JPH04174912A - Insulating film-covered electric wire - Google Patents

Insulating film-covered electric wire

Info

Publication number
JPH04174912A
JPH04174912A JP30337690A JP30337690A JPH04174912A JP H04174912 A JPH04174912 A JP H04174912A JP 30337690 A JP30337690 A JP 30337690A JP 30337690 A JP30337690 A JP 30337690A JP H04174912 A JPH04174912 A JP H04174912A
Authority
JP
Japan
Prior art keywords
insulating film
plasma
electric wire
hydrocarbon
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30337690A
Other languages
Japanese (ja)
Inventor
Yoshihito Suzuki
鈴木 悦人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30337690A priority Critical patent/JPH04174912A/en
Publication of JPH04174912A publication Critical patent/JPH04174912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To improve the insulating property and reduce the aging reduction rate by providing a plasma-polymerized insulating film with the relative dielectric constant 3.0 or below. CONSTITUTION:A plasma-polymerized insulating film 14 with the relative dielectric constant 3.0 or below, preferably 2.5 or below, is formed on the outer periphery of the linear conductor 12 of an insulating film-covered electric wire 10. A hydrocarbon monomer is used for the film 14, it is coated and formed by plasma polymerization, and the thickness is preferably set to 0.5-50mum, more preferably to 1-20mum. Saturated hydrocarbon such as methane, ethane, propane, hexane and isobutane, unsaturated hydrocarbon such as 1-butene, butadiene, butyne, pentene and pentadiene, alicyclic hydrocarbon such as cyclohexane, aromatic hydrocarbon such as benzene and toluene, or a monomer substituted with fluorine atoms for part or all of hydrogen atoms connected to carbon atoms of these monomers is used for the hydrocarbon monomer. The insulating property can be improved, and the reduction of the insulating property can be reduced after a long period.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パルス信号伝達用として好適な絶縁膜被覆電
線に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an insulating film-coated electric wire suitable for pulse signal transmission.

(従来の技術) 従来、導電体の直径が1mm以下の電線として、エナメ
ル絶縁電線が用いられている。しかし、この電線は、エ
ナメルの比誘電率が4〜7と大きいので、比誘電率が3
以下であることが要求されるパルス信号伝達用の電線と
しては不適当である。
(Prior Art) Enamel insulated wires have conventionally been used as wires whose conductors have a diameter of 1 mm or less. However, this electric wire has a large dielectric constant of 4 to 7, so the dielectric constant of this electric wire is 3.
It is unsuitable as an electric wire for pulse signal transmission which requires the following.

このため、エナメル絶縁電線は、IC間の配線などへの
適用が困難であるという問題がある。
For this reason, there is a problem in that the enamel insulated wire is difficult to apply to wiring between ICs.

(発明が解決しようとする課題) 上記のとおり、エナメル絶縁膜では比誘電率を3以下に
することはできない。従って、比誘電率が3以下の絶縁
被覆を施した電線を得るため、フッ素樹脂を線状導電体
に塗布することが行われている。しかし、フッ素樹脂を
塗布、乾燥した絶縁膜は均一な厚さになり難く、かなり
斑になってしまう。このため、フッ素樹脂では絶縁特性
が著しく低下するという問題がある。
(Problems to be Solved by the Invention) As mentioned above, the dielectric constant of an enamel insulating film cannot be reduced to 3 or less. Therefore, in order to obtain an electric wire coated with an insulating coating having a dielectric constant of 3 or less, a fluororesin is applied to a linear conductor. However, the insulating film coated with fluororesin and dried does not have a uniform thickness and becomes quite uneven. For this reason, fluororesins have a problem in that their insulation properties are significantly degraded.

本発明は、上記の問題点を解決し、絶縁膜の比誘電率が
小さ(、極細で、パルス信号伝達用として好適な絶縁膜
被覆電線を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an insulating film-coated electric wire having a small dielectric constant and an extremely thin insulating film suitable for pulse signal transmission.

