JPH04176827A - Method for refining sulfurized metal ore - Google Patents

Method for refining sulfurized metal ore

Info

Publication number
JPH04176827A
JPH04176827A JP30493690A JP30493690A JPH04176827A JP H04176827 A JPH04176827 A JP H04176827A JP 30493690 A JP30493690 A JP 30493690A JP 30493690 A JP30493690 A JP 30493690A JP H04176827 A JPH04176827 A JP H04176827A
Authority
JP
Japan
Prior art keywords
melt
refining
concentration
sulfur
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30493690A
Other languages
Japanese (ja)
Other versions
JP3024205B2 (en
Inventor
Takeyoshi Shibazaki
武義 柴崎
Takashi Shimizu
隆 清水
Nobuhiro Oguma
信博 小隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2304936A priority Critical patent/JP3024205B2/en
Publication of JPH04176827A publication Critical patent/JPH04176827A/en
Application granted granted Critical
Publication of JP3024205B2 publication Critical patent/JP3024205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To simply and easily execute the appropriate refining of sulfurized metal ore by blowing oxygen into the molten body of sulfurized metal ore to remove sulfur, measuring the concn. of SO2 in the exhaust gas and calculating the remaining sulfur concn. in the molten body. CONSTITUTION:A blown gas contg. oxygen such as air rich in oxygen is fed to the molten body of sulfurized metal ore. In this way, the sulfurized metal ore is oxidized to remove sulfur as SO2 from the molten body. In the above method for refining the sulfurized metal ore, the concn. of SO2 in the exhaust gas generated in this refining is measured, and from the above SO2 concn., the remaining sulfur concn. in the above molten body is calculated. In this way, the remaining sulfur concn. is simply and easily discriminated, and the end point of the refining is securely decided to prevent the excessive oxidation of the molten body. At this time, preferably, the oxygen concn. in the above blown gas is regulated in accordance with the remaining sulfur concn. in the molten body to improve the efficiency of the refining.

Description

【発明の詳細な説明】 −[産業上の利用分野コ 本発明は、硫化銅鉱などの硫化金属鉱の精錬方法に関し
、特に、硫化金属鉱に含まれている硫黄を酸化させて除
去する硫化金属鉱の精錬方法に関するものである。
Detailed Description of the Invention - [Industrial Field of Application] The present invention relates to a method for refining metal sulfide ores such as copper sulfide ores, and particularly to a method for refining metal sulfide ores by oxidizing and removing sulfur contained in metal sulfide ores. It concerns the method of refining ore.

[従来の技術] 硫化金属鉱を精錬する方法としては、例えば銅鉱の連続
精錬方法について説明すると、ます溶錬炉において銅精
鉱を溶融して、硫化銅および硫化鉄を主成分とするカワ
と、原料中の脈石や溶剤や酸化鉄等を主成分とするカラ
ミとを生成し、ついで、分離炉においてカラミとカワを
分離し、ついで、製鋼炉においてカワを酸化させて粗銅
とし、ついで、精製炉において、酸化用気体(例えば酸
素の比率がほぼ20〜30%である酸素富化空気)を熔
体に吹き込んで酸化させ、粗銅に残留していた硫黄の比
率を十分に低下させて金属銅の比率を向上させる。この
反応は次式で表すことができる。
[Prior Art] As a method for refining metal sulfide ore, for example, a continuous refining method for copper ore is described. In a mass smelting furnace, copper concentrate is melted to form a sulfide mainly composed of copper sulfide and iron sulfide. , produce gangue in the raw material, solvent, and karami whose main components are iron oxide, etc., then separate the karami and slug in a separation furnace, then oxidize the slug in a steelmaking furnace to produce blister copper, and then, In the refining furnace, an oxidizing gas (for example, oxygen-enriched air with an oxygen content of approximately 20 to 30%) is blown into the melt to oxidize it, sufficiently reducing the proportion of sulfur remaining in the blister copper and converting it into metal. Improve the copper ratio. This reaction can be expressed by the following formula.

