JPH0417561A - Superconducting rotary electric machine - Google Patents

Superconducting rotary electric machine

Info

Publication number
JPH0417561A
JPH0417561A JP11750390A JP11750390A JPH0417561A JP H0417561 A JPH0417561 A JP H0417561A JP 11750390 A JP11750390 A JP 11750390A JP 11750390 A JP11750390 A JP 11750390A JP H0417561 A JPH0417561 A JP H0417561A
Authority
JP
Japan
Prior art keywords
refrigerant
exhaust pipe
rotor
refrigerant gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11750390A
Other languages
Japanese (ja)
Other versions
JP2752228B2 (en
Inventor
Takuya Kishida
卓也 岸田
Takeo Kakiuchi
健男 垣内
Kazuo Sato
和雄 佐藤
Mikio Kumagai
熊谷 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kansai Electric Power Co Inc
Original Assignee
Toshiba Corp
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kansai Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP11750390A priority Critical patent/JP2752228B2/en
Publication of JPH0417561A publication Critical patent/JPH0417561A/en
Application granted granted Critical
Publication of JP2752228B2 publication Critical patent/JP2752228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To maintain the temperature and the pressure inside a rotor stably by curving one part of an emergency exhaust pipe into U shape in the outside diameter direction of a rotor, and connecting a branch pipe, which has branched off from a refrigerant gas exhaust pipe, to this U-shaped curve. CONSTITUTION:One end of an emergency ehaust pipe 31 is connected to a pressure discharge valve 30, and the other end is connected to a refrigerant storage 19. One part of the emergency exhaust pipe 31 is curved in U shape in the outside diameter direction of a rotor 13, and a branch pipe 32, which has branched off from the refrigerant gas exhaust pipe 20, is connected to the U-shaped curve 32. Gas helium 22, which has evaporated in the refrigerant storage 19, is discharged from a refrigerant supply and discharge device 28 to outside, and also it passes the U-shaped curve 32 and is discharged to outside from a branch pipe 33 through a refrigerant gas exhaust pipe 20.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は超電導回転電機に関するものである。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a superconducting rotating electric machine.

(従来の技術) 近年、超電導導体を回転界磁巻線として利用した、いわ
ゆる超電導回転電機が開発されている。
(Prior Art) In recent years, so-called superconducting rotating electrical machines that utilize superconducting conductors as rotating field windings have been developed.

この超電導回転電機は超電導状態を維持するために、界
磁巻線を液体ヘリウム、液体窒素等の冷媒により極低温
(4に程度)に冷却する必要がある。
In order to maintain a superconducting state in this superconducting rotating electrical machine, it is necessary to cool the field winding to an extremely low temperature (about 4°C) using a coolant such as liquid helium or liquid nitrogen.

このため、回転子の内部には冷媒貯蔵部が設けられてお
り、この冷媒貯蔵部に貯蔵された冷媒は界磁巻線の発熱
や外部からの侵入熱により気化し、冷媒ガスとなる。そ
して、冷媒貯蔵部で気化した冷媒ガスは定常運転時には
トルクチューブや電流リードを冷却しつつ、回転軸の端
部に設けられた冷媒給排装置により回収されるが、界磁
巻線が磁束、温度、電流等の上昇により常電導状態に転
移した場合には、界磁巻線の発熱と共にその蒸発潜熱の
小ささから冷媒が急激に気化し、冷媒貯蔵部内の圧力が
異常上昇する。
For this reason, a refrigerant storage section is provided inside the rotor, and the refrigerant stored in this refrigerant storage section is vaporized by the heat generated by the field windings and heat entering from the outside, and becomes refrigerant gas. During steady operation, the refrigerant gas vaporized in the refrigerant storage section is collected by the refrigerant supply and discharge device installed at the end of the rotating shaft while cooling the torque tube and current leads. When the refrigerant changes to a normal conducting state due to an increase in temperature, current, etc., the field winding generates heat and the refrigerant rapidly vaporizes due to its small latent heat of vaporization, causing an abnormal increase in the pressure within the refrigerant storage section.