(課題を解決するための手段及び作用)本゛発明の絶縁
膜被覆電線は、直径1mm以下の線状導電体の外周に、
比誘電率が3.0以下のプラズマ重合絶縁膜を有してい
る構成のものである。′以下、図面に基づいて本発明を
説明する。第1図において、絶縁膜被覆電線lOは、線
状導電体12の外周が、プラズマ重合絶縁膜14で被覆
されてなるものである。
(Means and effects for solving the problem) The insulating film coated electric wire of the present invention has a
The structure includes a plasma polymerized insulating film having a dielectric constant of 3.0 or less. 'Hereinafter, the present invention will be explained based on the drawings. In FIG. 1, an insulating film coated electric wire 1O is formed by covering the outer periphery of a linear conductor 12 with a plasma polymerized insulating film 14.

線状導電体12を形成する線材は、直径が1mm以下の
ものであれば、金属線、金属超電導線、セラミックス超
電導線及び導電性プラスチックファイバなど特に制限さ
れない。また、これらの線材は、その外周面に予めメツ
キ層、絶縁層又は緩衝層などを形成しておいてもよい。
The wire forming the linear conductor 12 is not particularly limited as long as it has a diameter of 1 mm or less, such as a metal wire, a metal superconducting wire, a ceramic superconducting wire, or a conductive plastic fiber. Further, a plating layer, an insulating layer, a buffer layer, etc. may be formed on the outer peripheral surface of these wires in advance.

プラズマ重合絶縁膜14は、その比誘電率が3.0以下
のものである。この比誘電率か3.0を超えるとパルス
信号伝達用の電線としては不適当となる。
The plasma polymerized insulating film 14 has a dielectric constant of 3.0 or less. If the dielectric constant exceeds 3.0, the wire is unsuitable for use as a pulse signal transmission wire.

プラズマ重合絶縁膜14の比誘電率は、2.5以下であ
ることが好ましい。
The relative dielectric constant of the plasma polymerized insulating film 14 is preferably 2.5 or less.

プラズマ重合絶縁膜14は、炭化水素系モノマーを用い
、プラズマ重合法により被覆形成されるものである。そ
の厚さは用途に応じて適宜設定されるが、通常は500
nm〜50μmが好ましく、1μm〜20μmが更に好
ましい。
The plasma-polymerized insulating film 14 is formed by a plasma polymerization method using a hydrocarbon monomer. The thickness is set appropriately depending on the application, but it is usually 500 mm.
The thickness is preferably from nm to 50 μm, and more preferably from 1 μm to 20 μm.

炭化水素系モノマーは、プラズマ重合絶縁膜の比誘電率
を3,0以下にすることができ、かつプラズマ重合を行
う減圧雰囲気下で気化可能なものであれば特に制限され
るものではない。この炭化水素系モノマーとしては、メ
タン、エタン、プロパン、ブタン、イソブタン、ペンタ
ン、ネオペンタン、ヘキサン、ヘプタン、オクタン、ノ
ナン、デカンなどの飽和炭化水素、■−ブテン、2−ブ
テン、ブタジェン、ブチン、ペンテン、ペンタンエン、
ペンチン、ヘキセン、オクテン、オクチン、デカジエン
などの不飽和炭化水素、シクロヘキセン、シクロヘキセ
ン、ンクロオクタン、シクロオクチンなどの脂環式炭化
水素、ベンセン、トルエン、p−ジエチルベンセンなど
の芳香族炭化水素、又はこれらのモノマーの炭素原子に
結合する水素原子の一部若しくは全部をフッ素原子で置
換したものを挙げることができる。これらのモノマーは
2種類以上を組み合わせて用いることもできる。
The hydrocarbon monomer is not particularly limited as long as it can lower the dielectric constant of the plasma polymerized insulating film to 3.0 or less and can be vaporized in a reduced pressure atmosphere in which plasma polymerization is performed. The hydrocarbon monomers include saturated hydrocarbons such as methane, ethane, propane, butane, isobutane, pentane, neopentane, hexane, heptane, octane, nonane, decane, ■-butene, 2-butene, butadiene, butyne, pentene, etc. , pentanene,
Unsaturated hydrocarbons such as pentene, hexene, octene, octyne, and decadiene; alicyclic hydrocarbons such as cyclohexene, cyclooctane, and cyclooctyne; aromatic hydrocarbons such as benzene, toluene, and p-diethylbenzene; Examples include monomers in which some or all of the hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms. These monomers can also be used in combination of two or more types.

