JPH0417637A - Aluminum alloy high damping material and its manufacture - Google Patents

Aluminum alloy high damping material and its manufacture

Info

Publication number
JPH0417637A
JPH0417637A JP11931090A JP11931090A JPH0417637A JP H0417637 A JPH0417637 A JP H0417637A JP 11931090 A JP11931090 A JP 11931090A JP 11931090 A JP11931090 A JP 11931090A JP H0417637 A JPH0417637 A JP H0417637A
Authority
JP
Japan
Prior art keywords
aluminum alloy
vibration damping
damping material
unavoidable impurities
loss coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11931090A
Other languages
Japanese (ja)
Inventor
Minoru Hayashi
稔 林
Katsutoshi Sasaki
佐々木 勝敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP11931090A priority Critical patent/JPH0417637A/en
Publication of JPH0417637A publication Critical patent/JPH0417637A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material light in weight, excellent in cold workability and furthermore excellent in vibration damping capacity by forming this material of Al incorporated with a specified amt. of Zr. CONSTITUTION:This high damping material contains, by weight, 0.5 to 20% Zr and the balance Al with inevitable impurities. At the time of adding Zr to Al, Al-Zr intermetallic compounds are uniformly distributed into a mother phase. When vibration is applied to the material of this sort, dislocations introduced by plastic working repeat temporarily anchoring to the Al-Zr series intermetallic compounds and separating therefrom to absorb vibrational energy. By this effect, the applied vibration is extremely swiftly damped. For giving this effect, the addition of Zr only is sufficient, but, when Si, Fe, Mn or the like are furthermore added, its vibration damping capacity can moreover be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた振動減衰特性を有し、音響機器、精密機
器、自動車などの振動を嫌う構造部材として使用される
アルミニウム合金制振材料およびその製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an aluminum alloy vibration damping material that has excellent vibration damping properties and is used as a structural member that dislikes vibrations in audio equipment, precision equipment, automobiles, etc. The present invention relates to a manufacturing method thereof.

〔従来の技術] 一般に物体を振動させると、ある周波数(fr )で振
幅が大きくなる(第1図)。この周波数を共振周波数と
いう。共振周波数における最大振幅をAoとすると、こ
のエネルギーが172となるのは振幅がA。Zr2  
(dB表示では一3dB)となる周波数である。この周
波数幅(半値幅、3dB値幅)をΔrとすると、損失係
数ηは次式で表される。
[Prior Art] Generally, when an object is vibrated, the amplitude increases at a certain frequency (fr) (Fig. 1). This frequency is called the resonant frequency. If the maximum amplitude at the resonance frequency is Ao, this energy is 172 because the amplitude is A. Zr2
(-3 dB in dB representation). If this frequency width (half value width, 3 dB value width) is Δr, the loss coefficient η is expressed by the following equation.

η=Δf / f r この損失係数ηの値が大きい材料はど振動減衰性に優れ
、外力が除去された場合には振動が急速に減衰する。通
常の金属材料の損失係数ηは0.001以下である。
η=Δf/f r A material with a large value of this loss coefficient η has excellent vibration damping properties, and vibrations are rapidly damped when external force is removed. The loss coefficient η of ordinary metal materials is 0.001 or less.

従来、音響機器、精密機器、自動車などの振動を嫌う構
造部材の金属材料、いわゆる制振材料としては、Fe−
Cr系、Mn−Cu系、Zn−A1系、Ni−Ti系な
どの合金が知られている。
Conventionally, Fe-
Alloys such as Cr-based, Mn-Cu-based, Zn-A1-based, and Ni-Ti-based are known.

またMg、Mg−Zr系の鋳造材も制振材として知られ
ている。
Furthermore, Mg and Mg-Zr based cast materials are also known as vibration damping materials.

