JPH041745B2 - - Google Patents

Info

Publication number
JPH041745B2
JPH041745B2 JP26093585A JP26093585A JPH041745B2 JP H041745 B2 JPH041745 B2 JP H041745B2 JP 26093585 A JP26093585 A JP 26093585A JP 26093585 A JP26093585 A JP 26093585A JP H041745 B2 JPH041745 B2 JP H041745B2
Authority
JP
Japan
Prior art keywords
formula
liquid crystal
general formula
mol
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26093585A
Other languages
Japanese (ja)
Other versions
JPS62120381A (en
Inventor
Hajime Satonaka
Toyoaki Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWAKEN
KAWASAKI KAGAKU KOGYO KK
Original Assignee
KANAGAWAKEN
KAWASAKI KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWAKEN, KAWASAKI KAGAKU KOGYO KK filed Critical KANAGAWAKEN
Priority to JP26093585A priority Critical patent/JPS62120381A/en
Publication of JPS62120381A publication Critical patent/JPS62120381A/en
Publication of JPH041745B2 publication Critical patent/JPH041745B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Liquid Crystal Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は電気的表示材料として用いられる温度
範囲の広い新規な液晶化合物およびこの液晶化合
物の製造方法に関する。 [発明の技術的背景とその問題点] 液晶は電場や磁場の影響を受けて配向を変え
て、光散乱、複屈折等の光学的性質を顕著に変え
る性質があり、広く電気的表示装置に利用されて
いる。このような表示装置に用いられる液晶に
は、液晶温度範囲が広く、低粘性であること、誘
電異方性が高く、化学的に安定であること等の性
質が要求される。 従来から液晶化合物として3つのベンゼン環を
結合したものは知られている。しかしながら、従
来の3つのベンゼン環を結合した液晶物質は、液
晶相から結晶に変る温度が高いため、液晶組成物
に加えた場合、結晶化温度を大きく上昇させ、こ
のため組成物の結晶化温度を0℃以下に保つため
にはわずか数%しか配合できないという欠点があ
つた。 [発明の目的] 本発明者等は、各種の液晶化合物のうち、エス
テル型のものは転移温度は比較的高くなるが、水
分や光学的には安定である点に着目してエステル
型の化合物で末端基として極性の大きいシアノ基
またはハロゲン原子を用い、他方に硫黄を含む環
を結合させることにより、分子の長軸方向に、よ
り大きい誘電異方性を与えて無色で広い液晶温度
範囲の化合物を種々研究した結果、チオフエン環
を含む一連の新規化合物が広い温度範囲で液晶性
を示すことを見出した。 すなわち、本発明は広い液晶温度範囲を有する
新規なチオフエン系液晶化合物、および前記の液
晶化合物の製造方法を提供することを目的とす
る。 [発明の構成] すなわち本発明の液晶化合物は、 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル
基、Xはシアノ基、またはフツ素、塩素もしくは
臭素原子を示す。)で表わされることを特徴とし
ている。 この液晶化合物の製造方法は (1) 一般式 (式中R炭素原子数2〜14の直鎖アルキル基を
示す。)で表わされる化合物と、 一般式 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。)で表わされる化合物とを
脱水剤の存在下で反応させて 一般式 (式中RおよびXは前記と同じ意味を示す。)
で表わされる化合物を得る方法と、 (2) 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル基
で示す。)で表わされる化合物を塩素化剤と反応
させて 一般式 (式中Rは前記と同じ意味を示す)で表わされ
る酸塩化物とし、次いで 一般式 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。)で表わされる化合物を不
活性溶媒中で反応させて 一般式 (式中RおよびXは前記と同じ意味を示す。)
で表わされる化合物を得る方法と、 (3) 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル基
を示す。)で表わされる化合物と 一般式 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。)で表わされる化合物とを
脱水剤の存在下で反応させて 一般式 (式中RおよびXは前記と同じ意味を示す。)
で表わされる化合物を得る方法とがある。 次に上述した本発明の製造法(1)、(2)について詳
細に説明する。 製造方法 (1) この方法においては、脱水剤としてN−ハイド
ロキシフタルイミド、N,N′−ジサクシニイミ
ジルカルボネイト、N,N′−ジシクロヘキシル
カルボジイミド等が挙げられるが、特にN,
N′−ジシクロヘキシカルガルボジイミドを用い
る[N.Pravdicらの方法(J.Chem.Soc.,4633,
1964)]が好ましい。またN,N′−ジシクロヘキ
シルカルボジイミドは化合物()の5−n−ア
ルキル−2−チオフエンカルボン酸に対して等モ
ル量を用い、ピリジンの存在下でジクロロメタ
ン、ジクロロエタン、四塩化炭素等の溶媒中で脱
水反応させ、1段階で目的とする化合物を得るこ
とができる。 製造方法 (2) この方法において用いられる塩素化剤としては
塩化チオニル、三塩化リン、五塩化リン等が挙げ
られるが、特に反応後の処理の容易さから塩化チ
オニルが好ましい。 塩化チオニルを用いた場合には、式()の5
−n−アルキル−2−チオフエンカルボン酸に対
して過剰モル量を用いて還流させ、反応後、塩化
チオニルを減圧下で溜去すればよい。式()の
5−n−アルキル−2−チオフエンカルボン酸ク
ロライドと式()の4−ハイドロキシ安息香酸
4′−置換フエニルとの反応はエチルエーテル、ベ
ンゼン、酢酸エチル等の不活性溶媒中で行なう
が、特に溶解性の面から酢酸エチルが好ましい。
また反応中に生ずる塩化水素を系外に除くため
に、ピリジン、トリエチルアミン等の塩基性物質
を加えることが好ましい。反応後の生成物は有機
溶媒抽出、水洗、結晶化等に処理により目的とす
る化合物を得ることができる。 本発明で原料として用いる式()の5−n−
アルキル−2−チオフエンカルボン酸は次の工程
によつて製造することができる。 (式中Rは炭素原子数2〜14の直鎖アルキル
基、R1はRよりも炭素原子数が1だけ少ない直
鎖アルキル基を示す。) なお式(d)の5−n−アルキル−2−チオフエン
アルデヒドまでの製造工程は本発明者等が先に特
許出願した方法(特願昭59−267133号、特願昭59
−267134号、特願昭60−55433号)により行なう
ことができる。第4段階の5−n−アルキル−2
−チオフエンアルデヒドから5−n−アルキル−
2−チオフエンカルボン酸の製造は、酸化銀また
は次亜塩素酸ナトリウム、次亜塩素酸カリウム、
次亜臭素酸ナトリウム、次亜臭素酸カリウムなど
による酸化によつても行なうことができる。 また本発明のもう一方の原料となる4−ハイド
ロキシ安息香酸4′−置換フエニルは、特開昭58−
13560号の方法を改良した以下の方法で製造する
ことができる。 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。) 第1段階では4−ハイドロキシ安息香酸に塩化
アセチルを反応させて式(e)の4−アセトキシ安息
香酸が製造される。 第2段階では4−アセトキシ安息香酸に4−置
換フエノール(4−シアノフエノール、4−フル
オロフエノール、4−クロロフエノールおよび4
−ブロモフエノール)を脱水剤の存在下で反応さ
せて式(f)の4−アセトキシ安息香酸4′−置換フエ
ニルが製造される。 第3段階では4−アセトキシ安息香酸4′−置換
フエニルをアルコール溶媒中で塩酸で分解して式
()の4−ハイドロキシ安息香酸4′−置換フエ
ニルを製造することができる。 式の化合物に混合して使用することのできる
他の液晶化合物および非液晶化合物としては次の
ような化合物が例示される。 [式中RおよびR′は、それぞれ n−CnH2n+1 -、n−CnH2n+1−O−、