このように冷媒貯蔵部内の圧力が急激に異常上昇すると
、通常の回収ループでは冷媒ガスを短時間で回収するこ
とが困難なため、第3図に示すように冷媒貯蔵部1内の
圧力を緊急排気管2を通して回転軸3の端部に設けられ
た圧力放出弁4がら外部に放出するようにしている。な
お、図中5は回転子、6は界磁巻線、7は冷媒、8は冷
媒ガス、9は冷媒ガス排気管である。
When the pressure inside the refrigerant storage section 1 suddenly rises abnormally, it is difficult to recover the refrigerant gas in a short time using a normal recovery loop. The pressure is released through an exhaust pipe 2 to the outside from a pressure release valve 4 provided at the end of the rotating shaft 3. In the figure, 5 is a rotor, 6 is a field winding, 7 is a refrigerant, 8 is a refrigerant gas, and 9 is a refrigerant gas exhaust pipe.

しかしながら、緊急排気管2は極低温側(4に程度)の
冷媒貯蔵部1と常温側(300に程度)の圧力放出弁4
との間に接続されているため、熱伝導による侵入熱の他
に自然対流による侵入熱があり、熱損失が大きいという
問題がある。そこで、自然対流による侵入熱を防止する
ために、従来では第4図に示すように緊急排気管2を多
数の細管要素10で構成したり、あるいは第5図に示す
ように緊急排気管2の一部を回転子5の外径方向にU字
状に湾曲させていた。
However, the emergency exhaust pipe 2 has a refrigerant storage section 1 on the extremely low temperature side (about 400℃) and a pressure release valve 4 on the normal temperature side (about 300℃).
Therefore, in addition to heat intrusion due to thermal conduction, there is also heat intrusion due to natural convection, which causes a problem of large heat loss. Therefore, in order to prevent the intrusion of heat due to natural convection, conventionally the emergency exhaust pipe 2 has been constructed with a large number of thin tube elements 10 as shown in FIG. A portion of the rotor 5 is curved in a U-shape in the outer diameter direction of the rotor 5.

(発明が解決しようとする課8) しかしながら、緊急排気管2を多数の細管要素10で構
成した場合には、管路内の冷媒ガスは高速回転場の影響
を受け、その影響は通常の重力場で遠心力方向に対して
垂直に置がれた管よりもはるかに大きくなることは理論
的にも実験的にも周知であって、自然対流による侵入熱
を防止することは極めて困難であった。
(Problem 8 to be solved by the invention) However, when the emergency exhaust pipe 2 is composed of a large number of thin tube elements 10, the refrigerant gas in the pipe is influenced by a high-speed rotating field, and the influence is different from that of normal gravity. It is well known both theoretically and experimentally that the centrifugal force in the field is much larger than in a tube placed perpendicular to the direction of the centrifugal force, and it is extremely difficult to prevent heat intrusion due to natural convection. Ta.

一方、緊急排気管2の一部を回転子5の外径方向にU字
状に湾曲させた場合は、遠心力場と温度場の関係から管
内の自然対流をある程度抑制することはできるが、定常
運転時に冷媒ガスの温度差から力学エネルギーが生成さ
れ、緊急排気管2内の気体粒子がサーマルオツシレイシ
ョンと呼ばれる自励振動を起こし、気体粒子の自励振動
によって対流が生じるという問題があった。
On the other hand, if a part of the emergency exhaust pipe 2 is curved in a U-shape in the direction of the outer diameter of the rotor 5, natural convection inside the pipe can be suppressed to some extent due to the relationship between the centrifugal force field and the temperature field. During steady operation, mechanical energy is generated from the temperature difference in the refrigerant gas, and the gas particles in the emergency exhaust pipe 2 cause self-excited vibrations called thermal oscillations, causing convection to occur due to the self-excited vibrations of the gas particles. .

本発明は上記のような問題点に鑑みてなされたものであ
り、その目的は定常運転時に緊急排気管内でサーマルオ
ツシレイションが発生してもサーマルオッシレイション
による侵入熱を防止でき、回転子内部の温度及び圧力を
安定に保つことのできる超電導回転電機を提供すること
にある。
The present invention was made in view of the above-mentioned problems, and its purpose is to prevent heat from entering the rotor even if thermal oscillation occurs in the emergency exhaust pipe during steady operation. An object of the present invention is to provide a superconducting rotating electric machine that can maintain stable temperature and pressure.