[発明が解決しようとする課題] Fe−Cr系、Mn−Cu系、Zn−Aj2系、Ni−
Ti系などの合金は振動減衰性が大きいが、比重が大き
いという共通の欠点を有し、機器の軽量化を計ろうとす
る場合には不適当である。一方Mg、Mg−Zr系の鋳
造材も大きい振動減衰性を示し、しかも比重が小さいと
いう長所を有するが、冷間加工が全くできないという欠
点があった。
[Problems to be solved by the invention] Fe-Cr system, Mn-Cu system, Zn-Aj2 system, Ni-
Although alloys such as Ti-based alloys have high vibration damping properties, they have a common drawback of high specific gravity, making them unsuitable when attempting to reduce the weight of equipment. On the other hand, Mg and Mg-Zr based cast materials also have the advantage of exhibiting high vibration damping properties and low specific gravity, but have the disadvantage that they cannot be cold worked at all.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、比重が小さ(しか
も冷間加工が容易なアルミ合金制振材料およびその製造
方法を開発したものである。
In view of this, as a result of various studies, the present invention has developed an aluminum alloy vibration damping material that has a low specific gravity (and can be easily cold-worked), and a method for manufacturing the same.

即ち請求項1の発明は、Zr0.5〜20−1%を含み
、残部Afと不可避的不純物とからなることを特徴とす
るアルミニウム合金制振材料であり、請求項2記戦の発
明は、Zr0.5〜20wt%を含み、さらにSi、F
eNMn、Ni、希土類元素のうちの1種または2種以
上を合計で0.1〜15wt%含有し、残部Alと不可
避的不純物とからなることを特徴とするアルミニウム合
金制振材料であり、請求項3記載の発明は、Zr0.5
〜20wt%を含み、さらにGe、Cd、In、Sn、
Sb、Biのうちの1種または2種以上を合計で0.1
〜15wt%含み、残部Alと不可避的不純物とからな
ることを特徴とするアルミニウム合金制振材料であり、
請求項4記載の発明は、Zr0.5〜20−1%を含み
、さらにSi、FeNMn、Ni、希土類元素の元素群
より選ばれる1種または2種以上と、Ge、Cd、In
、Sn、Sb、Biの元素群より選ばれる1種または2
種以上を合計で0.1〜25111t%含有し、残部A
lと不可避的不純物とからなることを特徴とするアルミ
ニウム合金制振材料である。
That is, the invention of claim 1 is an aluminum alloy vibration damping material characterized by containing 0.5 to 20-1% of Zr, and the balance consisting of Af and unavoidable impurities, and the invention of claim 2 is: Contains Zr0.5-20wt%, and further contains Si, F
An aluminum alloy vibration damping material containing a total of 0.1 to 15 wt% of one or more of eNMn, Ni, and rare earth elements, with the balance consisting of Al and unavoidable impurities; The invention described in item 3 is based on Zr0.5
~20wt%, and further contains Ge, Cd, In, Sn,
A total of 0.1 of one or more of Sb and Bi
An aluminum alloy vibration damping material characterized by containing ~15 wt% and the remainder consisting of Al and unavoidable impurities,
The invention according to claim 4 contains Zr0.5 to 20-1%, and further contains one or more selected from the element group of Si, FeNMn, Ni, and rare earth elements, and Ge, Cd, and In.
, Sn, Sb, Bi or one selected from the group of elements
Contains 0.1 to 25111 t% of seeds or more in total, and the balance is A.
This is an aluminum alloy vibration damping material characterized by consisting of l and inevitable impurities.