[Technical Field of the Invention] The present invention relates to a novel liquid crystal compound that can be used as an electrical display material and has a wide temperature range, and a method for producing this liquid crystal compound. [Technical background of the invention and its problems] Liquid crystals have the property of changing their orientation under the influence of electric or magnetic fields, significantly changing optical properties such as light scattering and birefringence, and are widely used in electrical display devices. It's being used. Liquid crystals used in such display devices are required to have properties such as a wide liquid crystal temperature range, low viscosity, high dielectric anisotropy, and chemical stability. BACKGROUND ART Liquid crystal compounds in which three benzene rings are bonded have been known as liquid crystal compounds. However, since the conventional liquid crystal material with three benzene rings bonded has a high temperature at which it changes from a liquid crystal phase to a crystal, when it is added to a liquid crystal composition, it greatly increases the crystallization temperature, and therefore the crystallization temperature of the composition The drawback was that only a few percent of the amount could be added in order to keep the temperature below 0°C. [Purpose of the Invention] The present inventors focused on the fact that among various liquid crystal compounds, ester-type compounds have a relatively high transition temperature, but are stable in moisture and optical terms. By using a highly polar cyano group or halogen atom as the terminal group and bonding a sulfur-containing ring to the other end group, a larger dielectric anisotropy is imparted to the long axis of the molecule, resulting in a colorless liquid crystal with a wide temperature range. As a result of research on various compounds, we discovered that a series of new compounds containing a thiophene ring exhibit liquid crystallinity over a wide temperature range. That is, an object of the present invention is to provide a novel thiophene-based liquid crystal compound having a wide liquid crystal temperature range, and a method for producing the liquid crystal compound. [Structure of the invention] That is, the liquid crystal compound of the present invention has the general formula (In the formula, R is a linear alkyl group having 2 to 14 carbon atoms, and X is a cyano group, or a fluorine, chlorine, or bromine atom.) The manufacturing method for this liquid crystal compound is (1) General formula (In the formula, R represents a straight-chain alkyl group having 2 to 14 carbon atoms.) A compound represented by the general formula (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) in the presence of a dehydrating agent, and the general formula (In the formula, R and X have the same meanings as above.)
(2) General formula (In the formula, R is a straight-chain alkyl group having 2 to 14 carbon atoms.) A compound represented by the general formula (in the formula, R has the same meaning as above), and then the general formula (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) A compound represented by the formula: (In the formula, R and X have the same meanings as above.)
(3) General formula (In the formula, R represents a straight-chain alkyl group having 2 to 14 carbon atoms.) A compound represented by the general formula (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) in the presence of a dehydrating agent, and the general formula (In the formula, R and X have the same meanings as above.)
There is a method to obtain a compound represented by Next, the above-mentioned manufacturing methods (1) and (2) of the present invention will be explained in detail. Production method (1) In this method, the dehydrating agent includes N-hydroxyphthalimide, N,N'-disuccinimidyl carbonate, N,N'-dicyclohexylcarbodiimide, etc., but in particular N,
Using N'-dicyclohexical galbodiimide [method of N. Pravdic et al. (J. Chem. Soc., 4633,
1964)] is preferred. In addition, N,N'-dicyclohexylcarbodiimide is used in an equimolar amount to the 5-n-alkyl-2-thiophenecarboxylic acid of the compound (), and in the presence of pyridine, it is dissolved in a solvent such as dichloromethane, dichloroethane, or carbon tetrachloride. The desired compound can be obtained in one step by dehydration reaction. Production method (2) The chlorinating agent used in this method includes thionyl chloride, phosphorus trichloride, phosphorus pentachloride, etc., and thionyl chloride is particularly preferred from the viewpoint of ease of treatment after the reaction. When thionyl chloride is used, 5 of formula ()
-N-Alkyl-2-thiophenecarboxylic acid may be used in an excess molar amount to reflux, and after the reaction, thionyl chloride may be distilled off under reduced pressure. 5-n-alkyl-2-thiophenecarboxylic acid chloride of formula () and 4-hydroxybenzoic acid of formula ()
The reaction with 4'-substituted phenyl is carried out in an inert solvent such as ethyl ether, benzene, or ethyl acetate, with ethyl acetate being particularly preferred from the viewpoint of solubility.
Further, in order to remove hydrogen chloride generated during the reaction from the system, it is preferable to add a basic substance such as pyridine or triethylamine. The product after the reaction can be subjected to treatments such as organic solvent extraction, water washing, and crystallization to obtain the desired compound. 5-n- of formula () used as a raw material in the present invention
Alkyl-2-thiophenecarboxylic acid can be produced by the following steps. (In the formula, R represents a straight-chain alkyl group having 2 to 14 carbon atoms, and R 1 represents a straight-chain alkyl group having 1 fewer carbon atoms than R.) 5-n-alkyl- of formula (d) The manufacturing process up to 2-thiophenaldehyde is based on the method for which the present inventors previously applied for a patent (Japanese Patent Application No. 1986-267133,
-267134, Japanese Patent Application No. 60-55433). 4th stage 5-n-alkyl-2
-thiophenaldehyde to 5-n-alkyl-
The production of 2-thiophenecarboxylic acid requires silver oxide or sodium hypochlorite, potassium hypochlorite,
Oxidation with sodium hypobromite, potassium hypobromite, etc. can also be carried out. In addition, 4'-substituted phenyl 4-hydroxybenzoate, which is the other raw material of the present invention, is
It can be produced by the following method, which is an improvement on the method of No. 13560. (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) In the first step, 4-hydroxybenzoic acid is reacted with acetyl chloride to produce 4-acetoxybenzoic acid of formula (e). . In the second step, 4-acetoxybenzoic acid was added to 4-substituted phenols (4-cyanophenol, 4-fluorophenol, 4-chlorophenol and 4-substituted phenol).
-bromophenol) in the presence of a dehydrating agent to produce 4'-substituted phenyl 4-acetoxybenzoate of formula (f). In the third step, 4'-substituted phenyl 4-acetoxybenzoate can be decomposed with hydrochloric acid in an alcoholic solvent to produce 4'-substituted phenyl 4-hydroxybenzoate of formula (). Examples of other liquid crystal compounds and non-liquid crystal compounds that can be used in combination with the compound of the formula include the following compounds. [In the formula, R and R' are respectively n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中RおよびR′は、それぞれ n−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R and R' are respectively n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中RおよびR′は、それぞれ n−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R and R' are respectively n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rはそれぞれ n−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R is n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rは n−CnH2n+1 -、を表わし、 R′はn−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R represents n-C n H 2n+1 - , R' represents n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rはn−CnH2n+1 -、を表わし、 R′はn−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R represents n-C n H 2n+1 - , R' represents n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】【formula】

【式】【formula】

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rはn−CnH2n+1 -、を表わし、 R′はn−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R represents n-C n H 2n+1 - , R' represents n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】【formula】

【式】【formula】

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中RおよびR′はそれぞれn−CnH2n+1 -
n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R and R′ are respectively n−C n H 2n+1 ,
n−C n H 2n+1 −O−,

【式】【formula】

【式】【formula】

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rはn−CnH2n+1 -、を表わし、 R′はn−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R represents n-C n H 2n+1 - , R' represents n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】【formula】

【式】【formula】

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rはn−CnH2n+1 -、を表わし、 R′はn−CnH2n+1 -、n−CnH2n+1−O−、
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R represents n-C n H 2n+1 - , R' represents n-C n H 2n+1 - , n-C n H 2n+1 -O-,

【式】【formula】

【式】【formula】

【式】−CN、−NO2 のいずれかを表わす(但しmは1〜10の整数)] [式中Rはn−CnH2n+1 -を表わし、 XはF、Cl、Brのいずれかを表わす(但しmは
1〜10の整数)] [式中Rはn−CnH2n+1 -を表わし、 XはF、Cl、Brのいずれかを表わす(但しmは
1〜10の整数)] [式中Rはn−CnH2n+1 -を表わし、 XはF、Cl、Brのいずれかを表わす(但しmは
1〜10の整数)] [式中Rは、n−CnH2n+1 -を表わし、 XはF、Cl、Brのいずれかを表わす(但しmは
1〜10の整数) [式中RおよびR′はn−CnH2n+1 -、n−Cn
H2n+1−O−のいずれかを表わし、 Xは−CNまたは−Brのいずれかを表わす(但し
mは1〜10の整数)] 本発明の主な液晶化合物の物理的特性を第1表
に示す。
[Formula] Represents either -CN or -NO 2 (where m is an integer from 1 to 10)] [In the formula, R represents n−C n H 2n+1 , and X represents either F, Cl, or Br (however, m is an integer from 1 to 10)] [In the formula, R represents n−C n H 2n+1 , and X represents either F, Cl, or Br (however, m is an integer from 1 to 10)] [In the formula, R represents n−C n H 2n+1 , and X represents either F, Cl, or Br (however, m is an integer from 1 to 10)] [In the formula, R represents n−C n H 2n+1 , and X represents either F, Cl, or Br (however, m is an integer from 1 to 10) [In the formula, R and R' are n-C n H 2n+1 - , n-C n
H2n +1 represents either -O-, X represents either -CN or -Br (however, m is an integer of 1 to 10)] The physical properties of the main liquid crystal compound of the present invention are Shown in the table.

【表】【table】

【表】 [発明の実施例] 次に本発明を原料製造例、実施例および配合例
をもつて具体的に説明する。 原料製造例 1 5−エチル−2−チオフエンアルデヒド7.0g
(0.05モル)をエタノール40mlに溶かし、これに
硝酸銀18.6gを水40mlに溶かした溶液を加えた。
この混合物に水酸化ナトリウム10gを水300mlに
溶かした溶液を滴下した。滴下終了後さらに1時
間攪拌を続行した後生じた酸化銀を濾過した。濾
液を約100mlに濃縮し、6N硫酸で酸性にした。生
じた沈澱を50%含水エタノールから再結晶して下
記の化合物7.3gを得た。収率93.6%、融点70〜
71℃。 NMR(δ,CDCl3) 1.34(t,3H,−CH3) 2.90(q,2H,−CH2−) 6.83(d,1H,Hb) 7.73(d,1H,Ha) 9.15(S,1H,−COOH) 原料製造例 2〜9 原料製造例1における5−エチル−2−チオフ
エンアルデヒデド0.05モルに代えて下記の化合物
0.05モルを用いる以外は製造例1と同様にして第
2表に示す化合物を得た。
[Table] [Examples of the Invention] Next, the present invention will be specifically explained using raw material production examples, examples, and formulation examples. Raw material production example 1 5-ethyl-2-thiophenaldehyde 7.0g
(0.05 mol) was dissolved in 40 ml of ethanol, and a solution of 18.6 g of silver nitrate dissolved in 40 ml of water was added thereto.
A solution of 10 g of sodium hydroxide dissolved in 300 ml of water was added dropwise to this mixture. After the dropwise addition was completed, stirring was continued for an additional hour, and the resulting silver oxide was filtered. The filtrate was concentrated to approximately 100 ml and acidified with 6N sulfuric acid. The resulting precipitate was recrystallized from 50% aqueous ethanol to obtain 7.3 g of the following compound. Yield 93.6%, melting point 70~
71℃. NMR (δ, CDCl 3 ) 1.34 (t, 3H, −CH 3 ) 2.90 (q, 2H, −CH 2 −) 6.83 (d, 1H, Hb) 7.73 (d, 1H, Ha) 9.15 (S, 1H, -COOH) Raw material production examples 2 to 9 In place of 0.05 mol of 5-ethyl-2-thiophenaldehyde in raw material production example 1, the following compound was used.
The compounds shown in Table 2 were obtained in the same manner as in Production Example 1 except that 0.05 mol was used.

【表】【table】

【表】 原料製造例 10 p−ヒドロキシ安息香酸27.6g(0.2モル)を
ピリジン30mlを含むアセトン200mlに溶解し冷却
した。この溶液を攪拌しながら塩化アセチル15.6
ml(0.22モル)を滴下後室温にて一夜静置した。
過剰の塩化アセチルを除くためエタノール10mlを
加えて2時間攪拌後、塩酸を含む氷水2中に滴
下して結晶化した。結晶を濾別し、50%メタノー
ルから再結晶してp−アセトキシ安息香酸32.8g
を得た。収率91.1%。 原料製造例 11 原料製造例10で得られたp−アセトキシ安息香
酸12.6g(0.07モル)、p−シアノフエノール8.3
g(0.07モル)をピリジン10mlを含むジクロロメ
タン200mlに溶解した後、N,N′−ジシクロヘキ
シルカルボジイミド18.2g(0.07モル)を加えて
攪拌し、一夜静置した。生成した尿素体を濾別
し、濾液を濃縮して四塩化炭素に溶解し、冷却し
再び濾別した。濾液の溶媒を減圧下で溜去し、メ
タノールを加えて再び加熱溶解し、冷却して生ず
る結晶を濾別した4′−シアノフエニル−4−アセ
トキシベンゾエート16.3gを得た。次に4′−シア
ノフエニル−4−アセトキシベンゾエート15g
(0.053モル)に300mlのメタノールと塩酸0.5mlを
加えて、4.5時間還流した後、溶媒を減圧下で溜
去し、50%メタノールから再結晶して4′−シアノ
フエニル−4−ヒドロキシベンゾエート10.1gを
得た。 収率60.3%であつた。 原料製造例 12 原料製造例10で得られた4−アセトキシ安息香
酸5.4g(0.03モル)とp−フルオロフエノール
3.4g(0.03モル)とをピリジン5mlを含むジク
ロロメタン80mlに溶解し、N,N′−ジシクロヘ
キシルカルボジイミド6.2g(0.03モル)を加え
て攪拌し、一夜静置した。生成した尿素体を濾別
し、濾液を減圧下で溜去した。四塩化炭素を加え
て加熱溶解して、冷却し、再び濾過した。濾液を
減圧下で溜去し、メタノールから結晶化して4′−
フルオロフエニル−4−アセトキシベンゾエート
6.9gを得た。4′−フルオロフエニル−4−アセ
トキシベンゾエート6.9gにメタノール150mlと塩
酸0.25mlとを加えて4.5時間還流後、メタノール
を減圧下で溜去して50%メタノールから結晶化し
て4′−フルオロフエニル−4−ヒドロキシベンゾ
エート4.4gを得た。収率63.2%。 原料製造例 13 原料製造例12におけるp−フルオロフエノール
0.03モルに代えてp−クロロフエノール0.03モル
を用いる以外は原料製造例12の同様にして4′−ク
ロロフエニル−4−ヒドロキシベンゾエート4.9
gを得た。収率65.7%。 原料製造例 14 原料製造例12におけるp−フルオロフエノール
0.03モルに代えてp−ブロモフエノール0.03モル
を用いる以外は原料製造例12と同様にして4′−ブ
ロモフエニル−4−ヒドロキシベンゾエート6.1
gを得た。収率69.4%。 次に実施例について記載する。 実施例 1 5−エチル−2−チオフエンカルボン酸0.78g
(0.005モル)と4′−シアノフエニル−4−ヒドロ
キシベンゾエート1.20g(0.005モル)とをピリ
ジン5mlを含むジクロロエタン60mlに溶解した。
次にN−N′−ジシクロヘキシルカルボジイミド
1.04g(0.005モル)を加えて攪拌して、一夜静
置した。生成した尿素体を濾別し、濾液の溶媒を
溜去した。エタノールを加えて結晶化して得た結
晶をエタノールから再結晶して下記の化合物1.42
gを得た。収率75.3%。 NMR(δ,CDCl3) 1.38(t,3H,−CH3) 2.94(q,2H,−CH2−) 6.90(d,1H,Hb) 7.38(d,2H,HcまたはHe) 7.39(d,2H,HeまたはHc) 7.74(d,2H,Hf) 7.85(d,1H,Ha) 8.24(d,2H,Hd) 実施例 2〜5 実施例1における5−エチル−2−チオフエン
カルボン酸0.005モルに代えて下記の化合物0.005
モルを用いた以外は実施例1と同様にして第2表
に掲げる化合物を得た。
[Table] Raw material production example 10 27.6 g (0.2 mol) of p-hydroxybenzoic acid was dissolved in 200 ml of acetone containing 30 ml of pyridine and cooled. Acetyl chloride 15.6 while stirring this solution.
ml (0.22 mol) was added dropwise and left at room temperature overnight.
To remove excess acetyl chloride, 10 ml of ethanol was added and the mixture was stirred for 2 hours, then dropped into ice water 2 containing hydrochloric acid for crystallization. The crystals were filtered and recrystallized from 50% methanol to give 32.8 g of p-acetoxybenzoic acid.
I got it. Yield 91.1%. Raw material production example 11 12.6 g (0.07 mol) of p-acetoxybenzoic acid obtained in raw material production example 10, 8.3 p-cyanophenol
g (0.07 mol) was dissolved in 200 ml of dichloromethane containing 10 ml of pyridine, 18.2 g (0.07 mol) of N,N'-dicyclohexylcarbodiimide was added, stirred, and allowed to stand overnight. The produced urea body was filtered off, and the filtrate was concentrated, dissolved in carbon tetrachloride, cooled, and filtered off again. The solvent of the filtrate was distilled off under reduced pressure, methanol was added, the mixture was again heated and dissolved, and the resulting crystals were filtered off after cooling to obtain 16.3 g of 4'-cyanophenyl-4-acetoxybenzoate. Next, 15 g of 4'-cyanophenyl-4-acetoxybenzoate
(0.053 mol) was added with 300 ml of methanol and 0.5 ml of hydrochloric acid, and after refluxing for 4.5 hours, the solvent was distilled off under reduced pressure and recrystallized from 50% methanol to obtain 10.1 g of 4'-cyanophenyl-4-hydroxybenzoate. I got it. The yield was 60.3%. Raw material production example 12 5.4 g (0.03 mol) of 4-acetoxybenzoic acid obtained in raw material production example 10 and p-fluorophenol
3.4 g (0.03 mol) was dissolved in 80 ml of dichloromethane containing 5 ml of pyridine, 6.2 g (0.03 mol) of N,N'-dicyclohexylcarbodiimide was added, stirred, and allowed to stand overnight. The generated urea body was filtered off, and the filtrate was distilled off under reduced pressure. Carbon tetrachloride was added and heated to dissolve, cooled and filtered again. The filtrate was distilled off under reduced pressure and crystallized from methanol to give 4′-
Fluorophenyl-4-acetoxybenzoate
6.9g was obtained. 150 ml of methanol and 0.25 ml of hydrochloric acid were added to 6.9 g of 4'-fluorophenyl-4-acetoxybenzoate, and after refluxing for 4.5 hours, the methanol was distilled off under reduced pressure and crystallized from 50% methanol to obtain 4'-fluorophenyl-4-acetoxybenzoate. 4.4 g of enyl-4-hydroxybenzoate was obtained. Yield 63.2%. Raw material production example 13 p-fluorophenol in raw material production example 12
4'-chlorophenyl-4-hydroxybenzoate 4.9 was prepared in the same manner as in Raw Material Production Example 12 except that 0.03 mol of p-chlorophenol was used instead of 0.03 mol.
I got g. Yield 65.7%. Raw material production example 14 p-fluorophenol in raw material production example 12
6.1 4'-bromophenyl-4-hydroxybenzoate was prepared in the same manner as in Raw Material Production Example 12 except that 0.03 mol of p-bromophenol was used instead of 0.03 mol.
I got g. Yield 69.4%. Next, examples will be described. Example 1 0.78 g of 5-ethyl-2-thiophenecarboxylic acid
(0.005 mol) and 1.20 g (0.005 mol) of 4'-cyanophenyl-4-hydroxybenzoate were dissolved in 60 ml of dichloroethane containing 5 ml of pyridine.
Next, N-N'-dicyclohexylcarbodiimide
1.04 g (0.005 mol) was added, stirred, and allowed to stand overnight. The generated urea body was filtered off, and the solvent of the filtrate was distilled off. The crystals obtained by adding ethanol were recrystallized from ethanol to obtain the following compound 1.42.
I got g. Yield 75.3%. NMR (δ, CDCl 3 ) 1.38 (t, 3H, −CH 3 ) 2.94 (q, 2H, −CH 2 −) 6.90 (d, 1H, Hb) 7.38 (d, 2H, Hc or He) 7.39 (d, 2H, He or Hc) 7.74 (d, 2H, Hf) 7.85 (d, 1H, Ha) 8.24 (d, 2H, Hd) Examples 2 to 5 5-ethyl-2-thiophenecarboxylic acid in Example 1 0.005 0.005 of the following compound instead of mole
The compounds listed in Table 2 were obtained in the same manner as in Example 1 except that moles were used.

【表】【table】

【表】 実施例 8 5−ブチル−2−チオフエンカルボン酸0.92g
(0.005モル)に塩化チオニル3mlを加えて30分間
還流した。その後、過剰の塩化チオニルを減圧下
で溜去した。次に得られた反応生成物を冷却して
エチルエーテル30mlを加えた。この溶液を4′−シ
アノフエニル−4−ヒドロキシベンゾエート1.2
g(0.005モル)を含むピリジン10mlと酢酸エチ
ル50mlとの混合液に滴下後、室温で一夜放置し
た。この反応液を希塩酸、水、希苛性ソーダ、水
を用いてこの順に処理した。酢酸エチルを溜去
後、エタノールから再結晶して下記の化合物1.7
gを得た。収率81.1%。 NMR(δ,CDCl3) 0.96(t,3H,−CH3) 1.17〜1.89(m,4H,−CH2−) 2.90(t,2H,−CH2−) 6.89(d,1H,Hb) 7.38(d,2H,HcまたはHe) 7.39(d,2H,HeまたはHc) 7.74(d,2H,Hf) 7.84(d,1H,Ha) 8.24(d,2H,Hd) 実施例 9〜11 実施例8における4′−シアノフエニル−4−ヒ
ドロキシベンゾエート0.005モルの代りに、下記
の化合物0.005モルを用いる以外は、実施例8と
同様にして第4表に掲げる化合物を得た。
[Table] Example 8 5-butyl-2-thiophenecarboxylic acid 0.92g
(0.005 mol) was added with 3 ml of thionyl chloride and refluxed for 30 minutes. Thereafter, excess thionyl chloride was distilled off under reduced pressure. Next, the obtained reaction product was cooled and 30 ml of ethyl ether was added. Add 1.2% of this solution to 4'-cyanophenyl-4-hydroxybenzoate.
The mixture was added dropwise to a mixture of 10 ml of pyridine and 50 ml of ethyl acetate containing g (0.005 mol), and then left overnight at room temperature. This reaction solution was treated with dilute hydrochloric acid, water, dilute caustic soda, and water in this order. After distilling off ethyl acetate, recrystallize from ethanol to obtain the following compound 1.7.
I got g. Yield 81.1%. NMR (δ, CDCl 3 ) 0.96 (t, 3H, -CH 3 ) 1.17-1.89 (m, 4H, -CH 2 -) 2.90 (t, 2H, -CH 2 -) 6.89 (d, 1H, Hb) 7.38 (d, 2H, Hc or He) 7.39 (d, 2H, He or Hc) 7.74 (d, 2H, Hf) 7.84 (d, 1H, Ha) 8.24 (d, 2H, Hd) Examples 9 to 11 Examples The compounds listed in Table 4 were obtained in the same manner as in Example 8, except that 0.005 mol of the following compound was used instead of 0.005 mol of 4'-cyanophenyl-4-hydroxybenzoate in Example 8.

【表】 実施例 12 5−ベプチル−2−チオフエンカルボン酸1.14
g(0.005モル)に塩化チオニル3mlを加えて30
分間還流した。その後過剰の塩化チオニルを減圧
下で溜去した。次に得られた反応生成物を冷却し
てエチルエーテル30mlを加えた。この溶液を4′−
シアノフエニル−4−ヒドロキシベンゾエート
1.2g(0.005モル)を含むピリジン10mlと酢酸エ
チル50mlとの混合液に滴下後、室温で一夜静置し
た。この反応液を希塩酸、水、希苛性ソーダ、水
を用いてこの順に処理した。酢酸エチルを溜去
後、エタノールから再結晶して下記の化合物1.45
gを得た。収率65.9%。 NMR(δ,CDCl3) 0.89(t,3H,−CH3) 1.32(s,8H,−CH2−) 1.73(m,2H,−CH2−) 2.89(t,2H,−CH2−) 6.88(d,1H,Hb) 7.38(d,2H,HcまたはHe) 7.39(d,2H,HeまたはHc) 7.72(d,2H,Hf) 7.83(d,1H,Ha) 8.23(d,2H,Hd) 実施例 13〜15 実施例12における4′−シアノフエニル−4−ヒ
ドロキシベンゾエート0.005モルに代えて下記の
化合物0.005モルを用いる以外は、実施例12と同
様にして第5表に掲げる化合物を得た。
[Table] Example 12 5-beptyl-2-thiophenecarboxylic acid 1.14
Add 3 ml of thionyl chloride to 30 g (0.005 mol)
Refluxed for minutes. Thereafter, excess thionyl chloride was distilled off under reduced pressure. Next, the obtained reaction product was cooled and 30 ml of ethyl ether was added. Add this solution to 4′-
Cyanophenyl-4-hydroxybenzoate
The mixture was added dropwise to a mixture of 10 ml of pyridine and 50 ml of ethyl acetate containing 1.2 g (0.005 mol), and then allowed to stand overnight at room temperature. This reaction solution was treated with dilute hydrochloric acid, water, dilute caustic soda, and water in this order. After distilling off ethyl acetate, recrystallize from ethanol to obtain the following compound 1.45.
I got g. Yield 65.9%. NMR (δ, CDCl 3 ) 0.89 (t, 3H, −CH 3 ) 1.32 (s, 8H, −CH 2 −) 1.73 (m, 2H, −CH 2 −) 2.89 (t, 2H, −CH 2 −) 6.88 (d, 1H, Hb) 7.38 (d, 2H, Hc or He) 7.39 (d, 2H, He or Hc) 7.72 (d, 2H, Hf) 7.83 (d, 1H, Ha) 8.23 (d, 2H, Hd) Examples 13 to 15 The compounds listed in Table 5 were obtained in the same manner as in Example 12, except that 0.005 mol of the following compound was used in place of 0.005 mol of 4'-cyanophenyl-4-hydroxybenzoate in Example 12. Ta.

【表】 実施例16(配合例) 下記の液晶組成物(A)は72.5℃(N→I)まで液
晶相を示し、結晶化温度(N→C)は0℃以下で
ある。 43%(重量) 17%(重量) 13%(重量) 17%(重量) 10%(重量) この組成物(A)95%(重量)に本発明で得られた
下記の化合物5%(重量)を加えた場合、第6表
に示す結果が得られた。
[Table] Example 16 (Formulation Example) The following liquid crystal composition (A) shows a liquid crystal phase up to 72.5°C (N→I), and the crystallization temperature (N→C) is 0°C or lower. 43% (weight) 17% (weight) 13% (weight) 17% (weight) 10% (weight) When 5% (weight) of the following compound obtained in the present invention was added to 95% (weight) of this composition (A), the results shown in Table 6 were obtained.

【表】 [発明の効果] 以上の実施例からも明らかなように、本発明に
よれば広い温度範囲において使用可能な液晶化合
物を得ることができる。
[Table] [Effects of the Invention] As is clear from the above examples, according to the present invention, a liquid crystal compound that can be used in a wide temperature range can be obtained.

Claims (1)

【特許請求の範囲】 1 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル
基、Xはシアノ基、またはフツ素、塩素もしくは
臭素原子を示す。)で表わされることを特徴とす
る液晶化合物。 2 Xが、シアノ基である特許請求の範囲第1項
記載の液晶化合物。 3 Xが、フツ素原子である特許請求の範囲第1
項記載の液晶化合物。 4 Xが、塩素原子である特許請求の範囲第1項
記載の液晶化合物。 5 Xが、臭素原子である特許請求の範囲第1項
記載の液晶化合物。 6 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル基
を示す。)で表わされる化合物と 一般式 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。)で表わされる化合物とを
脱水剤の存在下で反応させて 一般式 (式中RおよびXは前記と同じ意味を示す。)
で表わされる化合物を得ることを特徴とする液晶
化合物の製造方法。 7 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル基
を示す。)で表わされる化合物を塩素化剤と反応
させて 一般式 (式中Rは前記と同じ意味を示す。)で表わさ
れる酸塩化物とし、次いで 一般式 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。)で表わされる化合物と反
応させて 一般式 (式中RおよびXは前記と同じ意味を示す。)
で表わされる化合物を得ることを特徴とする液晶
化合物の製造方法。 8 一般式 (式中Rは炭素原子数2〜14の直鎖アルキル基
を示す。)で表わされる化合物と 一般式 (式中Xはシアノ基、またはフツ素、塩素もし
くは臭素原子を示す。)で表わされる化合物とを
脱水剤の存在下で反応させて 一般式 (式中RおよびXは前記と同じ意味を示す。)
で表わされる化合物を得ることを特徴とする液晶
化合物の製造方法。
[Claims] 1. General formula (In the formula, R is a linear alkyl group having 2 to 14 carbon atoms, and X is a cyano group, or a fluorine, chlorine, or bromine atom.) 2. The liquid crystal compound according to claim 1, wherein X is a cyano group. 3. Claim 1 in which X is a fluorine atom
Liquid crystal compound described in Section. 4. The liquid crystal compound according to claim 1, wherein X is a chlorine atom. 5. The liquid crystal compound according to claim 1, wherein X is a bromine atom. 6 General formula (In the formula, R represents a straight-chain alkyl group having 2 to 14 carbon atoms.) A compound represented by the general formula (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) in the presence of a dehydrating agent, and the general formula (In the formula, R and X have the same meanings as above.)
A method for producing a liquid crystal compound, the method comprising obtaining a compound represented by: 7 General formula (In the formula, R represents a straight chain alkyl group having 2 to 14 carbon atoms.) A compound represented by the formula: (in the formula, R has the same meaning as above), and then the general formula (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) By reacting with a compound represented by the general formula (In the formula, R and X have the same meanings as above.)
A method for producing a liquid crystal compound, the method comprising obtaining a compound represented by: 8 General formula (In the formula, R represents a straight-chain alkyl group having 2 to 14 carbon atoms.) A compound represented by the general formula (In the formula, X represents a cyano group, or a fluorine, chlorine, or bromine atom.) in the presence of a dehydrating agent, and the general formula (In the formula, R and X have the same meanings as above.)
A method for producing a liquid crystal compound, the method comprising obtaining a compound represented by:
JP26093585A 1985-11-20 1985-11-20 Liquid crystal compound, liquid crystal composition and production of said compound Granted JPS62120381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26093585A JPS62120381A (en) 1985-11-20 1985-11-20 Liquid crystal compound, liquid crystal composition and production of said compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26093585A JPS62120381A (en) 1985-11-20 1985-11-20 Liquid crystal compound, liquid crystal composition and production of said compound

Publications (2)

Publication Number Publication Date
JPS62120381A JPS62120381A (en) 1987-06-01
JPH041745B2 true JPH041745B2 (en) 1992-01-14

Family

ID=17354814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26093585A Granted JPS62120381A (en) 1985-11-20 1985-11-20 Liquid crystal compound, liquid crystal composition and production of said compound

Country Status (1)

Country Link
JP (1) JPS62120381A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691946B2 (en) * 1990-05-28 1997-12-17 キヤノン株式会社 Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same

Also Published As

Publication number Publication date
JPS62120381A (en) 1987-06-01

Similar Documents

Publication Publication Date Title
US4256656A (en) Mesomorphous 4-alkoxytetrafluorobenzoic acid esters
HU184629B (en) Process for producing liquide-crystalline substituted 1,3-dioxanes
KR20030074467A (en) Process for the preparation of ring compounds
JPH0748342A (en) Benzoic acid intermediate having three substituents
JPS6136247A (en) Organic compound having chiral structure, use for liquid crystal mixture and manufacture
FR2486955A1 (en) TYPE A SMOTIC LIQUID CRYSTAL HAVING POSITIVE DIELECTRIC ANISOTROPY
JPH0253415B2 (en)
FR2595094A1 (en) DIFLUORO-2,2 'ALCOXY-4-HYDROXY-4' BIPHENYLS AND THEIR DERIVATIVES, PROCESS FOR THEIR MANUFACTURE AND THEIR USE IN LIQUID CRYSTAL DISPLAY DEVICES
JPH041745B2 (en)
JPH056535B2 (en)
JPS5848532B2 (en) Benzoic acid derivatives with metastable states
EP0427166B1 (en) Ester compounds and liquid crystal compositions containing the same
Ruoliene et al. Liquid crystalline 4-alkylamino-4'-cyanobiphenyls
JPH0415232B2 (en)
JPH0341473B2 (en)
JPH0415231B2 (en)
JPH0414675B2 (en)
JP3516698B2 (en) Benzoate compound
JPH0717579B2 (en) Optically active compound and liquid crystal composition, and intermediate for synthesizing optically active compound
JPS6360981A (en) Furan based liquid crystal compound, liquid crystal intermediate, composition and production thereof
KR930006952B1 (en) Compound of carboxylic acid 4'(4-alkoxybenzyloxy) diphenyl tioester substituted alpha-halogen and method for producing thereof
JPS6125702B2 (en)
JPH0430938B2 (en)
JPS6222778A (en) Nematic liquid crystal compound, liquid crystal composition and production of said compound
JPH062696B2 (en) Tolan type new liquid crystal compound