[発明の構成] (課題を解決するための手段) 上記課題を解決するために本発明は、内部に超電導界磁
巻線を収納し該界磁巻線を冷却する冷媒貯蔵部を有する
回転子と、この回転子の周囲に設けられた固定子と、前
記回転子を駆動する回転軸と、前記冷媒貯蔵部に冷媒を
供給する冷媒供給管と、前記冷媒貯蔵部で気化した冷媒
ガスを外部に排出する冷媒ガス排気管と、前記冷媒貯蔵
部内の圧力が異常上昇したとき前記冷媒貯蔵部内の冷媒
ガスを緊急排気管を通して外部に放出する圧力放出弁と
を備えた超電導回転電機において、前記緊急排気管の一
部を前記回転子の外径方向にU字状に湾曲させ、このU
字状湾曲部に前記冷媒ガス排気管から分岐した分岐管を
接続したものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a rotor that houses a superconducting field winding therein and has a refrigerant storage section that cools the field winding. a stator provided around the rotor, a rotating shaft that drives the rotor, a refrigerant supply pipe that supplies refrigerant to the refrigerant storage section, and a refrigerant gas vaporized in the refrigerant storage section that supplies the refrigerant gas to the outside. In the superconducting rotating electrical machine, the superconducting rotating electric machine is equipped with a refrigerant gas exhaust pipe for discharging refrigerant gas to A part of the exhaust pipe is curved in a U-shape in the direction of the outer diameter of the rotor.
A branch pipe branched from the refrigerant gas exhaust pipe is connected to the letter-shaped curved part.

(作 用) 上記の構成によると、定常運転時に冷媒貯蔵部で気化し
た冷媒ガスは緊急排気管のU字状湾曲部を通り、分岐管
から冷媒ガス排気管を経て外部に排出されるので、分岐
管の接続点から圧力放出弁に至る間の緊急排気管内でサ
ーマルオツシレイションが発生してもサーマルオッシレ
イションによる侵入熱を防止でき、回転子内部の温度及
び圧力を安定に保つことができる。
(Function) According to the above configuration, the refrigerant gas vaporized in the refrigerant storage section during steady operation passes through the U-shaped curved part of the emergency exhaust pipe and is discharged to the outside via the refrigerant gas exhaust pipe from the branch pipe. Even if thermal oscillation occurs in the emergency exhaust pipe between the connection point of the branch pipe and the pressure release valve, the intrusion of heat due to thermal oscillation can be prevented, and the temperature and pressure inside the rotor can be kept stable.

(実施例) 以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は超電導発電機の概略構成を示す図であり、この
超電導発電機のハウジング11内には固定子12および
回転子13が収納されている。上記固定子12は回転子
13の外周に空間部を介して同心状に配置され、支持部
材14によりハウジング11に固定されている。
FIG. 1 is a diagram showing a schematic configuration of a superconducting generator. A stator 12 and a rotor 13 are housed in a housing 11 of the superconducting generator. The stator 12 is arranged concentrically around the outer periphery of the rotor 13 with a space therebetween, and is fixed to the housing 11 by a support member 14.

一方、前記回転子13はダンパー機能を有する外筒15
と、この外筒15の内側に設けられたトルクチューブ1
6とから構成され、トルクチューブ16の内部には超電
導界磁巻線17が収納されている。また、トルクチュー
ブ16の中心部には冷媒としての液体ヘリウム18を貯
蔵する冷媒貯蔵部19が設けられている。この冷媒貯蔵
部19には冷媒ガス排気管20および冷媒供給管21の
一端が接続され、冷媒貯蔵部19で気化したガスヘリウ
ム22は冷媒ガス排気管20を通って外部に排出される
ようになっている。なお、トルクチューブ16と外筒1
5との間には外部からの侵入熱を防止する熱輻射シール
ド23が設けられている。
On the other hand, the rotor 13 has an outer cylinder 15 having a damper function.
and the torque tube 1 provided inside this outer cylinder 15.
6, and a superconducting field winding 17 is housed inside the torque tube 16. Further, a refrigerant storage section 19 is provided at the center of the torque tube 16 to store liquid helium 18 as a refrigerant. One end of a refrigerant gas exhaust pipe 20 and a refrigerant supply pipe 21 are connected to this refrigerant storage section 19, so that gas helium 22 vaporized in the refrigerant storage section 19 is discharged to the outside through the refrigerant gas exhaust pipe 20. ing. In addition, the torque tube 16 and the outer cylinder 1
5, a thermal radiation shield 23 is provided to prevent heat from entering from the outside.

