covers the catalyst surface and has dehydrogenation ability, it decreases the conversion rate from feedstock to cracked products, decreases the yield of gasoline as the main product, and increases the amount of hydrogen and coke produced. and has a negative effect on catalytic cracking. In other words, as the yield of the main product decreases and at the same time the amount of hydrogen produced increases, additional equipment is required for compressing lean gas, and as the amount of coke produced increases, the liquid yield decreases and it becomes difficult to burn off the coke. Additional equipment will be required. When raw oil with a large metal content is subjected to catalytic cracking, the metal concentration in the catalyst increases and quickly reaches a limit value determined by operational constraints. Therefore, in order to maintain a constant level of catalyst activity and selectivity, it is necessary to extract the equilibrium catalyst circulating in the fluid catalytic cracker and replace it with new catalyst, which increases the consumption of expensive catalyst. It turns out. However, if it is possible to suppress unfavorable catalytic cracking behavior by demetallizing and regenerating fluid catalytic cracking catalysts that have deteriorated due to adhesion of metals, it is possible to convert relatively abundant low-grade heavy feedstocks into valuable light distillates such as gasoline and other high-value oils. It is desired to develop a new and improved demetallization regeneration method that can be stably and continuously converted in minutes. Several treatment methods have been devised for amorphous silica-alumina catalysts as demetallization regeneration methods for fluid catalytic cracking catalysts contaminated with metals (for example, U.S. Pat. No. 322,229); In metal removal treatment, it is necessary to devise ways to remove contaminant metals without damaging the crystals of zeolite, which is a crystalline aluminosilicate. US Patent No.
No. 3985639 and No. 4013546. These patents involve burning off and reducing the coke on the contaminated catalyst, contacting it with carbon monoxide under pressure to separate the nickel on the catalyst as a nickel carbonyl compound, and then contacting it with chlorine gas to reduce the vanadium as chloride. Discloses a method for separating and regenerating. However, in this method, the catalyst is treated with carbon monocarbon, which is a poisonous gas, and highly toxic nickel carbonyl is produced, so consideration must be given when putting it into practical use. Not specified. The vanadium removal treatment according to the present invention consists of the following steps. In catalytic cracking, the metal-attached catalyst in the feed oil is extracted from the regeneration tower of the fluid catalytic cracker by partially bypassing it, and is heated under relatively mild conditions, i.e., 600°C to 700°C, at approximately the same temperature as the internal temperature of the regeneration tower with air or In an oxygen stream, remaining coke is burnt and removed while adhering metals are oxidized. This process transforms vanadium into a highly oxidized state. The oxidized catalyst is oxidized using at least one catalyst selected from the group consisting of methanol, ethanol, and water.
The vanadium is extracted by washing at a pressure of 10 kg/cm 2 at room temperature to 200°C. The solvent of the extracted catalyst is removed by heat drying or purging with dry nitrogen gas, and the vanadium removal process is completed. The devanadated catalyst is returned to the regeneration tower of the fluid catalytic cracker and used again for catalytic cracking. According to the present invention, by selecting the oxidation treatment and extraction treatment conditions, the devanadium-free regeneration treatment can be performed without damaging the zeolite in the catalyst. Furthermore, the extraction solvent is recovered by evaporation and the vanadium is extracted as an oxide, so no waste liquid is generated that requires reprocessing. Further, if the vanadium removal treatment method of the present invention is performed as a pretreatment for passivation treatment of contaminated metals, a great effect can be obtained in improving the performance of a deteriorated catalyst. That is, the catalyst may be treated with a metal passivating agent after the vanadium removal treatment, or the catalyst may be returned to the fluid catalytic cracker after the vanadation treatment and the treatment agent may be added to the feedstock oil. The metal passivating agent is a substance that inactivates metals such as nickel and vanadium attached to the catalyst and reduces harmful catalytic decomposition behavior caused by the attachment of contaminant metals, and is well known in the industry and has already been disclosed in the patent application. Showa 52-
68002, 53-26801, 53-104588, 53-
No. 142406, No. 56-144749, Japanese Patent Publications No. 56-158149 and No. 57-39186. Although oil-soluble antimony compounds or inorganic antimony compounds dissolved in oil are known as typical examples of metal passivating agents, the pretreatment method of the present invention is effective for both. The present invention will be explained in detail below with reference to Examples. The devanadation treatment was carried out by oxidizing an equilibrium catalyst for fluid catalytic cracking that had been processed from raw oil containing residual oil in a laboratory-scale flow-through reactor, and then washing it in a Soxhlet type extractor. Oxidation treatment has an inner diameter of 48
200g of catalyst was placed in a quartz reactor with a flow rate of 300mm.
This was carried out by firing at 650°C for 3 hours in an air or oxygen stream at a flow rate of ml/min. After cooling, the catalyst is taken out and washed for 5 hours under specified conditions using methanol or water as a solvent in an autoclave equipped with a Soxhlet type extractor in the case of normal pressure extraction or a Soxhlet type extractor in the case of pressure extraction. I processed it. After the extraction process, the catalyst was transferred to a dryer kept at 150°C and dried in a nitrogen stream for 5 hours to remove the solvent and complete the regeneration process. When performing vanadium removal treatment as a pretreatment for passivation treatment, after the above treatment, apply a passivating agent to the catalyst using an impregnation method to a concentration of 0.1% by weight in terms of antimony metal, and place it in the same quartz reactor as above. Transfer the catalyst
Similarly, calcination treatment was carried out at 650°C for 1 hour in an air stream. Table 1 shows the properties of the equilibrium catalyst for fluid catalytic cracking used in the experiment. As can be seen from the table, this catalyst is a zeolite catalyst with a matrix of clay minerals, and the total amount of nickel and vanadium attached is
It was 8000ppm, which is a high concentration of contamination for this type of catalyst. The zeolite catalyst was quantitatively determined by X-ray diffraction, the zeolite cation species (RE 2 O 3 ) was determined by fluorescent X-ray method, and other components were analyzed and physical properties were determined by conventional methods. Catalyst performance was evaluated using a bench-scale fluidized catalytic cracker (catalyst inventory 2.3 kg) using desulfurized vacuum decompressor as feedstock oil.