次に、プラズマ重合法を用いた絶縁膜被覆電線10の製
造方法を第3図に基づいて説明する。線材20(線状導
電体12となるもの)は、送出ローラ22から図中の矢
印の方向に送り出され、二つの磁石24a、24bの間
、内管(図中、断面で示す)26の中空部及び二つの磁
石28a、 28bの間をとおり、最終的に巻取ローラ
29に巻き取られる。内管26の中空部には、モノマー
供給源31から炭化水素系モノマーが供給されている。
Next, a method for manufacturing the insulating film-covered electric wire 10 using the plasma polymerization method will be explained based on FIG. 3. The wire 20 (which becomes the linear conductor 12) is sent out from the delivery roller 22 in the direction of the arrow in the figure, and is placed between the two magnets 24a and 24b in the hollow of the inner tube 26 (shown in cross section in the figure). It passes between the two magnets 28a and 28b, and is finally wound up on a winding roller 29. A hydrocarbon monomer is supplied to the hollow portion of the inner tube 26 from a monomer supply source 31 .

内管26を包み込むように設けられた外管30(図中、
断面で示す)の中空部(内管26の外周壁と外管30の
内周壁とから形成される空間)には、非重合性気体供給
源32から非重合性気体が供給されている。この非重合
性気体はそれ単独ではプラズマ重合しない気体、例えば
、アルゴン、ヘリウムなどの不活性ガス、水素、重水素
、窒素、酸素、塩素等のハロゲンガス及びこれらの混合
ガスなどである。
Outer tube 30 (in the figure,
A non-polymerizable gas is supplied from a non-polymerizable gas supply source 32 to the hollow portion (the space formed by the outer circumferential wall of the inner tube 26 and the inner circumferential wall of the outer tube 30) (shown in cross section). This non-polymerizable gas is a gas that does not undergo plasma polymerization by itself, such as inert gases such as argon and helium, halogen gases such as hydrogen, deuterium, nitrogen, oxygen, and chlorine, and mixed gases thereof.

このように線材20を送りながら、かつ内管26及び外
管30内にモノマー及び非重合性気体を供給しながら、
RF電源36から外管30の外周に巻回された放電誘導
コイル34に印加されたRF電場により放電する。この
放電により、外管30内の非重合性気体は放電し、プラ
ズマ化する。なお、放電方法はこれに限定されるもので
はなく、平行平板型、マグネトロン型又は容量結合によ
る放電でもよく、放電周波数はRF (1〜20MHz
>のほか、直流からマイクロ波まで使用可能である。
While feeding the wire 20 in this manner and supplying the monomer and non-polymerizable gas into the inner tube 26 and outer tube 30,
A discharge is caused by an RF electric field applied from an RF power source 36 to a discharge induction coil 34 wound around the outer circumference of the outer tube 30 . Due to this discharge, the non-polymerizable gas within the outer tube 30 is discharged and turned into plasma. Note that the discharge method is not limited to this, and may be a parallel plate type, magnetron type, or capacitive coupling type discharge, and the discharge frequency is RF (1 to 20 MHz).
>, it can be used for everything from direct current to microwaves.