また請求項5記載の発明は、Zr0.5〜20wt%を
含み、残部Afと不可避的不純物からなるアルミニウム
合金鋳塊に減面率で30%以上の塑性加工を施して、損
失係数ηを0.006以上とすることを特徴とするアル
ミニウム合金制振材料の製造方法であり、請求項6記載
の発明は、Zr0.5〜20wt%を含み、さらにSi
、FeNMn、Ni、希土類元素のうち1種または2種
以上を合計で0.1〜15wt%を含有し、残部Alと
不可避的不純物からなるアルミニウム合金鋳塊に減面率
で30%以上の塑性加工を施して、損失係数η0.00
6以上とすることを特徴とするアルミニウム合金制振材
料の製造方法であり、請求項7記載の発明は、Zr0.
5〜2Qw t%を含み、さらにC,e、Cd、In、
Sn、Sb、Biのうち1種または2種以上を合計で0
.1〜15wt%を含有し、残部AI2と不可避的不純
物からなるアルミニウム合金鋳塊に減面率で30%以上
の塑性加工を施して、損失係数ηを0.006以上とす
ることを特徴とするアルミニウム合金制振材料の製造方
法であり、請求項8記載の発明は、Z r 0.5〜2
0wt%を含み、さらにSi、FeSMn、Ni、希土
類元素の元素群より選ばれる1種または2種以上と、G
e、Cd、In、Sn、Sb、Biの元素群より選ばれ
る1種または2種以上を合計で0.1〜25wt%を含
有し、残部A1と不可避的不純物からなるアルミニウム
合金鋳塊に減面率で30%以上の塑性加工を施して、損
失係数ηを0.006以上とすることを特徴とするアル
ミニウム合金制振材料の製造方法である。
In addition, the invention as claimed in claim 5 is such that an aluminum alloy ingot containing 0.5 to 20 wt% of Zr and the remainder Af and unavoidable impurities is subjected to plastic working with an area reduction rate of 30% or more to reduce the loss coefficient η to 0. 006 or more, and the invention according to claim 6 is a method for producing an aluminum alloy vibration damping material, characterized in that the vibration damping material contains Zr0.5 to 20 wt% and further contains Si.
, FeNMn, Ni, and rare earth elements in a total amount of 0.1 to 15 wt%, and the balance is Al and unavoidable impurities. After processing, the loss coefficient η0.00
6 or more, the invention according to claim 7 provides a method for manufacturing an aluminum alloy vibration damping material, characterized in that Zr0.
Contains 5-2Qw t%, and further contains C, e, Cd, In,
Total of 1 or 2 or more of Sn, Sb, and Bi
.. An aluminum alloy ingot containing 1 to 15 wt% and the remainder consisting of AI2 and unavoidable impurities is subjected to plastic working with an area reduction rate of 30% or more, so that the loss coefficient η is 0.006 or more. A method for producing an aluminum alloy vibration damping material, and the invention according to claim 8 provides a method for producing an aluminum alloy vibration damping material.
0 wt%, and one or more selected from the element group of Si, FeSMn, Ni, and rare earth elements;
The aluminum alloy ingot is reduced to an aluminum alloy ingot containing a total of 0.1 to 25 wt% of one or more selected from the element group of e, Cd, In, Sn, Sb, and Bi, with the remainder being A1 and unavoidable impurities. This is a method for producing an aluminum alloy vibration damping material, characterized in that the aluminum alloy damping material is subjected to plastic working with a surface area of 30% or more and a loss coefficient η of 0.006 or more.

ここにおいて減面率とは圧延、押出等の塑性加工におい
て、素材の断面積(So)と製品の断面積(S)とから
次式に示される数値である。
Here, the area reduction rate is a value expressed by the following equation from the cross-sectional area (So) of the material and the cross-sectional area (S) of the product in plastic working such as rolling and extrusion.

〔作用〕[Effect]

制振材料はその振動減衰メカニズムにより、転位型、複
合型、強磁性型、双晶型に分類される。
Damping materials are classified into dislocation type, composite type, ferromagnetic type, and twin type depending on their vibration damping mechanism.

アルミニウムにZrを添加するとAf−Zr系の金属間
化合物が母相中に均一に分布する。この様な材料に振動
を加えると、塑性加工により導入された転位がAn−Z
r系の金属間化合物への一時的な固着/離脱を繰り返し
、振動エネルギーを吸収する(転位型としての効果)。
When Zr is added to aluminum, Af-Zr intermetallic compounds are uniformly distributed in the matrix. When vibration is applied to such a material, the dislocations introduced by plastic working become An-Z
It repeats temporary adhesion/detachment to r-based intermetallic compounds and absorbs vibrational energy (effect as a dislocation type).