【表】【table】

【表】 油を用いて反応器温度500℃、再生器温度600℃、
触媒対油比10重量/重量、およびWHSV15重
量/重量/時間の条件で実施した。 実施例 1 金属汚染触媒を空気流中で所定の条件で焼成し
て酸化処理し、ソツクスレー抽出器を用いて水を
溶媒として常圧で抽出処理した触媒の性状と活性
試験の結果を再処理触媒と比較して第2表に示
す。この処理でバナジウムは12%除去され、ゼオ
ライト含有量とゼオライトカチオン種の量に変化
は見られず、触媒の活性成分は維持されている。
触媒の性能は転化率が3.5容量%増加し、主生成
物のザソリン留分(C5〜CCG)が4.5重量%増加
し、LPG収率も増して分解活性が明らかに向上
している。また水素生成量を示すH2/CH4比は
約19%減少し、コーク生成量も減少して触媒の選
択性が向上しており、脱バナジウム処理の効果は
顕著である。酸化処理を酸素気流中で同様の条件
で行つてもほぼ同等の効果が認められた。
[Table] Using oil, reactor temperature is 500℃, regenerator temperature is 600℃,
It was conducted at a catalyst to oil ratio of 10 w/w and a WHSV of 15 w/w/time. Example 1 A metal-contaminated catalyst was calcined and oxidized in an air stream under predetermined conditions, and extracted using a Soxhlet extractor with water as a solvent at normal pressure. A comparison is shown in Table 2. This treatment removed 12% of vanadium, and the zeolite content and amount of zeolite cation species remained unchanged, maintaining the active components of the catalyst.
As for the performance of the catalyst, the conversion rate increased by 3.5% by volume, the main product sasorin fraction (C 5 ~CCG) increased by 4.5% by weight, the LPG yield also increased, and the cracking activity was obviously improved. In addition, the H 2 /CH 4 ratio, which indicates the amount of hydrogen produced, decreased by about 19%, the amount of coke produced also decreased, and the selectivity of the catalyst improved, so the effect of the vanadium removal treatment was remarkable. Almost the same effect was observed even when the oxidation treatment was performed under the same conditions in an oxygen stream.

【表】 実施例 2 触媒を空気流中で所定の条件で焼成して酸化処
理し、オートクレーブ中でメタノールを溶媒とし
て加圧下で抽出処理した触媒の性状と活性試験の
結果を未処理の触媒と比較して第3表に示す。こ
の処理でバナジウムは14%除去され、かつゼオラ
イト含有量とゼオライトカチオン種の量はそのま
ま保たれている。触媒の性能として転化率は4容
量%、ガソリン(C5〜CCG)収率は4重量
[Table] Example 2 A catalyst was oxidized by being calcined under specified conditions in an air flow, and extracted under pressure in an autoclave using methanol as a solvent. The properties and activity test results of the catalyst were compared with the untreated catalyst. A comparison is shown in Table 3. This treatment removed 14% of vanadium, while maintaining the zeolite content and amount of zeolite cation species. The performance of the catalyst is that the conversion rate is 4% by volume and the yield of gasoline (C 5 - CCG) is 4% by weight.

【表】 %それぞれ増加し、LPG収率も増して活性の向
上は明らかで、H2/CH4比は21%減少し、コー
ク生成量も減少して選択性の向上も大きいことが
解る。抽出溶媒をエタノールとしても同一条件で
ほぼ同様の結果が得られた。 実施例 3 空気焼成による酸化処理とエタノールを溶媒と
する常圧抽出処理のあとアンチモン系不態能化剤
で処理した触媒の活性試験結果を第4表に示す。
第4表から解るように前処理の脱バナジウム処理
で付着バナジウムを12%が除去され、触媒の活性
成分はそのまま保たれている。 未処理触媒を不動態化処理すると転化率は5容
量%、ガソリン収率は3.5重量%増加し、H2
CH4比は19%減少するが、前処理として脱バナジ
ウムを行うと転化率で5.5容量%、ガソリン収率
で4.5重量%増加し、H2/CH4比は33%減少する。
第2表および第3表に示した結果と合せ考えると
脱バナジウム処理で主として触媒の活性が回復
し、不動態化処理でさらに水素生成量とコー
[Table] It is clear that the activity is improved as the LPG yield increases, the H 2 /CH 4 ratio decreases by 21%, and the amount of coke produced decreases, indicating that the selectivity is greatly improved. Almost similar results were obtained under the same conditions using ethanol as the extraction solvent. Example 3 Table 4 shows the activity test results of a catalyst treated with an antimony-based passivation agent after oxidation treatment by air calcination and atmospheric pressure extraction treatment using ethanol as a solvent.
As can be seen from Table 4, 12% of the adhering vanadium was removed by the pre-vanadium removal treatment, and the active components of the catalyst were maintained as they were. Passivation treatment of untreated catalyst increases conversion by 5% by volume, gasoline yield by 3.5% by weight, and H 2 /
The CH 4 ratio decreases by 19%, but removing vanadium as a pretreatment increases the conversion by 5.5% by volume, the gasoline yield by 4.5% by weight, and reduces the H 2 /CH 4 ratio by 33%.
Considering the results shown in Tables 2 and 3, devanadation treatment mainly recovers the activity of the catalyst, and passivation treatment further increases the amount of hydrogen produced.

【表】 ク生成量が抑えられることが明らかで不動態化の
前処理としての本発明の脱バナジウム処理は金属
汚染触媒の性能回復に極めて有効であることが認
められた。
[Table] It is clear that the amount of metal-contaminated catalysts produced is suppressed, and the devanadium treatment of the present invention as a pretreatment for passivation was recognized to be extremely effective in restoring the performance of metal-contaminated catalysts.

Claims (1)

【特許請求の範囲】 1 重質石油系原料油の流動接触分解において、
ニツケルおよびバナジウムの付着により性能の低
下した流動接触分解触媒を酸化処理し、次いで極
性溶媒で抽出処理することによりバナジウムを除
去する劣化した流動接触分解触媒の脱金属再生方
法。 2 酸化処理を600℃ないし700℃で空気または酸
素雰囲気下で焼成して行う特許請求の範囲第1項
記載の劣化した流動接触分解触媒の脱金属再生方
法。 3 抽出処理を溶媒としてメタノール、エタノー
ル、水からなる群から選ばれた少なくとも1種の
溶媒を用い、常圧ないし10Kg/cm2の圧力で常温な
いし200℃の条件で行う特許請求の範囲第1項記
載の劣化した流動接触分解触媒の脱金属再生方
法。 4 少なくとも触媒100万重量部中にバナジウム
2500重量部付着した流動接触分解触媒について行
う特許請求の範囲第1項記載の劣化した流動接触
分解触媒の脱金属再生方法。 5 触媒に付着した金属の不動態化法の前処理と
して行う特許請求の範囲第1項記載の劣化した流
動接触分解触媒の脱金属再生方法。 6 少なくとも触媒100万重量部中にニツケル
1500重量部およびバナジウム2500重量部付着した
流動接触分解触媒について行う特許請求の範囲第
1項および第5項記載の劣化した流動接触分解触
媒の脱金属再生方法。
[Claims] 1. In fluid catalytic cracking of heavy petroleum feedstock,
A method for demetallizing a deteriorated fluid catalytic cracking catalyst, which comprises oxidizing a fluid catalytic cracking catalyst whose performance has deteriorated due to adhesion of nickel and vanadium, and then removing vanadium by extraction with a polar solvent. 2. The method for demetallizing a deteriorated fluid catalytic cracking catalyst according to claim 1, wherein the oxidation treatment is carried out by firing in air or oxygen atmosphere at 600°C to 700°C. 3. Claim 1 in which the extraction process is carried out using at least one solvent selected from the group consisting of methanol, ethanol, and water as a solvent, at a pressure of normal pressure to 10 Kg/cm 2 and at room temperature to 200°C. A demetallization regeneration method for a deteriorated fluid catalytic cracking catalyst as described in Section 3. 4 Vanadium in at least 1 million parts by weight of catalyst
A method for demetallizing a deteriorated fluid catalytic cracking catalyst according to claim 1, which is carried out using 2500 parts by weight of fluid catalytic cracking catalyst attached. 5. A method for demetallizing a deteriorated fluid catalytic cracking catalyst according to claim 1, which is carried out as a pretreatment for a passivation method for metals attached to the catalyst. 6 At least nickel in 1 million parts by weight of catalyst
A method for demetallizing a deteriorated fluid catalytic cracking catalyst according to claims 1 and 5, which is carried out using a fluid catalytic cracking catalyst on which 1500 parts by weight and 2500 parts by weight of vanadium are attached.
JP2370683A 1983-02-17 1983-02-17 Demetallizing and regeneration of deteriorated fluidized catalytic cracking catalyst Granted JPS59150540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2370683A JPS59150540A (en) 1983-02-17 1983-02-17 Demetallizing and regeneration of deteriorated fluidized catalytic cracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2370683A JPS59150540A (en) 1983-02-17 1983-02-17 Demetallizing and regeneration of deteriorated fluidized catalytic cracking catalyst

Publications (2)

Publication Number Publication Date
JPS59150540A JPS59150540A (en) 1984-08-28
JPH0417699B2 true JPH0417699B2 (en) 1992-03-26

Family

ID=12117796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2370683A Granted JPS59150540A (en) 1983-02-17 1983-02-17 Demetallizing and regeneration of deteriorated fluidized catalytic cracking catalyst

Country Status (1)

Country Link
JP (1) JPS59150540A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190241A (en) * 1984-03-12 1985-09-27 Nippon Oil Co Ltd Regeneration of waste hydrogenation catalyst
FR2619391B1 (en) * 1987-08-14 1990-01-12 Eurecat Europ Retrait Catalys METHOD FOR REDUCING A REFINING CATALYST BEFORE IMPLEMENTING
CN102698815B (en) * 2012-05-11 2014-06-18 上海华畅环保设备发展有限公司 Method for treating boiling bed residue oil hydrogenating-discharged catalyst and device thereof

Also Published As

Publication number Publication date
JPS59150540A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
RU2238299C2 (en) Integrated method for improved purification of diesel fuel
US3839187A (en) Removing metal contaminants from petroleum residual oil
US2956004A (en) Removing metal contaminants from feeds
US20070267327A1 (en) Heavy Oil Upgrading Process
DK147451B (en) PROCEDURE FOR THE CATALYTIC CRACKING OF A CARBON HYDRADE FOOD MATERIAL SA MT MEDIUM FOR EXERCISING THE PROCEDURE
US4504379A (en) Passivation of metal contaminants in cat cracking
US4280897A (en) Removal of contaminating metals from FCC catalyst by NH4 citrate chelates
US4482450A (en) Process for catalytic reaction of heavy oils
JPH04346841A (en) Method of reactivation of catalyst
US4295955A (en) Attenuation of metal contaminants on cracking catalyst with a boron compound
JP3005697B2 (en) Method for removing mercury from steam cracking equipment
JPH0332743A (en) Method for reactivation of cracking catalyst contaminated by metal
US3008897A (en) Hydrocarbon demetallization process
JPS6322183B2 (en)
US2615831A (en) Desulfurization of hydrocarbon mixtures with nickel carbonyl
CN107638889B (en) Method for regenerating waste hydrogenation catalyst
US5021377A (en) Demetallization and passivation of spent cracking catalysts
US2729593A (en) Demetalation of hydrocarbon oils
US2996442A (en) Process for electrically treating a metallic contaminated residual petroleum fraction
JPH0417699B2 (en)
US2313940A (en) Catalytic cracking and reclamation of catalysts
US2791540A (en) Hydrocarbon desulfurization process wherein the sulfur compounds are adsorbed by metallic silver
US4521299A (en) Removal of basic nitrogen compounds from hydrocarbon liquids
EP1345693B1 (en) Regeneration method of heterogeneous catalysts and adsorbents
US3108972A (en) Removing impurities from catalysts