このRF放電電場は外管30の内部に発生したプラズマ
により吸収又は反射され、内管26の内部にまでは及ば
ない。その結果、内管26内に供給されたモノマーは、
そのまま内管26の両方向の出口(又は入口)から放出
される。一方、外管30の出口(又は入口)から放出さ
れたプラズマ化した非重合性気体は、磁石24a、24
b及び磁石28 a、  28 bにより形成された磁
場の作用により、前記出口付近において、線材20表面
に集中する。そして、プラズマ化された非重合性気体と
接触した炭化水素系モノマーは分解又は活性化され、線
材20表面にプラズマ重合膜が形成される。なお、前記
出口付近に配置する磁石は必須ではないが、製膜速度を
向上させることができるので用いることが好ましい。
This RF discharge electric field is absorbed or reflected by the plasma generated inside the outer tube 30 and does not reach the inside of the inner tube 26. As a result, the monomer supplied into the inner tube 26 is
It is discharged as it is from the outlets (or inlets) in both directions of the inner tube 26. On the other hand, the non-polymerizable gas released from the outlet (or inlet) of the outer tube 30 is transferred to the magnets 24a and 24.
Due to the action of the magnetic field formed by the magnets 28a and 28b, the magnetic field concentrates on the surface of the wire 20 near the exit. Then, the hydrocarbon monomer that comes into contact with the non-polymerizable gas turned into plasma is decomposed or activated, and a plasma polymerized film is formed on the surface of the wire 20. Although the magnet disposed near the exit is not essential, it is preferable to use it because it can improve the film forming speed.

これらの一連のプラズマ重合膜の形成工程は、真空チェ
ンバー40内において、真空排気装置42を作動させ、
真空又は減圧雰囲気下で行うことが好ましいか、差動排
気などを併用し、線材20の送り出し及び巻き取りなど
は真空又は減圧雰囲気外で行うこともてきる。
These series of steps for forming a plasma polymerized film are performed by operating a vacuum exhaust device 42 in a vacuum chamber 40;
It is preferable to perform this in a vacuum or a reduced pressure atmosphere, or it is also possible to use differential pumping or the like to perform the feeding and winding of the wire 20 outside a vacuum or a reduced pressure atmosphere.

次に、本発明の絶縁膜被覆電線の変形態様について説明
する。第2図において、絶縁膜被覆電線50は、線状導
電体52の外周に被覆形成されたプラズマ重合絶縁膜5
4か、多孔質プラズマ重合絶縁膜(以下「多孔質絶縁膜
」という)56と、更にその外周に形成された非孔質で
あるプラズマ重合絶縁膜(上記のプラズマ重合絶縁膜1
4と同質のもの。以下「非孔質絶縁膜」という)58と
からなるものである。
Next, modifications of the insulating film-coated electric wire of the present invention will be explained. In FIG. 2, an insulating film coated electric wire 50 is a plasma polymerized insulating film 5 coated on the outer periphery of a linear conductor 52.
4, a porous plasma-polymerized insulating film (hereinafter referred to as "porous insulating film") 56 and a non-porous plasma-polymerized insulating film (above plasma-polymerized insulating film 1) formed on the outer periphery of the porous plasma-polymerized insulating film 56;
Same quality as 4. (hereinafter referred to as a "non-porous insulating film") 58.

多孔質絶縁膜56は、上記した炭化水素系上ツマ−を用
い、プラズマ重合法により形成されるものである。多孔
質絶縁膜56は、例えば、外部から水の侵入が可能な程
度の孔を有しているものである。また、この多孔質絶縁
膜56の厚さは用途に応じて適宜設定されるが、通常は
500nm〜50μmが好ましく、1μm〜20μmが
更に好ましい。
The porous insulating film 56 is formed by a plasma polymerization method using the above-mentioned hydrocarbon layer. The porous insulating film 56 has, for example, pores large enough to allow water to enter from the outside. Further, the thickness of the porous insulating film 56 is appropriately set depending on the application, but is usually preferably 500 nm to 50 μm, and more preferably 1 μm to 20 μm.

非孔質絶縁膜58は、上記した炭化水素系モノマーと同
しものを用い、プラズマ重合法により形成されるもので
ある。この場合の炭化水素系モノマーは、多孔質絶縁膜
56の形成に用いたモノマーと同−又は異なるもののい
ずれでもよい。この非孔質絶縁膜58の厚さは用途に応
じて適宜設定されるか、通常は50nm〜30μmが好
ましく、500nm〜15μmが更に好ましい。
The non-porous insulating film 58 is formed by plasma polymerization using the same hydrocarbon monomer as described above. The hydrocarbon monomer in this case may be the same as or different from the monomer used to form the porous insulating film 56. The thickness of this non-porous insulating film 58 is appropriately set depending on the application, and is usually preferably 50 nm to 30 μm, more preferably 500 nm to 15 μm.

次に、第3図を参照しながら絶縁膜被覆電線50の製造
方法を説明する。絶縁膜被覆電線50は、まず、線材上
に多孔質絶縁膜56を形成し、その後、その上に非孔質
絶縁膜58を形成する。
Next, a method for manufacturing the insulating film coated electric wire 50 will be explained with reference to FIG. The insulating film coated electric wire 50 is produced by first forming a porous insulating film 56 on the wire, and then forming a non-porous insulating film 58 thereon.

多孔質絶縁膜56の形成方法は、プラズマ重合絶縁膜1
4の形成工程とほぼ同様であるが、絶縁膜を多孔質化す
るための手段が付加されている点で、下記のとおり異な
る。即ち、線材20の表面にプラズマ重合絶縁膜を形成
する際、内管26及び外管30の両方向の出口付近にお
いて、図示していない適当な手段により、該絶縁膜を多
孔質にするための材料(以下「多孔質化材料」という)
を供給する。この多孔質化材料は、減圧雰囲気下におい
て気化するものであれば特に制限されず、例えば上記し
た炭化水素系モノマーと同しものを用いることができる
。そして、線材20の表面に供給された多孔質化材料は
、系内が減圧雰囲気に保持されているので直ちに気化し
、−旦、形成途中のプラズマ重合膜内部に分散される。
The method for forming the porous insulating film 56 is as follows: plasma polymerized insulating film 1
This process is almost the same as the formation process in No. 4, but differs in that a means for making the insulating film porous is added as described below. That is, when forming a plasma-polymerized insulating film on the surface of the wire 20, a material for making the insulating film porous is added near the exits in both directions of the inner tube 26 and the outer tube 30 by an appropriate means (not shown). (hereinafter referred to as "porous material")
supply. This porous material is not particularly limited as long as it evaporates under a reduced pressure atmosphere, and for example, the same hydrocarbon monomers as described above can be used. The porous material supplied to the surface of the wire rod 20 is immediately vaporized because the inside of the system is maintained in a reduced pressure atmosphere, and is immediately dispersed inside the plasma polymerized film that is being formed.

この時、プラズマは磁石による磁場の存在によって線材
20表面に集中しているので、膜内に分散された多孔質
化材料は固定されることなく、巻取ローラ29による巻
き取りの前後に膜外に逃散してしまう。  、このよう
に、多孔質化材料の供給、気化及び逃散の一連の変化が
プラズマ重合膜の形成と並行して行われるので、線材2
0の表面に形成されたプラズマ重合膜が多孔質化する。
At this time, the plasma is concentrated on the surface of the wire 20 due to the presence of the magnetic field generated by the magnet, so the porous material dispersed within the film is not fixed and is removed from the film before and after being wound up by the winding roller 29. He runs away to In this way, a series of changes such as supply, vaporization, and escape of the porous material are performed in parallel with the formation of the plasma polymerized film, so that the wire rod 2
The plasma polymerized film formed on the surface of 0 becomes porous.

なお、前記の磁石による磁場の代わりに、グリッド電極
、静電場を用いることができる。また、−旦膜中に分散
された多孔質化材料は自然に逃散させているが、プラズ
マ重合膜の加熱、溶剤による抽出、乾燥熱気体の吹き付
は等の手段により、強制的に除去することもできる。
Note that a grid electrode or an electrostatic field can be used instead of the magnetic field generated by the magnet. In addition, although the porous material dispersed in the membrane is allowed to escape naturally, it is forcibly removed by heating the plasma polymerized membrane, extraction with a solvent, blowing dry hot gas, etc. You can also do that.

このようにして線材上に多孔質絶縁膜56を形成した線
材を、今度は巻取ローラ29から逆方向に送り出し、最
終的に送出ローラ22で巻き取る過程で、上記の絶縁膜
被覆電線IOのプラズマ重合絶縁膜14の形成方法と同
様にして非孔質絶縁膜58を被覆形成し、絶縁膜被覆電
線50を得る。
The wire rod on which the porous insulating film 56 has been formed in this way is then sent out in the opposite direction from the winding roller 29, and in the process of being finally wound up by the sending roller 22, the above-mentioned insulating film coated electric wire IO is A non-porous insulating film 58 is formed in the same manner as the method for forming the plasma-polymerized insulating film 14 to obtain an insulating film-covered electric wire 50.

なお、絶縁膜被覆電線50においては、多孔質絶縁膜5
6と非孔質絶縁膜58との間に、保護層、緩衝層又は絶
縁層を形成することもできる。
Note that in the insulating film coated electric wire 50, the porous insulating film 5
A protective layer, a buffer layer, or an insulating layer may also be formed between 6 and the non-porous insulating film 58.

本発明の絶縁膜被覆電線!こおいては、線状導電体の外
周に形成されたプラズマ重合絶縁膜の比誘電率が小さい
。また、プラズマ重合絶縁膜を複合膜構造とし、下層膜
を多孔質膜とすると、その膜に含まれる空隙の存在によ
り比誘電率を一層小さくできる。そして、多孔質膜の上
に形成する膜を非孔質膜とすることにより、多孔質膜へ
の水等の侵入を防止し、比誘電率の低下や絶縁抵抗の増
大を防止できる。
Insulating film coated electric wire of the present invention! In this case, the relative dielectric constant of the plasma polymerized insulating film formed around the outer periphery of the linear conductor is small. Further, when the plasma polymerized insulating film has a composite film structure and the lower layer film is a porous film, the relative dielectric constant can be further reduced due to the presence of voids contained in the film. By forming a non-porous film on the porous film, it is possible to prevent water and the like from entering the porous film, thereby preventing a decrease in dielectric constant and an increase in insulation resistance.

(実施例) 実施例1〜28 第3図に示す装置によるプラズマ重合法を適用し、直径
0.1mmの錫メツキ銅線の外周に、プラズマ重合絶縁
膜を形成し、第1図に示す構造の絶縁膜被覆電線を得た
。なお、プラズマ重合絶縁膜の形成用モノマー、非重合
性気体は第1表に示すとおりであり、放電電圧は60W
で行った。これらの電線について、体積抵抗、絶縁破壊
電圧及び比誘電率を測定した。結果を第1表に示す。
(Example) Examples 1 to 28 A plasma polymerized insulating film was formed on the outer periphery of a tin-plated copper wire with a diameter of 0.1 mm by applying a plasma polymerization method using the apparatus shown in FIG. 3, and the structure shown in FIG. 1 was obtained. An insulating film coated wire was obtained. The monomers and non-polymerizable gases for forming the plasma-polymerized insulating film are as shown in Table 1, and the discharge voltage is 60W.
I went there. The volume resistance, dielectric breakdown voltage, and dielectric constant of these wires were measured. The results are shown in Table 1.

比較例1 直径0.1m+nの錫メツキ銅線の外周をエナメル膜(
厚さ12μm)で被覆して電線を得た。この電線の体積
抵抗は6XlO”Ω・cm、比誘電率は4゜2、絶縁破
壊電圧は180 KV/mmであった。
Comparative Example 1 Enamel film (
A wire was obtained by coating the wire with a thickness of 12 μm. This electric wire had a volume resistivity of 6XlO''Ω·cm, a relative dielectric constant of 4°2, and a dielectric breakdown voltage of 180 KV/mm.

(以下余白) 実施例29〜54 第3図に示す装置によるプラズマ重合法を適用し、直径
0.1mmの錫メツキ銅線の外周に、多孔質絶縁膜を形
成し、更にその外周に非孔質絶縁膜を被覆形成して、第
2図に示す構造の絶縁膜被覆電線を得た。なお、多孔質
絶縁膜及び非孔質絶縁膜の形成用上ツマー等は第2表に
示すとおりであり、多孔質化材料としてはデカンを用い
、放電電圧は60Wで行った。得られた絶縁膜被覆電線
について、体積抵抗、絶縁破壊電圧及び比誘電率を測定
した。
(Leaves below) Examples 29 to 54 A porous insulating film was formed on the outer periphery of a tin-plated copper wire with a diameter of 0.1 mm by applying a plasma polymerization method using the apparatus shown in Figure 3, and a non-porous insulating film was further formed on the outer periphery. A quality insulating film was coated to obtain an insulating film-covered electric wire having the structure shown in FIG. 2. Note that the upper parts for forming the porous insulating film and the non-porous insulating film are as shown in Table 2, decane was used as the porous material, and the discharge voltage was 60 W. The volume resistance, dielectric breakdown voltage, and dielectric constant of the obtained insulating film-coated wire were measured.

比較例2 非孔質絶縁膜を形成しない以外は実施例29と同様にし
て電線を得た。この電線の初期体積抵抗値は実施例29
と同じであったか、第4図に示すとおり、経日変化が大
きく、実用か不可能であった。
Comparative Example 2 An electric wire was obtained in the same manner as in Example 29 except that a non-porous insulating film was not formed. The initial volume resistance value of this electric wire is Example 29
As shown in Figure 4, the change over time was large, making it impractical.

(以下余白) (発明の効果) 本発明の絶縁膜被覆電線は、直径1mm以下の線状導電
体の外周に、比誘電率か3.0以下のプラズマ重合絶縁
膜を有している構成のものである。
(Blank below) (Effects of the Invention) The insulating film-coated electric wire of the present invention has a plasma polymerized insulating film with a dielectric constant of 3.0 or less on the outer periphery of a linear conductor with a diameter of 1 mm or less. It is something.

本発明の絶縁膜被覆電線においては、線状導電体の外周
に形成されたプラズマ重合絶縁膜が非常に薄く、かつ均
質な膜である。このために絶縁膜の比誘電率か小さく、
電線自体を極細に形成できる。また、本発明の絶縁膜被
覆電線は優れた絶縁性を有しており、長期間経過後にお
いてもその低下が小さい。
In the insulating film coated electric wire of the present invention, the plasma polymerized insulating film formed on the outer periphery of the linear conductor is a very thin and homogeneous film. For this reason, the dielectric constant of the insulating film is small,
The wire itself can be made extremely thin. Further, the insulating film-coated electric wire of the present invention has excellent insulation properties, and its deterioration is small even after a long period of time.