CutS+0t=2Cu+SO* 一方、この酸化工程中において、吹込酸素と銅との反応
により、酸化銅が生成されてしまう現象が生じる。
CutS+0t=2Cu+SO* On the other hand, during this oxidation step, a phenomenon occurs in which copper oxide is produced due to the reaction between the blown oxygen and copper.

このために従来では、精錬度を高めるために、前述の酸
化工程に続いて、還元剤を熔体に吹き込み、前記酸化鋼
を還元し、熔体中の金属鋼の比率をさらに向上させるこ
とが行なわれている。
To this end, in the past, in order to increase the degree of refining, following the aforementioned oxidation step, a reducing agent is blown into the melt to reduce the oxidized steel and further improve the ratio of metallic steel in the melt. It is being done.

すなわち、還元剤(例えば水素ガスやアンモニアガスや
炭化水素系燃料と空気の混合物など)を熔体に吹き込み
、熔体中に含まれている酸素を除去し、熔体中の金属鋼
の比率をさらに向上させる。
That is, a reducing agent (for example, hydrogen gas, ammonia gas, or a mixture of hydrocarbon fuel and air) is blown into the melt to remove oxygen contained in the melt and reduce the ratio of metallic steel in the melt. Improve further.

このようにして得た精銅は、さらに陽極板(アノード)
に鋳造されて電解精製される。
The refined copper obtained in this way is further used as an anode plate.
It is cast and electrolytically refined.

ところで、前記した粗銅の酸化工程においては、酸化を
過度に行うと、熔体中の酸素濃度が増加し、還元工程に
おける還元時間が長くなり、かつ、還元剤を多く使用し
なければならないという不都合が生じる。他方、熔体の
酸化程度が不十分である場合は、熔体中の硫黄の残存率
が高くなり、電解精錬工程において精銅を陽極板に鋳造
した状態において陽極板に気泡が発生し、その品質が悪
くなるという不都合が生じる。
By the way, in the above-mentioned oxidation process of blister copper, if oxidation is performed excessively, the oxygen concentration in the melt increases, the reduction time in the reduction process becomes longer, and a large amount of reducing agent must be used. occurs. On the other hand, if the degree of oxidation of the melt is insufficient, the residual rate of sulfur in the melt will be high, and bubbles will occur on the anode plate when refined copper is cast into the anode plate in the electrolytic refining process. This causes the inconvenience that the quality deteriorates.

そこで、従来は、適正な酸化終点を判別するために、あ
る程度の量の酸化用気体を熔体中に吹き込んだ後、熔体
からインゴットサンプルを採取し、その表面模様を目視
にて観察し、当該作業者の勘と経験とに基づいて酸化終
点を判断していた。
Conventionally, in order to determine the appropriate oxidation end point, a certain amount of oxidizing gas is blown into the melt, an ingot sample is taken from the melt, and its surface pattern is visually observed. The oxidation end point was determined based on the intuition and experience of the operator.

[発明が解決しようとする課題] しかしながら、上記のように、目視によって酸化終点を
判断する方法は、明確な基準が存在していないために、
必然的に判断のばらつきが大きくなり、過酸化や未酸化
となる危険性があった。
[Problems to be Solved by the Invention] However, as described above, the method of visually determining the oxidation end point has no clear standard.
Inevitably, there would be a wide variation in judgment, and there was a risk of overoxidation or underoxidation.

そこで、発明者がこうした危険性を防止する方法につい
て種々研究した結果、以下のような知見を得た。
Therefore, the inventor conducted various studies on methods to prevent such risks, and as a result, the following knowledge was obtained.

すなわち、まず、酸化工程における熔体中の硫黄濃度(
%)と硫黄量の減少速度(kg/5in)との関係を、
吹込ガスの酸素濃度を4種類に変更してそれぞれ調べた
。この結果を第1図に示す。ここで、熔体中の硫黄濃度
は、酸化スタートから終点まで約10分間隔で装入口よ
りピンサンプルを採取し、分析して得たものである。ま
た、使用した4種類の吹込ガスの成分は、以下の条件1
〜4にそれぞれ示した通りである。
That is, first, the sulfur concentration (
%) and the rate of decrease in sulfur content (kg/5in),
The oxygen concentration of the blown gas was changed to four types and each was investigated. The results are shown in FIG. Here, the sulfur concentration in the melt was obtained by taking pin samples from the charging port at intervals of about 10 minutes from the start of oxidation to the end point and analyzing them. In addition, the components of the four types of blown gas used were as follows:
As shown in 4. to 4, respectively.

(テストI) 空fi(27Nm”/5in)+ 80 %酸素カX 
(3Nm’7sin) 吹込ガス中酸素濃度 27%(vetbase)(テス
ト2) 空気(27Nm’/5in)+ 80%酸素ガス(3N
m″/5in)生蒸気(5N m”/5in)吹込ガス
中酸素濃度 23%(vetbase)(テストg) 空気のみ(27Nm’/5in) 吹込ガス中酸素濃度 21%(vetbase)(テス
ト4) 空気(27Nm″/5in)生蒸気(5Nip’/5i
n)吹込ガス中酸素濃度 18%(vetbase)こ
の実験から、熔体中の硫黄濃度が高いうちは、吹込ガス
中の酸素濃度が高いほうが硫黄量の減少速度が大きい傾
向を示した。しかしながら、熔体中の硫黄濃度がある限
度(0,2〜0.3%)以下になると、硫黄量の減少速
度は硫黄濃度に従って減少し、吹込ガスの酸素濃度の大
小による硫黄酸化速度の差はほとんど無くなる事が判明
した。
(Test I) Empty fi (27Nm”/5in) + 80% oxygen power
(3Nm'7sin) Oxygen concentration in blown gas 27% (vetbase) (Test 2) Air (27Nm'/5in) + 80% oxygen gas (3N
m''/5in) Live steam (5N m''/5in) Oxygen concentration in the blown gas 23% (vetbase) (Test G) Air only (27Nm'/5in) Oxygen concentration in the blown gas 21% (vetbase) (Test 4) Air (27Nm''/5in) Live steam (5Nip'/5i
n) Oxygen concentration in the blown gas: 18% (vetbase) This experiment showed that as long as the sulfur concentration in the melt was high, the rate of decrease in the amount of sulfur tended to be faster when the oxygen concentration in the blown gas was higher. However, when the sulfur concentration in the melt falls below a certain limit (0.2 to 0.3%), the rate of decrease in the amount of sulfur decreases in accordance with the sulfur concentration, and the difference in the rate of sulfur oxidation due to the oxygen concentration of the blown gas It turned out that it almost disappeared.

なお、第1図中において、ラインI−rlは、吹込ガス
の酸素の全量が熔体中の硫黄と反応した時の硫黄減少速
度を示すもので、硫黄濃度が高い領域ではこのライン近
くでほぼ一定値となった。
In Fig. 1, line I-rl indicates the rate of sulfur reduction when the total amount of oxygen in the blown gas reacts with sulfur in the melt, and in the region of high sulfur concentration, the line I-rl shows the rate of sulfur reduction near this line. It became a constant value.

つぎに、酸化工程における熔体中の硫黄濃度と酸素濃度
との関係を、吹込ガスの酸素濃度を上記テスト1〜4に
おける4種類に変更してそれぞれ調べた。そのうち、テ
スト】とテスト4の結果を第2図に示す。この結果より
、熔体中のli*濃度が0.05%以下になると、吹込
ガスの酸素濃度が高いほど、酸化終点における熔体中の
酸素濃度が高くなる傾向が示された。
Next, the relationship between the sulfur concentration and oxygen concentration in the melt in the oxidation step was investigated by changing the oxygen concentration of the blown gas to four types in Tests 1 to 4 above. Among them, the results of Test] and Test 4 are shown in Figure 2. This result showed that when the li* concentration in the melt was 0.05% or less, the higher the oxygen concentration of the blown gas, the higher the oxygen concentration in the melt at the oxidation end point.