前記回転子13の両端には回転軸24A、24Bが接続
され、それぞれ軸受25を介して/1ウジング11に回
転自在に支持されている。上記回転軸24Aの端部には
超電導界磁巻線17に電流リード26を通じて界磁電流
を供給するコレクターリング27が設けられていると共
に、冷媒給排装置(ヘリウムトランスファーカップリン
グ)28が設けられている。この冷媒給排装置28には
冷媒供給管21の他端が接続されており、冷媒給排装置
28から送り込まれた液体ヘリウム17は冷媒供給管2
1を通って冷媒貯蔵部19に供給されるようになってい
る。
Rotating shafts 24A and 24B are connected to both ends of the rotor 13, and are rotatably supported by the /1 housing 11 via bearings 25, respectively. A collector ring 27 for supplying field current to the superconducting field winding 17 through a current lead 26 is provided at the end of the rotating shaft 24A, and a refrigerant supply/discharge device (helium transfer coupling) 28 is provided. ing. The other end of the refrigerant supply pipe 21 is connected to this refrigerant supply/discharge device 28, and the liquid helium 17 sent from the refrigerant supply/discharge device 28 is transferred to the refrigerant supply pipe 21.
1 and is supplied to the refrigerant storage section 19.

一方、前記回転軸24Bの端部には図示しない発電ター
ビンに接続されるフランジ29が設けられていると共に
、冷媒貯蔵部19内の圧力を緊急放出する圧力放出弁3
0が設けられている。この圧力放出弁30には緊急排気
管31の一端が接続され、緊急排気管31の他端は冷媒
貯蔵部19に接続されている。また、上記緊急排気管3
1は第2図に示すようにその一部を回転子13の外径方
向にU字状に湾曲させており、そのU字状湾曲部32に
は冷媒ガス排気管20から分岐した分岐管33が接続さ
れている。
On the other hand, a flange 29 connected to a power generation turbine (not shown) is provided at the end of the rotating shaft 24B, and a pressure release valve 3 for emergency release of the pressure inside the refrigerant storage section 19 is provided.
0 is set. One end of an emergency exhaust pipe 31 is connected to the pressure release valve 30, and the other end of the emergency exhaust pipe 31 is connected to the refrigerant storage section 19. In addition, the above emergency exhaust pipe 3
As shown in FIG. 2, a part of the rotor 1 is curved in a U-shape in the outer diameter direction of the rotor 13, and a branch pipe 33 branched from the refrigerant gas exhaust pipe 20 is connected to the U-shaped curved part 32. is connected.

上記のように構成される超電導発電機では、定常運転時
に冷媒貯蔵部19で気化したガスヘリウム22は冷媒ガ
ス排気管20を通って冷媒給排装置28から外部に排出
されると共に、冷媒ガス排気管20のU字状湾曲部32
を通り、分岐管33から冷媒ガス排気管20を経て外部
に排出される。
In the superconducting generator configured as described above, the gas helium 22 vaporized in the refrigerant storage section 19 during steady operation is discharged to the outside from the refrigerant supply/discharge device 28 through the refrigerant gas exhaust pipe 20, and the refrigerant gas exhaust U-shaped bend 32 of tube 20
The refrigerant gas passes through the branch pipe 33, passes through the refrigerant gas exhaust pipe 20, and is discharged to the outside.

したがって、分岐管33の接続点から圧力放出弁30に
至る間の緊急排気管31内でガスヘリウム22の温度差
からサーマルオツシレイションが発生しても分岐管33
の接続点から冷媒貯蔵部19に至る間の緊急排気管31
内ではガスヘリウム22が流れているので、サーマルオ
・ソシレイションによる対流がガスヘリウム22の流れ
に逆らって冷媒貯蔵部19に到達するのを防止すること
ができる。よって、サーマルオツシレイションによる熱
対流を防止することができ、回転子内部の温度及び圧力
を安定に保つことができる。
Therefore, even if thermal oscillation occurs due to a temperature difference in the gas helium 22 in the emergency exhaust pipe 31 between the connection point of the branch pipe 33 and the pressure release valve 30, the branch pipe 33
emergency exhaust pipe 31 from the connection point to the refrigerant storage section 19
Since gas helium 22 is flowing inside, it is possible to prevent convection due to thermal isolation from reaching the refrigerant storage section 19 against the flow of gas helium 22. Therefore, heat convection due to thermal oscillation can be prevented, and the temperature and pressure inside the rotor can be kept stable.