本発明の絶縁膜被覆電線は、パルス信号の伝達用、例え
ば、IC間の配線用電線として好適である。
The insulating film-coated wire of the present invention is suitable for transmitting pulse signals, for example, as a wire for wiring between ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の絶縁膜被覆電線の断面図、第2図は本
発明の絶縁膜被覆電線の変形態様の断面図、第3図はプ
ラズマ重合装置の概略図、第4図は実施例29と比較例
2との体積抵抗の経口変化を示す図である。 10・・・絶縁膜被覆電線、12・・・線状導電体、1
4・・・プラズマ重合絶縁膜、50・・・絶縁膜被覆電
線、52・・・線状導電体、54・・・プラズマ重合絶
縁膜、56・・・多孔質プラズマ重合絶縁膜、58・・
・非孔質プラズマ重合絶縁膜。
Fig. 1 is a cross-sectional view of an insulating film-coated electric wire of the present invention, Fig. 2 is a cross-sectional view of a modification of the insulating film-coated electric wire of the present invention, Fig. 3 is a schematic diagram of a plasma polymerization apparatus, and Fig. 4 is an example. 29 is a diagram showing oral changes in volume resistivity of Comparative Example 2 and Comparative Example 2. 10... Insulating film coated electric wire, 12... Linear conductor, 1
4... Plasma polymerized insulating film, 50... Insulating film coated electric wire, 52... Linear conductor, 54... Plasma polymerized insulating film, 56... Porous plasma polymerized insulating film, 58...
・Non-porous plasma polymerized insulation film.

Claims (1)

【特許請求の範囲】[Claims]  直径1mm以下の線状導電体の外周に、比誘電率が3
.0以下のプラズマ重合絶縁膜を有していることを特徴
とする絶縁膜被覆電線。
The outer periphery of a linear conductor with a diameter of 1 mm or less has a relative permittivity of 3.
.. An insulating film-coated electric wire characterized by having a plasma polymerized insulating film of 0 or less.
JP30337690A 1990-11-07 1990-11-07 Insulating film-covered electric wire Pending JPH04174912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30337690A JPH04174912A (en) 1990-11-07 1990-11-07 Insulating film-covered electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30337690A JPH04174912A (en) 1990-11-07 1990-11-07 Insulating film-covered electric wire

Publications (1)

Publication Number Publication Date
JPH04174912A true JPH04174912A (en) 1992-06-23

Family

ID=17920262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30337690A Pending JPH04174912A (en) 1990-11-07 1990-11-07 Insulating film-covered electric wire

Country Status (1)

Country Link
JP (1) JPH04174912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698901A (en) * 1994-09-12 1997-12-16 Nec Corporation Semiconductor device with amorphous carbon layer for reducing wiring delay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698901A (en) * 1994-09-12 1997-12-16 Nec Corporation Semiconductor device with amorphous carbon layer for reducing wiring delay

Similar Documents

Publication Publication Date Title
US6153269A (en) Chemical vapor deposition of fluorocarbon polymer thin films
JP3697250B2 (en) Plasma processing apparatus and method for producing carbon coating-formed plastic container
US6572780B2 (en) Methods for fabricating flexible circuit structures
US3296011A (en) Surface treatment of perfluorocarbon polymer structures
EP0094424B1 (en) Unitary sleeving insulation
JPH0299163A (en) Method and device for pretreating surface of single layer or multilayer molded form
US2739371A (en) Method for producing conducting coils
US4588641A (en) Three-step plasma treatment of copper foils to enhance their laminate adhesion
JP2001316855A (en) Method for activating surface of material
US5215636A (en) Pulsed discharge surface treatment apparatus and process
JP2001329083A (en) Material subjected to plasma treatment
US4444805A (en) Optical coating
US3415683A (en) Corona discharge coating processes
CN109659078B (en) Corona-resistant variable-frequency enameled wire with high PDIV (polymer induced plasticity) and preparation process thereof
JPH04174912A (en) Insulating film-covered electric wire
KR101881534B1 (en) Method for formation of carbon layer including metal-oxide using plasmas
GB2100068A (en) Consolidated structure of conductive members and insulation therebetween
JP3455610B2 (en) Method and apparatus for modifying porous body
CA2199347A1 (en) Amorphous carbon film, formation process therof, and semiconductor device making use of the film
US2298324A (en) Electrical conductor
JPH11222530A (en) Production of fluororesin-coated metallic wire
CN110724434A (en) Nano SiC/epoxy coating material, preparation method and application thereof
JPH07118857A (en) Surface treatment of substrate
JPH08264347A (en) Resin-molded coil and forming method of its surface conductive layer
JPH03225706A (en) Insulated electric wire