JPH04175972A - Circuit simulation device - Google Patents

Circuit simulation device

Info

Publication number
JPH04175972A
JPH04175972A JP2304321A JP30432190A JPH04175972A JP H04175972 A JPH04175972 A JP H04175972A JP 2304321 A JP2304321 A JP 2304321A JP 30432190 A JP30432190 A JP 30432190A JP H04175972 A JPH04175972 A JP H04175972A
Authority
JP
Japan
Prior art keywords
equations
circuit
motor
simulation device
circuit simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2304321A
Other languages
Japanese (ja)
Inventor
Keisuke Kimura
圭助 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2304321A priority Critical patent/JPH04175972A/en
Publication of JPH04175972A publication Critical patent/JPH04175972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To analyze an electric system and a mechanism system at the same time by representing characteristics of respective elements of the mechanism system as differential equations and solving them in combination with differential equations representing the electric system. CONSTITUTION:When the differential equations representing the characteristics of the respective elements of the mechanism system are linear, the differential equations can be represented in the form of state equations and characteristics of an electric circuit are also represented in the form of state equations, so those two features are utilized and the device is therefore provided with a part which converts the characteristics of the respective elements of the mechanism system described as the state equations to a form that a computer can analyze and a part which combines the state equations after the conversion with a conventional circuit simulation device. Then the equations representing both the mechanism system and electric system are solved at the same time. Consequently, a precise circuit analysis including the mechanism system can be taken.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機構系の各要素の特性を微分方程式で表現し、
電気系を表現する微分方程式と合わせて解くことにより
、電気系と機構系を同時に解析できるようにした回路シ
ミュレーション装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention expresses the characteristics of each element of a mechanical system using differential equations,
This invention relates to a circuit simulation device that can simultaneously analyze an electrical system and a mechanical system by solving differential equations that express the electrical system.

従来の技術 近年、回路シミュレーション装置は機構系の制御回路の
設計に盛んに使用されている。
BACKGROUND OF THE INVENTION In recent years, circuit simulation devices have been widely used to design control circuits for mechanical systems.

以下に従来の回路シミュレーション装置について説明す
る。
A conventional circuit simulation device will be explained below.

従来の回路シミュレーション装置においては、電気系の
各要素の電流特性を各素子の端子間電圧で表わし、入力
された回路網の各節点に対して、キルヒホックの電流則
を適用し回路を特徴づける方程式を導出し、この方程式
を解くことにより、回路の電気的特性をシミュレーショ
ンしている。
In conventional circuit simulation devices, the current characteristics of each element of an electrical system are expressed by the voltage between the terminals of each element, and Kirchhock's current law is applied to each node of the input circuit network to create an equation that characterizes the circuit. By deriving and solving this equation, the electrical characteristics of the circuit are simulated.

発明が解決しようとする課題 しかしながら上記の従来の回路シミュレーション装置に
では、電気系を構成する要素の解析しか行えないので、
モーターの制御など、機構系を含む回路の解析ができな
いという欠点を有していた。
Problems to be Solved by the Invention However, the above-mentioned conventional circuit simulation devices can only analyze the elements that make up the electrical system.
It had the disadvantage that circuits including mechanical systems such as motor control could not be analyzed.

本発明は上記従来の問題点を解決するもので、モーター
などの機構系を合わせた精密な回路解析を行える回路シ
ミュレーション装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a circuit simulation device that can perform precise circuit analysis including mechanical systems such as motors.

課題を解決するための手段 この目的を達成するために本発明の回路シミュレーショ
ン装置は、機構系の各要素の特性を微分方程式で表わし
たときに微分方程式が線形であれば、この微分方程式は
状態方程式の形式で表現できること、電気回路の特性も
状態方程式の形式で表現できることの2点に着目し、状
態方程式で記述された機構系の各要素の特性を計算機で
解析可能な形態に変換する部分と、変換後の状態方程式
と従来の回路シミュレーション装置を結合する部分とを
備えたものである。
Means for Solving the Problems To achieve this object, the circuit simulation device of the present invention expresses the characteristics of each element of a mechanical system by a differential equation, and if the differential equation is linear, the differential equation is expressed as a state. This section focuses on two points: that it can be expressed in the form of an equation, and that the characteristics of an electric circuit can also be expressed in the form of an equation of state, and converts the characteristics of each element of the mechanical system described by the equation of state into a form that can be analyzed by a computer. and a part that connects the transformed state equation with a conventional circuit simulation device.

作用 この構成によって機構系と電気系の両方を表す方程式を
同時に解くので、機構系を含めた精密な回路解析を行な
うことができる。
Function: This configuration allows equations representing both the mechanical system and the electrical system to be solved at the same time, making it possible to perform precise circuit analysis including the mechanical system.

実施例 以下、本発明の実施例を、第1図の直流モーターの定速
度制御回路への適用に基づいて説明する。
Embodiments Hereinafter, embodiments of the present invention will be described based on its application to the constant speed control circuit for a DC motor shown in FIG.

第1図において、モーター1の回転速度ωの検出はモー
ターのシャフトに直結したタコジェネレータ2に発生す
る回転速度ωに比例する直流電圧V。
In FIG. 1, the rotational speed ω of a motor 1 is detected by a DC voltage V proportional to the rotational speed ω generated in a tachogenerator 2 directly connected to the shaft of the motor.

によって行なう。可変抵抗3により生成される設定電圧
v2とvlの差を演算増幅器4により増幅する。バイポ
ーラトランジスタ5.6.7で構成される電圧制御回路
を通して、増幅された結果をモーター1にフィールドバ
ックすることにより、モーターの定速度制御を行なって
いる。直流モーターを第2図に示すようにモデル化する
と、電機子電圧V3は電機子巻線の抵抗Rによる電圧降
下、インダクタンスLによる電圧降下、モーター速度に
比例する逆起電圧の和で表わされる。即ち電機子電流を
iとすると、V3=Ri +L−!l!−i +klω
と表わさdす れる。また、モーターのトルクNは電機子電流iに比例
するので、N=に2iとなる。さらに、モーターと負荷
の慣性モーメントをI、粘性摩擦係数をDとするとN=
I↓ω+Dωの関係がある。
It is done by The difference between the set voltage v2 and vl generated by the variable resistor 3 is amplified by the operational amplifier 4. Constant speed control of the motor is performed by feeding back the amplified result to the motor 1 through a voltage control circuit composed of bipolar transistors 5, 6, and 7. When a DC motor is modeled as shown in FIG. 2, the armature voltage V3 is represented by the sum of a voltage drop due to the resistance R of the armature winding, a voltage drop due to the inductance L, and a back electromotive force proportional to the motor speed. That is, if the armature current is i, then V3=Ri +L-! l! −i +klω
It is expressed as d. Furthermore, since the motor torque N is proportional to the armature current i, N=2i. Furthermore, if the moment of inertia of the motor and load is I, and the coefficient of viscous friction is D, then N=
There is a relationship of I↓ω+Dω.

t 直流モーターの特性は3つの式により表わされる。t The characteristics of a DC motor are expressed by three equations.

電機子電圧V 3 +電機子電流i7回転速度ωを状態
変数とすると、直流モーターの特性を状態方程式で表わ
せるので、本発明の回路シミュレーション装置の所定の
形式で記述することにより、電気系の各要素と合わせて
解析できる。本実施例では、可変抵抗3による設定電圧
v2の時間変化に対して、モーターの回転速度ωの追従
の様子を直接解析できるので、従来の回路シミュレーシ
ョン装置に比較して、10%の精度の向上となる。
If armature voltage V 3 + armature current i7 rotation speed ω is used as a state variable, the characteristics of a DC motor can be expressed by a state equation. It can be analyzed together with each element. In this example, it is possible to directly analyze how the rotational speed ω of the motor follows the time change in the set voltage v2 caused by the variable resistor 3, so the accuracy is improved by 10% compared to the conventional circuit simulation device. becomes.

発明の詳細 な説明したごとく、本発明によれば、回路の解析におい
てモーターなどの機構系が同時に扱えるので、従来の回
路シミュレーション装置より、高精度な解析結果が得ら
れるという利点を持つ。
As described in detail, the present invention has the advantage that mechanical systems such as motors can be handled at the same time in circuit analysis, resulting in more accurate analysis results than conventional circuit simulation devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直流モーターの定速度制御回路を示す回路図、
第2図は直流モーターをモデル化した回路図である。 1・・・・−・モーター、2・・・・・・タコジェネレ
ータ、3・・・・・・可変抵抗、5,6.7・・・・・
・電圧制御回路を構成するバイポーラトランジスタ。 代理人の氏名 弁理士小蝦治明 ほか2名第1図 第2図
Figure 1 is a circuit diagram showing a constant speed control circuit for a DC motor.
Figure 2 is a circuit diagram modeling a DC motor. 1...Motor, 2...Tachogenerator, 3...Variable resistor, 5, 6.7...
・Bipolar transistors that make up the voltage control circuit. Name of agent: Patent attorney Haruaki Koebi and two others Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 状態方程式で記述された機構系の各要素の特性を計算機
で解析可能な形態に変換する手段と、電気系の各要素の
電流特性を各素子の端子間電圧で表わし、入力された回
路網の各節点に対してキルヒホックの電流則を適用し回
路を特徴づける方程式を導出し、この方程式を解くこと
により回路の電気的特性をシミュレーションする手段と
を備えた回路シミュレーション装置。
A means for converting the characteristics of each element of a mechanical system described by an equation of state into a form that can be analyzed by a computer, and a means for expressing the current characteristics of each element of an electrical system by the voltage between the terminals of each element, A circuit simulation device comprising means for applying Kirchhock's current law to each node, deriving an equation characterizing the circuit, and simulating the electrical characteristics of the circuit by solving this equation.
JP2304321A 1990-11-08 1990-11-08 Circuit simulation device Pending JPH04175972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2304321A JPH04175972A (en) 1990-11-08 1990-11-08 Circuit simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2304321A JPH04175972A (en) 1990-11-08 1990-11-08 Circuit simulation device

Publications (1)

Publication Number Publication Date
JPH04175972A true JPH04175972A (en) 1992-06-23

Family

ID=17931621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2304321A Pending JPH04175972A (en) 1990-11-08 1990-11-08 Circuit simulation device

Country Status (1)

Country Link
JP (1) JPH04175972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690397A2 (en) 1994-07-01 1996-01-03 Hitachi, Ltd. Electromagnetic driving system for controlling electromagnetic driving device by simulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690397A2 (en) 1994-07-01 1996-01-03 Hitachi, Ltd. Electromagnetic driving system for controlling electromagnetic driving device by simulator
US5812433A (en) * 1994-07-01 1998-09-22 Hitachi, Ltd. Electromagnetic driving system for controlling electromagnetic driving device by simulator

Similar Documents

Publication Publication Date Title
JPS60138325U (en) protective relay circuit
DE3214569C2 (en) Regulated brushless DC motor
EP0254465B1 (en) Servo simulator
US3181050A (en) Motor control system
JPS59501571A (en) Improved induction motor control device
DE3228505C2 (en) Circuit arrangement for an electric motor
JPH04175972A (en) Circuit simulation device
JPS58172995A (en) Load current detecting circuit
Shi et al. Controller design for bilinear systems with parametric uncertainties
KR19990039695A (en) Simulation of inertial load by resistance-capacitor combination
SU1614092A1 (en) Device for testing automatic excitation controller of turbogenerator
Lindsay An electromechanical network model of the dc motor
JP4497359B2 (en) Cage induction machine simulator for analog simulator
JPH0122400Y2 (en)
JPS6233518Y2 (en)
JPS58154906A (en) Differential circuit
JPS6237176Y2 (en)
JP3343621B2 (en) Defuzzifier circuit
SU987636A1 (en) Friction force simulating device
SU972643A1 (en) Dc electric drive
SU945810A1 (en) Device for converting voltage to current
ALTAŞ Dynamic Model of a Permanent Magnet DC Motor
SU1732284A1 (en) Ammeter
JPS5963707U (en) Servo device
JPS5981235U (en) DC ground fault detector