このような効果により、材料に与えられた振動を極めて
速やかに減衰せしめるものである。この効果を発揮させ
るにはZrの添加のみでも充分であるが、さらに5tS
FeNMn、Ni、希土類元素、Ge、Cd、In、S
n、Sb、Bi澁などを添加するとさらに振動減衰能が
向上する。Si、FeNMn、Ni、希土類元素はZr
と同様に金属間化合物を形成し、転位の一時的な固着/
M脱により振動エネルギーを吸収する。一方、Ge、C
d、In、Sn、Sb、Biは各々の金属粒子・化合物
が存在し、各粒子と母相との界面での粘性流動により振
動エネルギーを吸収する。これらの効果により振動減衰
能をさらに向上させることができる。
This effect allows vibrations applied to the material to be damped extremely quickly. Addition of Zr alone is sufficient to exhibit this effect, but in addition 5tS
FeNMn, Ni, rare earth elements, Ge, Cd, In, S
Addition of n, Sb, Bi, etc. further improves the vibration damping ability. Si, FeNMn, Ni, rare earth element is Zr
Similarly, intermetallic compounds are formed and temporary fixation of dislocations/
Absorbs vibrational energy through M removal. On the other hand, Ge, C
Metal particles/compounds of d, In, Sn, Sb, and Bi exist, and vibration energy is absorbed by viscous flow at the interface between each particle and the matrix. These effects can further improve the vibration damping ability.

上記の如<Zrは振動減衰性の向上に極めて有効なAf
−Zr系化合物を形成させるために添加するもので、そ
の含有量を0.5〜20wt%と限定したのは、0.5
wt%未満ではAjl!−Zr系の金属間化合物の形成
量が少なく振動減衰効果が不充分であり、20w t%
を超えると効果が飽和するうえに、加工性が問題となる
。また、Si、、FeNMn、Ni、希土類元素のうち
1種または2種以上を合計で0.1〜1511t%と限
定したのは、0.1wt%未満では母相中に分布する化
合物量が少なく振動減衰効果が不充分であり、15wt
%を超えると効果が飽和するうえ、化合物の分布が不均
一となり、さらには冷間加工が困難となる。希土類元素
はその種類が特に限定されるものではないが、具体的に
はY、La、Ce、Pr、Nd、Pm、Sm等を使用す
ることができる。また、Ge、Cd、In、Sn、Sb
、Biのうち1種または2種以上を合計で0.1〜15
wt%と限定したのは、Q、 1wt%未満では母相中
に分布する低融点金属粒子・化合物の分布が少なく振動
減衰効果が不充分であり、15wt%を超えると効果が
飽和するうえ低融点金属粒子・化合物の分布が不均一と
なり振動減衰能がばらつく、粗大な低融点金属粒子・化
合物が形成されることによって塑性加工性・機械的特性
・耐食性等が劣化する恐れがある。
As mentioned above, Zr is an extremely effective Af for improving vibration damping properties.
- It is added to form a Zr-based compound, and the content is limited to 0.5 to 20 wt%.
Ajl below wt%! -The amount of Zr-based intermetallic compounds formed is small and the vibration damping effect is insufficient, and the amount of 20wt%
If it exceeds 100%, the effect will be saturated and processability will become a problem. In addition, the reason why one or more of Si, FeNMn, Ni, and rare earth elements is limited to 0.1 to 1511 t% in total is because if it is less than 0.1 wt%, the amount of compounds distributed in the matrix is small. Vibration damping effect is insufficient, 15wt
%, the effect is saturated, the distribution of the compound becomes non-uniform, and furthermore, cold working becomes difficult. The type of rare earth element is not particularly limited, but specifically, Y, La, Ce, Pr, Nd, Pm, Sm, etc. can be used. Also, Ge, Cd, In, Sn, Sb
, one or more of Bi in total from 0.1 to 15
The reason why we limited it to wt% is that Q: If it is less than 1wt%, the distribution of low melting point metal particles and compounds in the matrix is small and the vibration damping effect is insufficient, and if it exceeds 15wt%, the effect is saturated and the vibration damping effect is low. The distribution of the melting point metal particles/compounds becomes uneven, causing variations in vibration damping ability, and the formation of coarse, low melting point metal particles/compounds, which may lead to deterioration of plastic workability, mechanical properties, corrosion resistance, etc.

また、Cu等通常のAE地金に含まれる不純物は0.5
wt%以下ならば特に本発明の効果を損なうことはない
、一方、Mgの添加は材料の振動減衰性を低下させるた
め0.5iit%以下にすることが望ましい。
In addition, the impurities contained in normal AE metals such as Cu are 0.5
If the amount is less than wt%, the effects of the present invention will not be particularly impaired.On the other hand, since the addition of Mg reduces the vibration damping properties of the material, it is desirable to make it less than 0.5iit%.

以上のような組成のAJ2合金は、通常の方法で溶解・
鋳造することができるが、金属間化合物等を微細化し振
動減衰性を向上させるために、急冷凝固粉末冶金法やメ
カニカルアロイング法を用いることもできる。さらに、
これらアルミニウム合全鋳塊に必要に応して均質化処理
を施す。この、均質化処理は添加元素の分布状態をより
均一にするために行うが、150〜600°Cの温度で
数時間加熱すればよい、この状態でのアルミニウム合金
鋳塊は優れた振動減衰性を有しているが、これに減面率
30%以上の塑性加工を加えることにより振動減衰性は
大きく向上する。即ち塑性加工を加えることにより転位
密度が増大し、前述のように転位の化合物への一時的な
固着/離脱の繰り返しによる振動エネルギーの吸収効果
が発揮されるほか、鋳塊状態では粗大であった低融点金
属粒子・化合物が塑性加工により分断微細化され、母相
との粘性流動により振動エネルギーの吸収効果がさらに
効率的に発揮され振動減衰性が向上する。塑性加工とし
ては熱間加工または冷間加工、あるいは熱間加工後に冷
間加工を施せば良く例えば、圧延・押出・引き抜き・鍛
造などいずれの手段で行ってもよいが、減面率30%以
上とし、損失係数ηが0.006以上になるようにする
。塑性加工量は大きくすればするほど損失係数は向上し
、また熱間加工より冷間加工のほうがより高い損失係数
が得られるが、鋳塊から最終加工品までの減面率が30
%以上になるようにすれば熱間加工、冷間加工にかかわ
らず損失係数η0.006以上が得られ充分な振動減衰
性が得られる。
AJ2 alloy with the above composition can be melted and
Although it can be cast, a rapid solidification powder metallurgy method or a mechanical alloying method can also be used in order to refine the intermetallic compound and improve vibration damping properties. moreover,
These aluminum alloy ingots are subjected to homogenization treatment as necessary. This homogenization treatment is performed to make the distribution of added elements more uniform, but it only needs to be heated at a temperature of 150 to 600°C for several hours. In this state, the aluminum alloy ingot has excellent vibration damping properties. However, by adding plastic working to this with an area reduction rate of 30% or more, the vibration damping property is greatly improved. In other words, by adding plastic working, the dislocation density increases, and as mentioned above, the vibration energy absorption effect is exerted due to repeated temporary attachment/detachment of dislocations to the compound, and in addition, the dislocations are coarse in the ingot state. The low melting point metal particles/compounds are fragmented and refined through plastic working, and due to viscous flow with the matrix, the vibration energy absorption effect is more efficiently exerted, improving vibration damping properties. The plastic working may be hot working or cold working, or cold working after hot working, and may be performed by any means such as rolling, extrusion, drawing, or forging, but the area reduction is 30% or more. and the loss coefficient η is set to be 0.006 or more. The loss coefficient improves as the amount of plastic working increases, and a higher loss coefficient can be obtained with cold working than with hot working, but the area reduction from the ingot to the final workpiece is 30%.
% or more, a loss coefficient η of 0.006 or more can be obtained regardless of hot working or cold working, and sufficient vibration damping properties can be obtained.

なお、強度と伸びの調整のために通例行われる焼鈍は、
熱間加工終了後または冷間加工の途中に施しても本発明
の効果を損なうことはない。また、同じく強度と伸びの
調整のために最終加工品に対して施される調質焼鈍は、
塑性加工により導入された転位を減少させるので振動減
衰性を劣化させる傾向があるが、400°C以下の温度
で24時間程度以下なら特に問題はない。
In addition, annealing is commonly performed to adjust strength and elongation.
Even if it is applied after hot working or during cold working, the effects of the present invention will not be impaired. Similarly, temper annealing is performed on the final processed product to adjust strength and elongation.
Since the dislocations introduced by plastic working are reduced, there is a tendency for the vibration damping properties to be deteriorated, but there is no particular problem as long as it is maintained at a temperature of 400° C. or less for about 24 hours or less.

〔実施例〕〔Example〕

実施例1 第1表に示す組成のA2合金を溶解・鋳造し、厚さ60
mm、幅300m、長さ400閣の鋳塊とした。
Example 1 A2 alloy having the composition shown in Table 1 was melted and cast to a thickness of 60 mm.
The ingot was 300 mm wide and 400 mm long.

これを面削後厚さ50閣とし、350°Cで4時間均質
化処理を施し、しかる後第1表に示す減面率で熱間およ
び冷間圧延を行って板材とした。
After face cutting, this was made to a thickness of 50 mm, subjected to homogenization treatment at 350°C for 4 hours, and then hot and cold rolled at the area reduction ratio shown in Table 1 to obtain a plate material.

これより厚さ2圓、幅10mm、長さ250画の試験片
を切り出し、片持振動法により振動減衰性(損失係数η
)を評価した。即ち試験片の片側端部をチャッキングし
て発振器で強制的に振動を与え、共振周波数frでの損
失係数ηを(1)式により求めた。その結果を第1表に
併記した。
A test piece with a thickness of 2 mm, a width of 10 mm, and a length of 250 strokes was cut out from this, and the vibration damping property (loss coefficient η
) was evaluated. That is, one end of the test piece was chucked to forcibly vibrate it with an oscillator, and the loss coefficient η at the resonant frequency fr was determined by equation (1). The results are also listed in Table 1.

η=Δf / f r・・・・べ】) 但しΔfは3dB値幅 第1表より明らかなように、本発明によるAj2合金制
振材(麹1〜5)はいずれも0.006以上の損失係数
ηを示し、優れた振動減衰性を有することが判る。
η=Δf/f r...]) However, Δf has a value range of 3 dB.As is clear from Table 1, the Aj2 alloy vibration damping materials (Koji 1 to 5) according to the present invention all have a loss of 0.006 or more. It shows a coefficient η, indicating that it has excellent vibration damping properties.

一方、比較例として示した阻6〜7は損失係数ηの値が
低い。
On the other hand, samples 6 to 7 shown as comparative examples have a low value of loss coefficient η.

実施例2 第2表に示す組成の合金を溶解・鋳造法、急冷凝固粉末
冶金法およびメカニカルアロイング法により直径220
−のアルミニウム合金鋳塊を作製し、第2表に示す条件
で押出加工を行って丸棒を作製した。
Example 2 An alloy having the composition shown in Table 2 was melted and cast, rapidly solidified powder metallurgy, and mechanical alloying to obtain a diameter of 220 mm.
An aluminum alloy ingot of - was produced and extruded under the conditions shown in Table 2 to produce a round bar.

これより実施例1と同様に厚さ21、幅10■、長さ2
50 wmの試験片を切り出し、共振周波数frでの損
失係数ηを求めた。その結果を第2表に併記した。
From this, as in Example 1, the thickness is 21 cm, the width is 10 cm, and the length is 2 cm.
A test piece of 50 wm was cut out, and the loss coefficient η at the resonance frequency fr was determined. The results are also listed in Table 2.

第2表より明らかなように、本発明による/1合金制振
材(阻8〜12)はいずれも、本発明を外れる比較A/
!合金制振材(Nα13〜14)よりも高い損失係数η
を示し、優れた振動減衰性を有することが判る。
As is clear from Table 2, all of the /1 alloy vibration damping materials according to the present invention (inhibitors 8 to 12) are compared to the comparative A/1 alloys, which are outside the present invention.
! Higher loss coefficient η than alloy damping material (Nα13-14)
It can be seen that it has excellent vibration damping properties.

〔発明の効果] このように本発明によれば、アルミをベースとするため
、軽量で冷間加工性に優れ、しかも優れた振動減衰性を
有するアルミニウム合金制振材料を得ることができるも
ので、工業上顕著な効果を奏するものである。
[Effects of the Invention] As described above, according to the present invention, since it is based on aluminum, it is possible to obtain an aluminum alloy vibration damping material that is lightweight, has excellent cold workability, and has excellent vibration damping properties. , which has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動の共鳴曲線図。 Figure 1 is a resonance curve diagram of vibration.

Claims (8)

【特許請求の範囲】[Claims] (1)Zr0.5〜20wt%を含み、残部Alと不可
避的不純物とからなることを特徴とするアルミニウム合
金制振材料。
(1) An aluminum alloy vibration damping material containing 0.5 to 20 wt% of Zr, with the balance consisting of Al and unavoidable impurities.
(2)Zr0.5〜20wt%を含み、さらにSi、F
e、Mn、Ni、希土類元素のうちの1種または2種以
上を合計で0.1〜15wt%含有し、残部Alと不可
避的不純物とからなることを特徴とするアルミニウム合
金制振材料。
(2) Contains 0.5 to 20 wt% of Zr, and further contains Si, F
1. An aluminum alloy vibration damping material comprising a total of 0.1 to 15 wt% of one or more of e, Mn, Ni, and rare earth elements, with the balance being Al and unavoidable impurities.
(3)Zr0.5〜20wt%を含み、さらにGe、C
d、In、Sn、Sb、Biのうちの1種または2種以
上を合計で0.1〜15wt%含み、残部Alと不可避
的不純物とからなることを特徴とするアルミニウム合金
制振材料。
(3) Contains Zr0.5-20wt%, and further contains Ge and C
1. An aluminum alloy vibration damping material comprising a total of 0.1 to 15 wt% of one or more of D, In, Sn, Sb, and Bi, with the balance being Al and unavoidable impurities.
(4)Zr0.5〜20wt%を含み、さらにSi、F
e、Mn、Ni、希土類元素の元素群より選ばれる1種
または2種以上と、Ge、Cd、In、Sn、Sb、B
iの元素群より選ばれる1種または2種以上を合計で0
.1〜25wt%含有し、残部Alと不可避的不純物と
からなることを特徴とするアルミニウム合金制振材料。
(4) Contains 0.5 to 20 wt% of Zr, and further contains Si, F
e, Mn, Ni, one or more selected from the rare earth element group, and Ge, Cd, In, Sn, Sb, B
A total of 0 of one or more selected from the element group of i
.. An aluminum alloy vibration damping material containing 1 to 25 wt%, with the remainder consisting of Al and inevitable impurities.
(5)Zr0.5〜20wt%を含み、残部Alと不可
避的不純物からなるアルミニウム合金鋳塊に減面率で3
0%以上の塑性加工を施して、損失係数ηを0.006
以上とすることを特徴とするアルミニウム合金制振材料
の製造方法。
(5) An aluminum alloy ingot containing 0.5 to 20 wt% of Zr and the remainder being Al and unavoidable impurities has an area reduction rate of 3
Apply plastic working of 0% or more to reduce the loss coefficient η to 0.006
A method for manufacturing an aluminum alloy vibration damping material, characterized by the above.
(6)Zr0.5〜20wt%を含み、さらにSi、F
eNMn、Ni、希土類元素のうち1種または2種以上
を合計で0.1〜15wt%を含有し、残部Alと不可
避的不純物からなるアルミニウム合金鋳塊に減面率で3
0%以上の塑性加工を施して、損失係数η0.006以
上とすることを特徴とするアルミニウム合金制振材料の
製造方法。
(6) Contains Zr0.5-20wt%, and further contains Si, F
An aluminum alloy ingot containing one or more of eNMn, Ni, and rare earth elements in a total amount of 0.1 to 15 wt%, with the remainder being Al and unavoidable impurities, with an area reduction ratio of 3
A method for producing an aluminum alloy vibration damping material, characterized in that the material is subjected to plastic working of 0% or more to have a loss coefficient η of 0.006 or more.
(7)Zr0.5〜20wt%を含み、さらにGe、C
d、In、Sn、Sb、Biのうち1種または2種以上
を合計で0.1〜15wt%を含有し、残部Alと不可
避的不純物からなるアルミニウム合金鋳塊に減面率で3
0%以上の塑性加工を施して、損失係数ηを0.006
以上とすることを特徴とするアルミニウム合金制振材料
の製造方法。
(7) Contains 0.5 to 20 wt% of Zr, and further contains Ge and C
An aluminum alloy ingot containing one or more of d, In, Sn, Sb, and Bi in a total amount of 0.1 to 15 wt%, with the remainder being Al and unavoidable impurities, with an area reduction ratio of 3
Apply plastic working of 0% or more to reduce the loss coefficient η to 0.006
A method for manufacturing an aluminum alloy vibration damping material, characterized by the above.
(8)Zr0.5〜20wを%を含み、さらにSi、F
e、Mn、Ni、希土類元素の元素群より選ばれる1種
または2種以上と、Ge、Cd、In、Sn、Sb、B
iの元素群より選ばれる1種または2種以上を合計で0
.1〜25wt%を含有し、残部Alと不可避的不純物
からなるアルミニウム合金鋳塊に減面率で30%以上の
塑性加工を施して、損失係数ηを0.006以上とする
ことを特徴とするアルミニウム合金制振材料の製造方法
(8) Contains Zr0.5~20%, and further contains Si, F
e, Mn, Ni, one or more selected from the rare earth element group, and Ge, Cd, In, Sn, Sb, B
A total of 0 of one or more selected from the element group of i
.. An aluminum alloy ingot containing 1 to 25 wt% with the remainder being Al and unavoidable impurities is subjected to plastic working with an area reduction rate of 30% or more, so that the loss coefficient η is 0.006 or more. Method for manufacturing aluminum alloy vibration damping material.
JP11931090A 1990-05-09 1990-05-09 Aluminum alloy high damping material and its manufacture Pending JPH0417637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11931090A JPH0417637A (en) 1990-05-09 1990-05-09 Aluminum alloy high damping material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11931090A JPH0417637A (en) 1990-05-09 1990-05-09 Aluminum alloy high damping material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0417637A true JPH0417637A (en) 1992-01-22

Family

ID=14758271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11931090A Pending JPH0417637A (en) 1990-05-09 1990-05-09 Aluminum alloy high damping material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0417637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615960A (en) * 2018-04-20 2018-10-02 东深金属燃料动力实验室有限责任公司 The method that aluminium hydroxide is produced using discarded aluminium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615960A (en) * 2018-04-20 2018-10-02 东深金属燃料动力实验室有限责任公司 The method that aluminium hydroxide is produced using discarded aluminium

Similar Documents

Publication Publication Date Title
US5308410A (en) Process for producing high strength and high toughness aluminum alloy
DE10135895B4 (en) Aluminum bearing alloy part
EP0675209B1 (en) High strength aluminum-based alloy
JP2001049375A (en) Al ALLOY HAVING EXCELLENT VIBRATION ABSORBABILITY AND ITS PRODUCTION
JPH04120237A (en) Aluminum base high damping material and its manufacture
JPS5914096B2 (en) Al-Si based vibration absorbing alloy and its manufacturing method
JPH0417637A (en) Aluminum alloy high damping material and its manufacture
JPH042747A (en) Manufacture of aluminum alloy high damping material
JPH01255654A (en) Manufacture of high damping aluminum alloy member
JPH03223446A (en) Manufacture of aluminum alloy high damping material
JPH03232949A (en) Manufacture of aluminum alloy high damping material
JPH03253535A (en) Aluminum alloy high damping material and its manufacture
JPH04345A (en) Aluminum alloy high damping material
JPH04311545A (en) Al-mg-si alloy having superior strength and ductility
JPH042746A (en) Manufacture of aluminum alloy high damping material
JPH04344A (en) Aluminum alloy high damping material
JPH08134614A (en) Production of superplastic magnesium alloy material
JPH03120341A (en) Manufacture of al alloy high damping material
JPH03264633A (en) Aluminum alloy high damping material and its production
JPH04347A (en) Aluminum alloy high damping material and its production
JPH03264634A (en) Aluminum alloy high damping material
JPH04351A (en) Production of aluminum alloy high damping material
JPH03232950A (en) Manufacture of aluminum alloy high damping material
JPH04346A (en) Manufacture of aluminum alloy high damping material
JPH03236440A (en) High damping material made of al-cu series alloy and its manufacture