なお、上記実施例では冷媒として液体ヘリウムを用いた
が、液体窒素等を用いてもよい。また、上記実施例では
本発明を超電導発電機に適用した場合について説明した
が、本発明はこれに限定されるものではなく、超電導電
動機にも適用することができる。
Although liquid helium was used as the refrigerant in the above embodiment, liquid nitrogen or the like may also be used. Further, in the above embodiments, the case where the present invention is applied to a superconducting generator has been described, but the present invention is not limited to this, and can also be applied to a superconducting motor.

[発明の効果〕 以上説明したように本発明は、内部に超電導界磁巻線を
収納し該界磁巻線を冷却する冷媒貯蔵部を有する回転子
と、この回転子の周囲に設けられた固定子と、前記回転
子を駆動する回転軸と、前記冷媒貯蔵部に冷媒を供給す
る冷媒供給管と、前記冷媒貯蔵部で気化した冷媒ガスを
外部に排出する冷媒ガス排気管と、前記冷媒貯蔵部内の
圧力が異常上昇したとき前記冷媒貯蔵部内の冷媒ガスを
緊急排気管を通して外部に放出する圧力放出弁とを備え
た超電導回転電機において、前記緊急排気管の一部−を
前記回転子の外径方向にU字状に湾曲させ、このU字状
湾曲部に前記冷媒ガス排気管から分岐した分岐管を接続
したものである。したがって、定常運転時に冷媒貯蔵部
で気化した冷媒ガスは緊急排気管のU字状湾曲部を通り
、分岐管から冷媒ガス排気管を経て外部に排出されるの
で、分岐管の接続点から圧力放出弁に至る間の緊急排気
管内でサーマルオツシレイションが発生してもサーマル
オッシレイションによる侵入熱を防止でき、回転子内部
の温度及び圧力を安定に保つことができる。
[Effects of the Invention] As explained above, the present invention provides a rotor that houses a superconducting field winding therein and has a refrigerant storage section that cools the field winding, and a rotor provided around the rotor. a stator, a rotating shaft that drives the rotor, a refrigerant supply pipe that supplies refrigerant to the refrigerant storage section, a refrigerant gas exhaust pipe that discharges refrigerant gas vaporized in the refrigerant storage section to the outside, and the refrigerant In a superconducting rotating electrical machine equipped with a pressure release valve that releases refrigerant gas in the refrigerant storage to the outside through an emergency exhaust pipe when the pressure in the storage rises abnormally, a part of the emergency exhaust pipe is connected to the rotor. It is curved into a U-shape in the outer diameter direction, and a branch pipe branched from the refrigerant gas exhaust pipe is connected to this U-shaped curved part. Therefore, during normal operation, the refrigerant gas vaporized in the refrigerant storage section passes through the U-shaped curved part of the emergency exhaust pipe and is discharged from the branch pipe to the outside via the refrigerant gas exhaust pipe, so that pressure is released from the connection point of the branch pipe. Even if thermal oscillation occurs in the emergency exhaust pipe leading to the valve, the intrusion of heat due to thermal oscillation can be prevented, and the temperature and pressure inside the rotor can be kept stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示し、第1図
は超電導発電機の概略構成図、第2図は回転子の一部分
を示す断面図、第3図〜第5図は従来技術を説明するた
めの図である。 11・・・ハウジング、12・・・固定子、13・・・
回転子、17・・・超電導界磁巻線、18・・・液体ヘ
リウム、19・・・冷媒貯蔵部、20・・・冷媒ガス排
気管、21・・・冷媒供給管、22・・・ガスヘリウム
、24A、24B・・・回転軸、27・・・セレクター
リング、28・・・冷媒給排装置、30・・・圧力放出
弁、31・・・緊急排気管、32・・・U字状湾曲部、
33・・・分岐管。
1 and 2 show one embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a superconducting generator, FIG. 2 is a sectional view showing a part of the rotor, and FIGS. 3 to 5 are FIG. 2 is a diagram for explaining a conventional technique. 11...Housing, 12...Stator, 13...
Rotor, 17... Superconducting field winding, 18... Liquid helium, 19... Refrigerant storage section, 20... Refrigerant gas exhaust pipe, 21... Refrigerant supply pipe, 22... Gas Helium, 24A, 24B...Rotating shaft, 27...Selector ring, 28...Refrigerant supply/discharge device, 30...Pressure release valve, 31...Emergency exhaust pipe, 32...U-shape curved part,
33... Branch pipe.

