JPH04176862A - Method for vapor depositing ion beam - Google Patents

Method for vapor depositing ion beam

Info

Publication number
JPH04176862A
JPH04176862A JP30335690A JP30335690A JPH04176862A JP H04176862 A JPH04176862 A JP H04176862A JP 30335690 A JP30335690 A JP 30335690A JP 30335690 A JP30335690 A JP 30335690A JP H04176862 A JPH04176862 A JP H04176862A
Authority
JP
Japan
Prior art keywords
ions
chamber
mass separator
ion
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30335690A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ito
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP30335690A priority Critical patent/JPH04176862A/en
Publication of JPH04176862A publication Critical patent/JPH04176862A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a vapor deposited film due to a plurality of elements at the excellent productivity by introducing a gaseous raw material into an ionization chamber and simultaneously generating the ions of a plurality of kinds of elements in the case of vapor-depositing the ion beams of the same on a base plate. CONSTITUTION:Gaseous WF6, gaseous CO2 and gaseous SiC4 are introduced into an ionization chamber 4 via valves 2 from a plurality of cylinders 1a-1c thereof. The ions of a plurality of kinds of elements are generated and accelerated by an acceleration electrode 5a in an acceleration chamber 5 and introduced into the circular arclike conduit 8 of a mass separator 7 as the ion beams. Magnitude of current allowed to flow to the coil 9a of an electromagnet 9 of the mass separator 7 is automatically changed over to change over the intensity of the magnetic field due to the electromagnet. The ion of one kind of element correspondent thereto is selected and introduced into a vapor deposition chamber 15. The successively introduced ions of W, C and Si are decelerated and vapor-deposited on a base plate 17.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は複数種類の元素のイオンビームを基板上に蒸
着させて薄膜を作製するイオンビーム蒸着方法に関し、
特に生産性を向上させたものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to an ion beam evaporation method for producing a thin film by depositing ion beams of multiple types of elements onto a substrate.
In particular, productivity has been improved.

「従来の技術」 試料基板上にタングステン(W)膜、炭素(C)膜及び
シリコン(Si)膜を順次蒸着する場合を例として第4
図を参照して従来のイオンビーム蒸着方法を説明しよう
。六フッ化タングステン(hp*)の原料ガスをボンベ
1aよりバルブ2、流管3を介してイオン化室4に注入
してイオン化させると、タングステンイオンとフッ素イ
オンとが発生する。
"Prior art" The fourth example uses a case where a tungsten (W) film, a carbon (C) film, and a silicon (Si) film are sequentially deposited on a sample substrate.
The conventional ion beam evaporation method will be explained with reference to the drawings. When raw material gas of tungsten hexafluoride (hp*) is injected into the ionization chamber 4 from the cylinder 1a via the valve 2 and the flow tube 3 and ionized, tungsten ions and fluorine ions are generated.

イオン化室4に加速室5を連結させ、円板状の加速電極
5aの中心孔を、イオン化室4の出口に近接対向させ、
加速電極5aに高電圧v1を印加してイオン化室4より
タングステンイオン及びフッ素イオンを吸引すると共に
加速させて、加速室5の出口より電磁バルブ6を介して
質量分離器7の円弧状導管8の入口に注入する。
The acceleration chamber 5 is connected to the ionization chamber 4, and the center hole of the disk-shaped acceleration electrode 5a is closely opposed to the outlet of the ionization chamber 4.
A high voltage v1 is applied to the accelerating electrode 5a to attract and accelerate tungsten ions and fluorine ions from the ionization chamber 4, and the tungsten ions and fluorine ions are transferred from the outlet of the acceleration chamber 5 to the arcuate conduit 8 of the mass separator 7 via the electromagnetic valve 6. Inject into the inlet.

質量分離器7は、円弧状導管8と、その導管の近傍に配
され、その円弧状導管8により囲まれる平面に対して垂
直な方向つまり紙面に垂直な方向に磁界を発生するtM
!L石9と、電磁石9のコイル9aに電流を供給するt
淵部10とにより構成される。各イオンには、その電荷
eと速度Vと磁界の強さHに比例し、速度V及び磁界H
の方向と直角な方向に次式で示される一定の力F(電磁
力)が作用する。
The mass separator 7 includes an arc-shaped conduit 8 and a tM that is arranged near the conduit and generates a magnetic field in a direction perpendicular to the plane surrounded by the arc-shaped conduit 8, that is, in a direction perpendicular to the plane of the paper.
! t supplying current to the L stone 9 and the coil 9a of the electromagnet 9
It is constituted by a deep part 10. Each ion has a charge e, a velocity V, and a magnetic field strength H, which are proportional to the velocity V and the magnetic field H.
A constant force F (electromagnetic force) expressed by the following equation acts in a direction perpendicular to the direction of .

F=kevH(1) 上式でkは比例の定数である。イオンの軌道は円弧とな
り、イオンに遠心力F1 F、=mv” /r      (2)が作用する。上
式でmはイオンの質量、rは軌道の曲率半径である。上
記電磁力Fと遠心力F1とがバランスするので、軌道の
曲率半径rと磁界の強さHとは eH の関係がある。そこで質量分離器7に注入したタングス
テンイオンとフッ素イオンとの混合ガスからタングステ
ンイオンのみを取り出すために、タングステンイオンの
円軌道の曲率半径が円弧状導管8の中心線の曲率半径r
0に等しくなるように、磁界の強さHを調整する。その
調整は、例えば電源部10の可変抵抗器10aによりコ
イル電流Iを手動調整することにより行われる。このよ
うにしてタングステンイオンを円弧状導管8の中心線に
沿って、その出口に誘導する。しかしフッ素イオンはタ
ングステンイオンより質量が小さいので、その円軌道の
曲率半径が円弧状導管の中心線の曲率半径より小さくな
り、導管8の内壁に衝突し、導管の出口に到達できない
。このようにして、タングステンイオンのみを質量分離
器7で分離して、tmバルブ11及びベローズ13等を
順次介して蒸着室(試料室とも言う)15へ注入する。
F=kevH(1) In the above formula, k is a constant of proportionality. The trajectory of the ion becomes an arc, and a centrifugal force F1 F,=mv''/r (2) acts on the ion.In the above equation, m is the mass of the ion and r is the radius of curvature of the orbit.The above electromagnetic force F and the centrifugal force Since the force F1 is balanced, the radius of curvature r of the orbit and the strength H of the magnetic field have the relationship eH.Therefore, only tungsten ions are extracted from the mixed gas of tungsten ions and fluorine ions injected into the mass separator 7. Therefore, the radius of curvature of the circular orbit of the tungsten ion is equal to the radius of curvature r of the center line of the arc-shaped conduit 8.
Adjust the magnetic field strength H so that it is equal to 0. The adjustment is performed, for example, by manually adjusting the coil current I using the variable resistor 10a of the power supply section 10. In this way, tungsten ions are guided along the centerline of the arcuate conduit 8 to its outlet. However, since fluorine ions have a smaller mass than tungsten ions, the radius of curvature of their circular orbit becomes smaller than the radius of curvature of the center line of the arc-shaped conduit, so they collide with the inner wall of the conduit 8 and cannot reach the outlet of the conduit. In this way, only tungsten ions are separated by the mass separator 7 and injected into the vapor deposition chamber (also referred to as sample chamber) 15 through the tm valve 11, bellows 13, etc. in this order.

蒸着室15では注入したタングステンイオンをリング状
の減速電極16内を通過させて減速させた後試料基板1
7に入射して堆積させる。
In the deposition chamber 15, the implanted tungsten ions are passed through a ring-shaped deceleration electrode 16 to be decelerated, and then the sample substrate 1 is decelerated.
7 and deposited.

イオンの飛行する経路にある加速室5、電磁ハルプロ、
11、円弧状導管8、ベローズ13、蒸着室15はステ
ンレスなどの金属で作られ、それらの内部はイオンの散
乱を防ぐために真空に保たれる。また、接地される蒸着
室15を除いて、高圧■2 (加速電管5aの電圧V1
よりも低い)が印加される。減速電極16には上記電圧
v2より更に低い電圧■、が印加される。
Acceleration chamber 5, electromagnetic Halpro, located in the path of ion flight.
11. The arcuate conduit 8, bellows 13, and vapor deposition chamber 15 are made of metal such as stainless steel, and their interiors are kept in a vacuum to prevent scattering of ions. In addition, except for the vapor deposition chamber 15 which is grounded, high voltage ■2 (voltage V1 of accelerating tube 5a
) is applied. A voltage (2), which is lower than the voltage v2, is applied to the deceleration electrode 16.

所・定時間の間(例えば数分〜数時間)タングステンイ
オンを基板17に蒸着した後、ii電磁ハルプロliを
閉じ、六フッ化タングステンガスのボンベlaを取外し
、イオン化室4内の原料ガスを一担抜き、再たび次に蒸
着すべき炭素の原料ガス、例えば二酸化炭素(Cow)
のボンベを取付け、上記六フッ化タングステンガスの場
合と同様に、質量分離器7の電源部10の例えば可変抵
抗器10aを調整してコイル電流lを設定し炭素イオン
のみを分離させて所定時間、基板17のタングステン膜
上に蒸着する。
After evaporating tungsten ions onto the substrate 17 for a predetermined period of time (for example, several minutes to several hours), ii. Raw material gas for carbon to be removed once and then deposited again, e.g. carbon dioxide (Cow)
Attach the cylinder, and as in the case of tungsten hexafluoride gas, adjust the variable resistor 10a of the power supply section 10 of the mass separator 7 to set the coil current l, and separate only carbon ions for a predetermined period of time. , is deposited on the tungsten film of the substrate 17.

このようにして基板17上に積層された炭素膜上に更に
シリコンを茅着するために、再たびイオン化室のガスを
抜き、例えば原料ガスとなる四塩化シリコン(SiCI
!、n)ガスのボンベをセットし、上述と同様の処理を
行う。
In order to further deposit silicon on the carbon film laminated on the substrate 17 in this way, the gas in the ionization chamber is removed again, and silicon tetrachloride (SiCI), which is a raw material gas, is removed again.
! , n) Set the gas cylinder and perform the same process as above.

「発明が解決しようとする課題」 従来のイオンビーム蒸着方法により基板上に多層膜を形
成する場合、各層を蒸着する毎にその都度イオン化室4
に残在している前の原料ガスを抜き、新しい原料ガスを
イオン化室4に導入させねばならない。また各層に対応
する原料ガス毎に質量分離器7の電源部10の可変抵抗
器10aを調整してコイルを流を設定しなければならな
い。これらの作業には可成りの時間がかかり生産性を低
下させる原因となっていた。
``Problems to be Solved by the Invention'' When forming a multilayer film on a substrate by a conventional ion beam deposition method, the ionization chamber 4 is used each time each layer is deposited.
The previous raw material gas remaining in the ionization chamber 4 must be removed, and a new raw material gas must be introduced into the ionization chamber 4. Further, the variable resistor 10a of the power supply unit 10 of the mass separator 7 must be adjusted to set the coil flow for each source gas corresponding to each layer. These operations take a considerable amount of time and cause a decrease in productivity.

この発明の目的はこれら従来の難点を解決して、生産性
のよいイオンビーム蒸着方法を提供するにある。
An object of the present invention is to solve these conventional difficulties and provide an ion beam deposition method with good productivity.

「課題を解決するための手段」 この発明のイオンビーム蒸着方法では、原料ガスをイオ
ン化室に注入して、複数種類の元素のイオンを同時に発
生させる。次にそれらのイオンをイオン加速室に注入し
、加速させて、質量分離器の円弧状導管に注入する。
"Means for Solving the Problems" In the ion beam evaporation method of the present invention, a source gas is injected into an ionization chamber to simultaneously generate ions of multiple types of elements. The ions are then injected into an ion acceleration chamber, accelerated, and injected into the arcuate conduit of the mass separator.

その質量分離器として、上記円弧状導管と、その円弧状
導管の近傍に配され、その円弧状導管により囲まれる平
面に対して垂直な方向に磁界を発生する電磁石と、その
電磁石のコイルに電流を供給する電源部とより構成され
るものを使用する。
The mass separator consists of the arc-shaped conduit, an electromagnet placed near the arc-shaped conduit that generates a magnetic field in a direction perpendicular to the plane surrounded by the arc-shaped conduit, and a current flowing through the coil of the electromagnet. Use a device consisting of a power supply unit that supplies

上記電源部より供給する電流の大きさを所定のタイミン
グで自動的に切換えることにより上記磁界の強さを切換
え、その各磁界の強さ毎に対応する1種類の元素のイオ
ンを選択して試料室に注入し、その順次注入するイオン
を減速させて試料基板上に順次蒸着させる。
The strength of the magnetic field is changed by automatically switching the magnitude of the current supplied from the power supply at a predetermined timing, and ions of one type of element corresponding to each magnetic field strength are selected and sampled. The ions are injected into the chamber, and the sequentially injected ions are slowed down and sequentially deposited onto the sample substrate.

「実施例」 この発明の実施例を第1図に、第4図と対応する部分に
同し符号を付し、重複説明を省略する。
"Embodiment" An embodiment of the present invention is shown in FIG. 1, and parts corresponding to those in FIG. 4 are given the same reference numerals, and repeated explanation will be omitted.

この発明では、相異なる原料ガスをそれぞれ収容したガ
スボンへ1a乃至1nをそれぞれバルブ2を介して多入
力流管21に結合させ、それらの原料ガスをイオン化室
4に注入して、同時に複数種類の元素のイオンを発生さ
せる。従来例で述べたタングステン、炭素及びシリコン
の多層膜を形成する場合を例にとれば、上記各ボンベは
それぞれ六フッ化タングステンガス、二酸化炭素ガス及
び四塩化シリコンガスを収容したものとなる。
In this invention, the gas cylinders 1a to 1n containing different raw material gases are respectively connected to the multi-input flow tube 21 via the valve 2, and these raw material gases are injected into the ionization chamber 4, thereby simultaneously producing multiple types of gases. Generates ions of elements. Taking as an example the case of forming a multilayer film of tungsten, carbon, and silicon as described in the conventional example, each of the cylinders contains tungsten hexafluoride gas, carbon dioxide gas, and silicon tetrachloride gas, respectively.

また質量分離器7の電源部10において、磁界の強さを
切換えて複数種類のイオンから1種類のイオンを順次選
択的に分離するために、コイル電流設定用抵抗器R,,
R,・・・、R,、をスイッチ10cにより選択的に切
換えや。制御部22によりスイッチ10cを制御し、所
定のタイミングで自動的に切換える。
In addition, in the power supply section 10 of the mass separator 7, in order to sequentially and selectively separate one type of ion from a plurality of types of ions by switching the strength of the magnetic field, resistors R, , .
R, . . . , R, , are selectively switched by the switch 10c. The control unit 22 controls the switch 10c and automatically switches the switch 10c at a predetermined timing.

上記具体例の原料ボンへをセットした場合、第2図に示
すようにコイル電流1を1..1.、L。
When the raw material cylinder of the above specific example is set, the coil current 1 is set to 1. .. 1. ,L.

1、、T、、I、、ICと切換えれば、第3図に示すよ
うにタングステンlla、炭素膜す及びシリコン膜Cよ
り成る多層膜を形成できる。
By switching to 1, T, , I, and IC, a multilayer film consisting of tungsten 11a, carbon film and silicon film C can be formed as shown in FIG.

この発明のイオンビーム蒸着方法は基板上に多層膜を形
成する以外に複数元素より成る化合物の薄膜を形成する
のに応用することもできる。その場合には、各種イオン
の蒸着時間をそれぞれ例えば数mS〜数秒と短くして、
各蒸着膜を1層乃至数層の原子層とし、前に蒸着されて
いる原子層上に蒸着させ、化学的に結合させて化合物を
成牛させる。
The ion beam evaporation method of the present invention can be applied not only to forming a multilayer film on a substrate but also to forming a thin film of a compound consisting of a plurality of elements. In that case, the deposition time of each type of ion is shortened, for example, from several mS to several seconds, and
Each deposited film has one to several atomic layers, which are deposited on top of previously deposited atomic layers and chemically bonded to form a compound.

これ迄の説明ではイオン化室4に注入する原料ガスを複
数種類としたが、一種類の原料ガスを注入して複数種類
の元素をイオン化する場合にもこの発明を適用できるこ
とは明らかである。
In the explanation so far, a plurality of types of raw material gases are injected into the ionization chamber 4, but it is clear that the present invention can also be applied to the case where one type of raw material gas is injected to ionize a plurality of types of elements.

「発明の効果j この発明によれば、多層膜を形成するに必要な単数又は
複数種類の原料ガスをイオン化室に注入し、同時に複数
種類の元素をイオン化し、これらのイオンを質量分離器
7に注入すると共に、!磁石用コイルの電流Iの大きさ
を所定のタイミングで自動的に切換えることにより磁界
の強さを切換えて、イオン種を選択し、順次基板上に蒸
着させることができる。従って、従来のように、各原料
ガス毎にイオン化室4におけるガス抜きや、コイル電流
設定のために可変抵抗器10aを手動調整する必要が無
くなり、きわめて生産性のよいイオンビーム蒸着方法を
提供できる。
Effects of the invention j According to the present invention, one or more types of raw material gas necessary for forming a multilayer film are injected into the ionization chamber, multiple types of elements are simultaneously ionized, and these ions are transferred to the mass separator 7. At the same time, by automatically switching the magnitude of the current I of the magnet coil at a predetermined timing, the strength of the magnetic field can be switched, and ion species can be selected and sequentially deposited on the substrate. Therefore, it is no longer necessary to vent gas in the ionization chamber 4 for each raw material gas or manually adjust the variable resistor 10a to set the coil current, as in the past, and it is possible to provide an extremely productive ion beam evaporation method. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するためのイオンビーム
蒸着装置の原理的な構成図、第2図は多層膜を形成する
場合の第1図のコイル電流Iの波形図、第3図は第2図
のコイル電流の切換えと対応して基板上に形成された多
層膜の一例を示す断面図、第4図は従来のイオンビーム
蒸着装置の原理的な構成図、第5図は基板上に蒸着され
た多層膜の一例を示す断面図である。
Fig. 1 is a basic configuration diagram of an ion beam evaporation apparatus for explaining the present invention in detail, Fig. 2 is a waveform diagram of the coil current I in Fig. 1 when forming a multilayer film, and Fig. 3 is a diagram showing the waveform of the coil current I in Fig. 1. Figure 2 is a cross-sectional view showing an example of a multilayer film formed on a substrate in response to switching of the coil current, Figure 4 is a basic configuration diagram of a conventional ion beam evaporation apparatus, and Figure 5 is FIG. 3 is a cross-sectional view showing an example of a multilayer film deposited on the substrate.

Claims (1)

【特許請求の範囲】[Claims] (1) 原料ガスをイオン化室に注入して、複数種類の
元素のイオンを同時に発生させ、それらのイオンをイオ
ン加速室に注入し、加速させて、質量分離器の円弧状導
管に注入し、その質量分離器として、上記円弧状導管と
、その円弧状導管の近傍に配され、その円弧状導管によ
り囲まれる平面に対して垂直な方向に磁界を発生する電
磁石と、その電磁石のコイルに電流を供給する電源部と
より構成されるものを使用し、上記電源部より供給する
電流の大きさを所定のタイミングで自動的に切換えるこ
とにより上記磁界の強さを切換えて、その各磁界の強さ
毎に対応する1種類の元素のイオンを選択して、試料室
に注入し、その順次注入するイオンを減速させて試料基
板上に順次蒸着させるイオンビーム蒸着方法。
(1) Injecting raw material gas into an ionization chamber to generate ions of multiple types of elements simultaneously, injecting those ions into an ion acceleration chamber, accelerating them, and injecting them into an arcuate conduit of a mass separator; The mass separator consists of the arc-shaped conduit, an electromagnet placed near the arc-shaped conduit that generates a magnetic field in a direction perpendicular to the plane surrounded by the arc-shaped conduit, and a current flowing through the coil of the electromagnet. The strength of each magnetic field can be changed by automatically switching the magnitude of the current supplied from the power supply at a predetermined timing. An ion beam deposition method in which ions of one type of element corresponding to each sample are selected and injected into a sample chamber, and the sequentially injected ions are decelerated and sequentially deposited onto a sample substrate.
JP30335690A 1990-11-08 1990-11-08 Method for vapor depositing ion beam Pending JPH04176862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30335690A JPH04176862A (en) 1990-11-08 1990-11-08 Method for vapor depositing ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30335690A JPH04176862A (en) 1990-11-08 1990-11-08 Method for vapor depositing ion beam

Publications (1)

Publication Number Publication Date
JPH04176862A true JPH04176862A (en) 1992-06-24

Family

ID=17919996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30335690A Pending JPH04176862A (en) 1990-11-08 1990-11-08 Method for vapor depositing ion beam

Country Status (1)

Country Link
JP (1) JPH04176862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013789A1 (en) * 2012-07-18 2014-01-23 ラボテック株式会社 Deposition device and deposition method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197820A (en) * 1981-05-29 1982-12-04 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197820A (en) * 1981-05-29 1982-12-04 Fujitsu Ltd Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013789A1 (en) * 2012-07-18 2014-01-23 ラボテック株式会社 Deposition device and deposition method
JP2014037618A (en) * 2012-07-18 2014-02-27 Rabotekku Kk Deposition device and deposition method
EP2840163A1 (en) * 2012-07-18 2015-02-25 Labotec Limited Deposition device and deposition method
EP2840163A4 (en) * 2012-07-18 2015-03-11 Labotec Ltd Deposition device and deposition method
US9453278B2 (en) 2012-07-18 2016-09-27 Labotec Limited Deposition device and deposition method

Similar Documents

Publication Publication Date Title
EP1245694B1 (en) Vacuum arc vapor deposition apparatus and vacuum arc vapor deposition method
US4865710A (en) Magnetron with flux switching cathode and method of operation
EP0141417A2 (en) Apparatus for forming film by ion beam
US4264642A (en) Deposition of thin film organic coatings by ion implantation
CZ298474B6 (en) Plasma processing apparatus
JP4003448B2 (en) Vacuum arc deposition method and apparatus
WO2005116291B1 (en) Apparatus for directing plasma flow to coat internal passageways
EP3091560A1 (en) Remote arc discharge plasma assisted system
JPH0751752B2 (en) Plasma energized magnetron sputter deposition method and apparatus
JPS61238958A (en) Method and apparatus for forming composite thin film
JPH10280135A (en) Thin coating vapor depositing device using cathode arc discharge
US3133874A (en) Production of thin film metallic patterns
JPS6116347B2 (en)
WO2007066574A1 (en) Sheet plasma film forming apparatus
JPH04176862A (en) Method for vapor depositing ion beam
JPH0372067A (en) Arc discharge type evaporator having a plurality of evaporating crucibles
JPS6372875A (en) Sputtering device
JPH07138743A (en) Ion plating device
KR20190001244U (en) Control System of Dispersion and Direction of Arc Ion Beam Using Magnetic Field and Plasma Surface Treatment System
JPH03138363A (en) Plasma beam sputtering device
JPH04116162A (en) Magnetic field generator for planar-magnetron sputtering system
JP3026145B2 (en) Plasma processing method and apparatus
JPH02185966A (en) Method for generating sheet plasma current uniform in its crosswise direction
JP3464998B2 (en) Ion plating apparatus and method for controlling thickness and composition distribution of deposited film by ion plating
EP1473382A1 (en) Process and apparatus for plasma-activated film deposition by magnetron sputtering