つぎに、熔体中の硫黄濃度(%)と、排気ガス中のSO
lの濃度との関係を、吹込ガスの酸素濃度を上記の4種
類に変更してそれぞれ調べた。この結果を第3rgJに
示す。この実験から、熔体中の硫黄濃度が0.2〜0.
3%以下の領域では硫黄濃度が減少するにつれて、排気
ガス中において検出されるSO7の濃度も低下し、両者
が対応関係にあることが判明した。
Next, calculate the sulfur concentration (%) in the melt and the SO in the exhaust gas.
The relationship with the concentration of 1 was investigated by changing the oxygen concentration of the blown gas to the above four types. This result is shown in the third rgJ. From this experiment, it was found that the sulfur concentration in the melt was between 0.2 and 0.
In the region of 3% or less, as the sulfur concentration decreases, the concentration of SO7 detected in the exhaust gas also decreases, and it was found that there is a corresponding relationship between the two.

上記の結果から、熔体中の硫黄濃度が0.2〜0.3%
程度以下になると、吹込ガスの酸素濃度が18〜26%
(vetbase)程度の範囲では熔体中の硫黄量現象
速度に差がなくなることが判る(第1図参照)。したが
って、酸化スタート時から、熔体中の硫黄濃度が0.2
〜0.3%になるまでは、酸素濃度の高い吹込ガス、例
えば、上記した(テスト2)のものを吹込み、その後は
、酸素濃度の低い吹込みガス、例えば、上記した(テス
ト4)のものに切り替えて吹込むこととした場合であっ
ても、酸化時間がさほど変化することなく、さらには、
酸化終点における熔体中の酸素濃度の上昇を抑えること
ができることが予測される(第2図参照)。
From the above results, the sulfur concentration in the melt is 0.2 to 0.3%.
If the oxygen concentration of the blown gas is below 18% to 26%
It can be seen that there is no difference in the rate of change in the amount of sulfur in the melt in the range of (vetbase) (see Figure 1). Therefore, from the start of oxidation, the sulfur concentration in the melt is 0.2
Up to 0.3%, an insufflation gas with a high oxygen concentration, e.g., as described above (Test 2), is injected, and thereafter an insufflation gas with a low oxygen concentration, e.g., as described above (Test 4), is injected. Even if you decide to switch to the oxidation time and inject it, the oxidation time will not change much, and furthermore,
It is predicted that the increase in oxygen concentration in the melt at the end point of oxidation can be suppressed (see Figure 2).

また、熔体中の硫黄濃度と、排気ガス中において検出さ
れるS Otの濃度とは、良い対応関係にあるために、
排気ガス中のS Otの濃度を測定することにより、熔
体中における硫黄濃度を推定し、上記の方法における酸
素濃度の切り替え時期や酸化終点時期の判定に使用しう
ることが予測される(第3図参照)。
In addition, since there is a good correspondence between the sulfur concentration in the melt and the concentration of SOt detected in the exhaust gas,
It is predicted that by measuring the concentration of SOt in the exhaust gas, the sulfur concentration in the melt can be estimated and used to determine the timing of switching the oxygen concentration and the timing of the oxidation end point in the above method. (See Figure 3).

本発明は上記の知見に基づいてなされたもので、熔体中
の残存硫黄濃度を簡易かつ容易に判別し、熔体の過度の
酸化を防止することのできる硫化金属鉱の精錬方法を提
供することを目的とする。
The present invention has been made based on the above findings, and provides a method for refining metal sulfide ore that can simply and easily determine the residual sulfur concentration in the melt and prevent excessive oxidation of the melt. The purpose is to

[課題を解決するための手段] そこで、請求項1記載の硫化金属鉱の精錬方法は、硫化
金属鉱の熔体に、酸素を含む吹込ガスを供給して前記熔
体から硫黄を除去し、精錬する方法において、この精錬
によって生じる排気ガス中のS Otの濃度を測定し、
このSO7の濃度から前記熔体中の残存硫黄濃度を算出
する構成としたものである。
[Means for Solving the Problems] Therefore, the method for refining sulfide metal ore according to claim 1 includes: supplying a blowing gas containing oxygen to a sulfide metal ore melt to remove sulfur from the melt; In the refining method, the concentration of SOt in the exhaust gas generated by this refining is measured,
The remaining sulfur concentration in the melt is calculated from the SO7 concentration.

また、請求項2記載の硫化金属鉱の精錬方法は、硫化金
属鉱の熔体に、酸素を含む吹込ガスを供給して前記熔体
から硫黄を除去し、精錬する方法において、熔体中の残
存硫黄濃度に応じて、前記吹込ガス中の酸素濃度を調整
する構成としたものである。
The method for refining sulfide metal ore according to claim 2 is a method for refining a sulfide metal ore melt by supplying a blowing gas containing oxygen to the melt to remove sulfur from the melt. The structure is such that the oxygen concentration in the blown gas is adjusted according to the residual sulfur concentration.

[作用] 請求項I記載の方法によれば、排気ガス中のSOtの濃
度を測定することにより、熔体中の残存硫黄濃度を算出
することができ、酸化終点や、あるいは、酸素濃度の切
り替え時期を判断することができる。
[Operation] According to the method described in claim I, the residual sulfur concentration in the melt can be calculated by measuring the concentration of SOt in the exhaust gas, and the oxidation end point or the oxygen concentration can be switched. You can judge the timing.

請求項2記載の方法によれば、熔体中の残存硫黄濃度に
応じて吹込ガス中の酸素濃度を調整することとしたので
、例えば、熔体の硫黄濃度がある一定値以下となったと
きに、熔体の硫黄濃度に応じて吹込ガスの酸素濃度を低
下させることにより、酸化時間を延ばすことなしに酸化
終点時に熔体に含まれる酸素の濃度を低下させることが
できる。
According to the method of claim 2, since the oxygen concentration in the blown gas is adjusted according to the residual sulfur concentration in the melt, for example, when the sulfur concentration in the melt falls below a certain value, Furthermore, by lowering the oxygen concentration of the blown gas in accordance with the sulfur concentration of the melt, the concentration of oxygen contained in the melt at the end of oxidation can be lowered without prolonging the oxidation time.

[実施例コ 以下に、本発明の精錬方法の一実施例について説明する
[Example] An example of the refining method of the present invention will be described below.

本実施例においては、吹込ガスとして、酸化スタート時
から、熔体中の硫黄濃度が0.2%〜0゜3%となるま
では、 空気(27Nm’/win)+ 80%酸素ガス(3N
g+”/5in)十蒸気(5N m”/5in)吹込ガ
ス中酸素濃度 23%(wetbase)という組成の
、酸素を富化させた吹込ガスを用い、その後、酸化終点
時までは、80%酸素ガスの供給を停止し、 空気(27Nm’/pin)十蒸気(5N m”/5i
n)吹込ガス中酸素濃度 18%(wetbase)と
いう組成の吹込ガスを用いた点で、上記従来の精錬方法
と相違する。他の構成については、従来と同様なので、
詳細についての説明を省略する。
In this example, the blown gas was air (27Nm'/win) + 80% oxygen gas (3N
g+”/5 in) 10 steam (5 N m”/5 in) Oxygen concentration in the injected gas An oxygen-enriched injected gas with a composition of 23% (wetbase) was used, and then 80% oxygen was added until the end point of oxidation. Stop the gas supply and turn on air (27Nm'/pin) and steam (5Nm'/5i).
n) Oxygen concentration in the blown gas This differs from the conventional refining method described above in that the blown gas has a composition of 18% (wetbase). The other configurations are the same as before, so
Detailed explanation will be omitted.

本実施例において、吹込ガス中に蒸気を混入させるのは
、羽口閉塞の防止のためである。また、酸化スタート時
から蒸気を混入させているのは、酸化途中から蒸気を混
入させようとすると、−旦吹込ガスの吹き込みを止めて
ノズルを入れる時間が必要となり、酸化工程の時間が長
くなりかつ作業も煩雑となるためである。
In this embodiment, the reason why steam is mixed into the blown gas is to prevent tuyere clogging. Also, the reason why steam is mixed in from the start of oxidation is that if you try to mix steam in the middle of oxidation, it will take time to stop blowing gas and turn on the nozzle, which will lengthen the oxidation process. This is also because the work becomes complicated.

本実施例においては、上記の条件に基づいて熔体の酸化
を行い、その後、従来と同様に熔体の還元を行うととも
に、このときの酸化時間・還元時間・還元用重油量等に
ついて平均値を算出した。
In this example, the molten material is oxidized based on the above conditions, and then the molten material is reduced in the same manner as in the conventional method, and the oxidation time, reduction time, amount of heavy oil for reduction, etc. at this time are calculated using average values. was calculated.

ここで、酸化時間とは、酸化スタートから酸化終点まで
に要した時間であり、還元時間とは、還元スタートから
還元終点までに要した時間である。
Here, the oxidation time is the time required from the start of oxidation to the end point of oxidation, and the reduction time is the time required from the start of reduction to the end point of reduction.

ここで、熔体中の硫黄濃度の推定は、第3図に示した測
定結果を基礎とし、排気ガス中のSO5の濃度をSot
計を用いて測定し、この測定値を第3図のグラフに当て
はめて行った。すなわち、本実施例では、吹込ガス中の
酸素濃度切り替え時期を、排気ガス中S Oz濃度が4
〜5%に達した時点とし、酸化終点を、S Oを濃度が
0.5%に達した時点とした。
Here, the sulfur concentration in the melt is estimated based on the measurement results shown in Figure 3, and the SO5 concentration in the exhaust gas is calculated as Sot.
The measured values were applied to the graph in FIG. 3. That is, in this example, the timing of switching the oxygen concentration in the blown gas is set when the SO concentration in the exhaust gas is 4.
-5%, and the oxidation end point was when the SO concentration reached 0.5%.

上記実施例の結果を下記の第1表に示す。The results of the above examples are shown in Table 1 below.

なお、第1表においては、実施例は5回の平均であり、
また、比較例として、従来と同様に吹込ガスとして酸素
富化空気を使用した場合における酸化時間・還元時間・
還元用重油量等の平均値を示した。
In addition, in Table 1, the examples are the average of 5 times,
In addition, as a comparative example, the oxidation time, reduction time, and
The average value of the amount of heavy oil for reduction, etc. is shown.

また、還元条件については、本実施例と比較例(従来法
)とは同一条件とした。
Further, regarding the reduction conditions, the present example and the comparative example (conventional method) were set to the same conditions.

上記第1表から判るように、本実施例によれば、以下の
利点を有する。
As can be seen from Table 1 above, this embodiment has the following advantages.

■ 酸化終点時における熔体中の酸素濃度を従来法より
も0.12%低く抑えることができ、還元時間を1回当
たり6.2分程度短縮することができた。すなわち、従
来の方法に比較して還元時間を約13%短縮することが
できた。
(2) The oxygen concentration in the melt at the end of oxidation could be kept 0.12% lower than in the conventional method, and the reduction time could be reduced by about 6.2 minutes per round. That is, the reduction time could be reduced by about 13% compared to the conventional method.

このことは、酸化工程における熔体中の硫黄濃度と、酸
素濃度との関係につき、吹込ガスとして酸素富化空気を
使用した場合(通常操業データ)と、酸化後半(硫黄濃
度がある一定濃度以下に減少した時点)において80%
酸素ガスの供給を停止し、酸素濃度を低下させた時のデ
ータとを比較すると、酸化後半において酸素濃度を低下
させた場合のほうが、酸化終点において硫黄濃度がほぼ
同じ条件でも酸素濃度を低くできるためである(第2図
参照)。
This shows that the relationship between the sulfur concentration in the melt and the oxygen concentration in the oxidation process is different when oxygen-enriched air is used as the blown gas (normal operation data) and when the sulfur concentration is below a certain level (normal operation data). 80% at the time of
Comparing the data when the oxygen gas supply is stopped and the oxygen concentration is lowered, it is found that lowering the oxygen concentration in the latter half of oxidation can lower the oxygen concentration even if the sulfur concentration is almost the same at the end of oxidation. This is because (see Figure 2).

■ 酸化終点における酸素濃度を低くすることができる
ので、還元剤(本実施例においてはC重油と空気との混
合物)の使用量を低く抑えることができ、重油の使用量
を1回当たり44,9ρ、すなわち11%削減すること
ができた。
■ Since the oxygen concentration at the end point of oxidation can be lowered, the amount of reducing agent (in this example, a mixture of heavy oil C and air) used can be kept low, and the amount of heavy oil used can be reduced to 44. A reduction of 9ρ, or 11%, was achieved.

■ 本実施例では、SO1計を用いて容易に計測するこ
とのできる排気ガス中のSot濃度を用いて、熔体中の
硫黄濃度を推定することができた。
(2) In this example, the sulfur concentration in the melt could be estimated using the Sot concentration in the exhaust gas, which can be easily measured using an SO1 meter.

したがって、熔体中からサンプルを取り出すといった手
間のかかる作業を行う必要がなく、作業を連続的に行う
ことができて作業時間の短縮を図ることができ、また、
作業を簡易かつ容易に行うことができた。
Therefore, there is no need to perform time-consuming work such as taking out a sample from the melt, and the work can be performed continuously, reducing work time.
The work was simple and easy.

なお、上記実施例においては、連続精錬によって得た粗
銅に上記した酸化方法を適用するものとしたが、連続精
錬に限るものではなく、他の種類の精錬方法にも適用す
ることができることは当然である。
In addition, in the above example, the above-mentioned oxidation method was applied to blister copper obtained by continuous refining, but it is not limited to continuous refining, and it is natural that it can be applied to other types of refining methods. It is.

[発明の効果〕 請求項1の精錬方法によれば、この精錬によって生じる
排気ガス中のS Otの濃度を測定し、このSO2の濃
度から熔体中の残存硫黄濃度を算出する構成としたので
、熔体中からサンプルを取り出すといった手間のかかる
作業を行う必要がなく、作業を連続的に行うことができ
て作業時間の短縮を図ることができ、作業の簡易化・容
易化を図ることができる。
[Effects of the Invention] According to the refining method of claim 1, the concentration of SOt in the exhaust gas generated by this refining is measured, and the concentration of residual sulfur in the melt is calculated from the concentration of SO2. , there is no need to perform time-consuming work such as taking out samples from the melt, and the work can be done continuously, reducing work time and simplifying and facilitating the work. can.

請求項2の精錬方法によれば、熔体中の残存硫黄濃度に
応じて、前記吹込ガス中の酸素濃度を調整する構成とし
たので、従来の方法に比較して、酸化時間を延長する事
なしに酸化終点での熔体中の酸素濃度の上昇を抑えるこ
とができ、酸化終了後の熔体についての還元時間を短縮
することができる。さらに、還元剤の使用量を低く抑え
ることができ、還元工程におけるコストを削減すること
ができる。
According to the refining method of claim 2, since the oxygen concentration in the blown gas is adjusted according to the residual sulfur concentration in the melt, the oxidation time can be extended compared to the conventional method. It is possible to suppress the increase in the oxygen concentration in the melt at the end point of oxidation, and it is possible to shorten the reduction time for the melt after the oxidation is completed. Furthermore, the amount of reducing agent used can be kept low, and costs in the reduction process can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、粗銅の酸化時における熔体中の硫黄濃度と、
熔体中の硫黄量の減少速度との関係を示す図、第2図は
、粗銅の酸化時における熔体中の硫黄濃度と熔体中の酸
素濃度との関係を示す図、第3図は、粗銅の酸化時にお
ける熔体中の硫黄濃度と排気ガス中のSO1濃度との関
係を示す図である。
Figure 1 shows the sulfur concentration in the melt during oxidation of blister copper,
Figure 2 shows the relationship between the rate of decrease in the amount of sulfur in the melt, and Figure 3 shows the relationship between the sulfur concentration in the melt and the oxygen concentration in the melt during oxidation of blister copper. , is a diagram showing the relationship between the sulfur concentration in the melt and the SO1 concentration in the exhaust gas during oxidation of blister copper.

Claims (2)

【特許請求の範囲】[Claims] (1)硫化金属鉱の熔体に、酸素を含む吹込ガスを供給
して前記熔体から硫黄を除去し、精錬する方法において
、この精錬によって生じる排気ガス中のSO_2の濃度
を測定し、このSO_2の濃度から前記熔体中の残存硫
黄濃度を算出することを特徴とする硫化金属鉱の精錬方
法。
(1) In a method of supplying oxygen-containing blowing gas to a sulfide metal ore melt to remove sulfur from the melt and refining, the concentration of SO_2 in the exhaust gas generated by this refining is measured, and A method for refining metal sulfide ore, the method comprising calculating the concentration of residual sulfur in the melt from the concentration of SO_2.
(2)硫化金属鉱の熔体に、酸素を含む吹込ガスを供給
して前記熔体から硫黄を除去し、精錬する方法において
、熔体中の残存硫黄濃度に応じて、前記吹込ガス中の酸
素濃度を調整することを特徴とする硫化金属鉱の精錬方
法。
(2) In a method of supplying a blowing gas containing oxygen to a melt of sulfide metal ore to remove sulfur from the melt and refining, the amount of sulfur in the blowing gas is determined according to the residual sulfur concentration in the melt. A method for refining metal sulfide ore, characterized by adjusting oxygen concentration.
JP2304936A 1990-11-09 1990-11-09 Refining method of metal sulfide ore Expired - Lifetime JP3024205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2304936A JP3024205B2 (en) 1990-11-09 1990-11-09 Refining method of metal sulfide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2304936A JP3024205B2 (en) 1990-11-09 1990-11-09 Refining method of metal sulfide ore

Publications (2)

Publication Number Publication Date
JPH04176827A true JPH04176827A (en) 1992-06-24
JP3024205B2 JP3024205B2 (en) 2000-03-21

Family

ID=17939100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2304936A Expired - Lifetime JP3024205B2 (en) 1990-11-09 1990-11-09 Refining method of metal sulfide ore

Country Status (1)

Country Link
JP (1) JP3024205B2 (en)

Also Published As

Publication number Publication date
JP3024205B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
WO2020217828A1 (en) Method for desulfurization of molten metal
Ibrahimi et al. Optimalization of the ferronickel production process through improving desulfurization effectiveness
Wang et al. Development and prospects of molten steel deoxidation in steelmaking process
SE543101C2 (en) Method for continuously converting nickel-containing copper sulphide materials
US4560405A (en) Process for desulfurizing molten steel
JPH04176827A (en) Method for refining sulfurized metal ore
SU1114343A3 (en) Method for subsurface gas refining of steel
SU1484297A3 (en) Method of producing steels with low carbon content
RU2583216C1 (en) Procedure for melting steel in converter
CN112593040B (en) Converter vanadium extraction coolant and application thereof
KR20000043436A (en) Method for measuring height of molten ingot steel in blast furnace
RU2797319C1 (en) Method for smelting corrosion-resistant steel in dc electric arc steelmaking furnace with hollow graphite electrode
JPS62202013A (en) Converter operating method
Parusov et al. PROVIDING ULTRA-LOW SULPHER CONTENT DURING OUT-OF-FURNACE TREATMENT OF STEEL
RU1786108C (en) Process for ladle treatment of metal
RU2097434C1 (en) Method of converter steel melting
RU1605524C (en) Method of manufacturing corrosion-resistant steel
RU2254380C1 (en) Method of production of rail steel
SU956572A1 (en) Method for melting steel in arc furnaces
JP3902446B2 (en) Converter blowing method
SU692862A1 (en) Method of steel production
SU720028A1 (en) Method of steel processing
SU916552A1 (en) Method for melting steel
Coursol et al. Using carbonate fluxes to remove oxygen and sulfur from blister copper
RU2125100C1 (en) Method of steel melting in converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

EXPY Cancellation because of completion of term