Claims (1)

【特許請求の範囲】[Claims]  内部に超電導界磁巻線を収納し該界磁巻線を冷却する
冷媒貯蔵部を有する回転子と、この回転子の周囲に設け
られた固定子と、前記回転子を駆動する回転軸と、前記
冷媒貯蔵部に冷媒を供給する冷媒供給管と、前記冷媒貯
蔵部で気化した冷媒ガスを外部に排出する冷媒ガス排気
管と、前記冷媒貯蔵部内の圧力が異常上昇したとき前記
冷媒貯蔵部内の冷媒ガスを緊急排気管を通して外部に放
出する圧力放出弁とを備えた超電導回転電機において、
前記緊急排気管の一部を前記回転子の外径方向にU字状
に湾曲させ、このU字状湾曲部に前記冷媒ガス排気管か
ら分岐した分岐管を接続したことを特徴とする超電導回
転電機。
A rotor having a refrigerant storage section for storing a superconducting field winding therein and cooling the field winding, a stator provided around the rotor, and a rotating shaft for driving the rotor. a refrigerant supply pipe that supplies refrigerant to the refrigerant storage; a refrigerant gas exhaust pipe that discharges the refrigerant gas vaporized in the refrigerant storage to the outside; A superconducting rotating electric machine equipped with a pressure release valve that releases refrigerant gas to the outside through an emergency exhaust pipe,
A superconducting rotation characterized in that a part of the emergency exhaust pipe is curved in a U-shape in the outer diameter direction of the rotor, and a branch pipe branched from the refrigerant gas exhaust pipe is connected to this U-shaped curved part. Electric machine.
JP11750390A 1990-05-09 1990-05-09 Superconducting rotating electric machine Expired - Fee Related JP2752228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11750390A JP2752228B2 (en) 1990-05-09 1990-05-09 Superconducting rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11750390A JP2752228B2 (en) 1990-05-09 1990-05-09 Superconducting rotating electric machine

Publications (2)

Publication Number Publication Date
JPH0417561A true JPH0417561A (en) 1992-01-22
JP2752228B2 JP2752228B2 (en) 1998-05-18

Family

ID=14713361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11750390A Expired - Fee Related JP2752228B2 (en) 1990-05-09 1990-05-09 Superconducting rotating electric machine

Country Status (1)

Country Link
JP (1) JP2752228B2 (en)

Also Published As

Publication number Publication date
JP2752228B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
RU2372675C2 (en) System and method for cooling superconducting rotor machine
US4123676A (en) Rotor member for superconducting generator
US4152609A (en) Rotor member for superconducting generator
JPH0417561A (en) Superconducting rotary electric machine
EP0043282B1 (en) Superconductive rotor, and electric machine incorporating it
JP2001099156A (en) High temperature superconductive magnetic bearing device and high temperature superconductive flywheel device
JPH0452712B2 (en)
JP2543869B2 (en) Superconducting rotor
JP4732053B2 (en) Superconducting rotating electrical machine rotor
JP2796055B2 (en) Superconducting rotating electric machine rotor
JPS6118350A (en) Rotor of superconductive rotary electric machine
JPH03284156A (en) Superconductive revolving armature
JP3300707B2 (en) Superconducting rotating electric machine rotor
JPS6056061B2 (en) rotating cryostat
JP2603002B2 (en) Superconducting rotating electric machine rotor
JP2667063B2 (en) Superconducting rotating electric machine rotor
JPS6162356A (en) Superconductive rotor
JPS6248473B2 (en)
JPS61196764A (en) Rotor of superconductive rotary electric machine
JPS5972958A (en) Superconductive rotary electric machine
JPH09205741A (en) Superconducting flywheel fixed shaft cooling method
JP2550116B2 (en) Superconducting generator controller
JPS62213554A (en) Rotor of superconducting rotary electric machine
JPS62213556A (en) Rotor of superconducting rotary electric machine
JPS6188762A (en) Rotary armature type superconductive rotary electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees