JPH04174380A - Nuclear magnetizing and exciting method - Google Patents

Nuclear magnetizing and exciting method

Info

Publication number
JPH04174380A
JPH04174380A JP30190990A JP30190990A JPH04174380A JP H04174380 A JPH04174380 A JP H04174380A JP 30190990 A JP30190990 A JP 30190990A JP 30190990 A JP30190990 A JP 30190990A JP H04174380 A JPH04174380 A JP H04174380A
Authority
JP
Japan
Prior art keywords
pulse
approximately
phase
degrees
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30190990A
Other languages
Japanese (ja)
Other versions
JP2833855B2 (en
Inventor
Toshimichi Fujiwara
敏道 藤原
Kuniaki Nagayama
永山 国昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP30190990A priority Critical patent/JP2833855B2/en
Publication of JPH04174380A publication Critical patent/JPH04174380A/en
Application granted granted Critical
Publication of JP2833855B2 publication Critical patent/JP2833855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To excite a wide frequency band by low radio wave intensity by constituting each of the first and second pulses of a composite pulse consisting of the same number of pulse trains and setting the pulses positioned in the same order of both pulses so that pulse width is equal but the phases thereof are mutually different by about 90 deg. and the phases of the pulses adjacent in the composite pulse are mutually different by 180 deg.. CONSTITUTION:At first, the first pulse 10 is applied and the second pulse 11 is applied after a predetermined time tau1 from the falling of the pulse 10 and data is taken in after a predetermined time tau2 from the falling of the pulse 11. Herein, each of the pulses is a composite pulse wherein a plurality of pulses are combined without providing a time interval and the number of the pulses is same. The pulses positioned in the same order of the pulses 10, 11, that is, the N-th pulse of the pulse 10 and the N-th pulse of the pulse 11 are equal in pulse width and mutually different by 90 deg. in phase. Further, the phases of the pulses adjacent in the composite pulse are made mutually different by 180 deg..

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スピン量子数が1の系に使用して好適な核磁
化励起方法に係り、特に、核磁化励起のために印加する
パルスの構成に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a nuclear magnetization excitation method suitable for use in a system with a spin quantum number of 1. Concerning configuration.

[従来の技術] 従来、核磁気共鳴装置(NMR)により重水素及びその
同位体等のスピン量子数が1である系を測定するに際し
て、静磁場方向をZ方向としたとき、まず第1パルス1
としてX軸方向に90’″Xパルスを印加し、その後所
定の時間τ電の後に更に第2パルス2としてY軸方向に
30°、パルスを印加し、その後、所定の時間τ2の後
にデータの取り込みを行うている。そして、取り込んだ
データをフーリエ変換することにより、第5図Bに示す
ようなスペクトルが得られ、これにより当該試料を構成
する分子の構造、分子の運動を知ることができる。なお
、第5図Bはd、−PMMAを試料として90″′パル
スを印加し、四重極エコー法により測定した際のスペク
トルを示す図であり、核は2H1共鳴周波数は41.5
 MHZ、  ラジオ波強度はγB、/2z=83kH
zである。
[Prior Art] Conventionally, when measuring a system in which the spin quantum number is 1, such as deuterium and its isotopes, using a nuclear magnetic resonance apparatus (NMR), when the direction of the static magnetic field is the Z direction, first a first pulse is detected. 1
A 90'''X pulse is applied in the X-axis direction, and then a second pulse 2 of 30° is applied in the Y-axis direction after a predetermined time τ, and then, after a predetermined time τ2, the data is Then, by Fourier transforming the captured data, a spectrum as shown in Figure 5B is obtained, which allows us to know the structure and motion of the molecules that make up the sample. 5B is a diagram showing a spectrum obtained by applying a 90'' pulse to d, -PMMA as a sample and measuring it by the quadrupole echo method, and the 2H1 resonance frequency of the nucleus is 41.5.
MHZ, radio wave intensity is γB, /2z=83kHz
It is z.

[発明が解決しようとする課題] しかしながら、第5図に示すような90°−パルスを使
用した場合には一定のラジオ波強度で励起できる周波数
帯域は狭く、従って広い周波数帯域に渡って励起するた
めには非常に強度の強いラジオ波を必要とした。例えば
、250kH2程度の周波数帯域を励起するためには、
第1パルス、第2パルス共に、ラジオ波の強度を示すパ
ラメータであるγB、はt20kHz程度必要であった
[Problems to be Solved by the Invention] However, when using a 90° pulse as shown in Fig. 5, the frequency band that can be excited with a constant radio wave intensity is narrow, and therefore the frequency band must be excited over a wide frequency band. This required extremely strong radio waves. For example, in order to excite a frequency band of about 250kHz,
For both the first pulse and the second pulse, γB, which is a parameter indicating the intensity of radio waves, was required to be about 20 kHz.

これに対して、第1パルス及び第2パルスを単一の90
@パルスに代えて、複数のパルスを組み合わせた複合パ
ルスを使用することも行われており、これによればsO
@パルスを使用した場合と比較して同じラジオ波強度で
はより広い周波数帯域を励起できるが、従来の複合パル
スはスピン量子数が1の系とスピン量子数が1/2の系
との相似性に基づいて設計されたもので、例えば18G
”RF位相シフトだけを有するスピン量子数1/2の系
のための反転パルスで、そのパルス幅を1/2にしたも
のが使用されていたので、スピン量子数が1の系に対し
て最適なものではなく、比較的大きなラジオ波強度が必
要であった。
In contrast, the first and second pulses are combined into a single 90°
In place of the @pulse, a composite pulse that combines multiple pulses has also been used, and according to this, the sO
Compared to the case where @pulses are used, a wider frequency band can be excited with the same radio wave intensity, but conventional composite pulses have a similar effect between a system with a spin quantum number of 1 and a system with a spin quantum number of 1/2. For example, 18G
``This is an inversion pulse for a system with a spin quantum number of 1/2 that has only an RF phase shift, and a pulse width of 1/2 was used, so it is optimal for a system with a spin quantum number of 1. This required relatively high radio wave intensity.

本発明は、上記の課題を解決するものであって、十分に
広い周波数帯域を低いラジオ波強度で励起することがで
きる核磁化励起方法を提供することを目的とするもので
ある。
The present invention solves the above problems, and aims to provide a nuclear magnetization excitation method that can excite a sufficiently wide frequency band with low radio wave intensity.

[課題を解決するための手段] 上記の目的を達成するために、本発明の核磁化励起方法
は、第1パルスと第2パルスを所定の時間間隔で印加す
る核磁化励起方法において、前記第1パルス及び第2パ
ルスは共に同じ数のパルス列からなる複合パルスからな
り、前記第1パルスと前記第2パルスの同じ順番に位置
するパルスはパルス幅は同等で位相は互いに略9G°異
なり、且つ複合パルス内で隣接するパルスの位相は互い
に略180@異なることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the nuclear magnetization excitation method of the present invention applies a first pulse and a second pulse at a predetermined time interval. The first pulse and the second pulse are both composed of a composite pulse consisting of the same number of pulse trains, and the pulses located in the same order of the first pulse and the second pulse have the same pulse width and a phase difference of about 9 G° from each other, and It is characterized in that the phases of adjacent pulses within a composite pulse differ from each other by approximately 180@.

[作用コ 本発明によれば、例えば第1パルスとして、パルス幅が
略3G@で位相が略270’のパルスと、パルス幅が略
148’で位相が略90@のパルスと、パルス幅が略6
2″で位相が略270@のパルスと、パルス幅が略37
°で位相が略90°のパルスとがこの順序に組み合わさ
れている複合パルスが用いられた場合には、第2パルス
としては、パルス幅が略3B″で位相が略0°のパルス
と、パルス幅が略148’で位相が略180″のパルス
と、パルス幅が略62#で位相が略O″のパルスと、パ
ルス幅が略37″′で位相が略180”のパルスとがこ
の順序に組み合わされている複合パルスが用いられる。
[Function] According to the present invention, for example, as the first pulse, a pulse with a pulse width of approximately 3G@ and a phase of approximately 270', a pulse with a pulse width of approximately 148' and a phase of approximately 90@; about 6
2″ and a pulse with a phase of approximately 270 @ and a pulse width of approximately 37
When a composite pulse is used in which a pulse with a pulse width of approximately 3B'' and a phase of approximately 90° is combined in this order, the second pulse is a pulse with a pulse width of approximately 3B'' and a phase of approximately 0°, These are a pulse with a pulse width of approximately 148' and a phase of approximately 180'', a pulse with a pulse width of approximately 62# and a phase of approximately O'', and a pulse with a pulse width of approximately 37'' and a phase of approximately 180''. Composite pulses that are combined in sequence are used.

なお、第1パルスの立ち下がりから第2パルスの立ち上
がりまでの時間τ1は、10〜209sec程度である
。また、複合パルスを構成する各パルスのパルス幅は、
複合パルス全体として±5″程度の範囲内は許容できる
ものである。
Note that the time τ1 from the fall of the first pulse to the rise of the second pulse is about 10 to 209 seconds. Also, the pulse width of each pulse that makes up the composite pulse is
As a whole, a range of about ±5'' is acceptable for the composite pulse.

このような複合パルスは、従来使用されていた複合パル
スと異なり、スピン量子数が1の系に対して最適設計が
なされたものであるので、低いラジオ波強度で広い周波
数帯域を励起することが可能である。
Unlike conventionally used composite pulses, this type of composite pulse is optimally designed for a system with a spin quantum number of 1, so it is possible to excite a wide frequency band with low radio wave intensity. It is possible.

[実施例コ 以下、図面を参照しつつ実施例を説明する。[Example code] Examples will be described below with reference to the drawings.

本発明に係る核磁化励起方法においては第1図に示すよ
うに、まず第1パルス10を印加し、第1パルス10の
立ち下がりから所定の時間τ1の後第2パルス11を印
加し、第2パルス11の立ち下がりから所定の時間τ2
の後にデータの取り込みを行う。ここで、第1パルス1
0および第2パルス11はそれぞれ複数のパルスが時間
間隔無しに組み合わされた複合パルスであり、そのパル
ス数は同じである。そして、第1パルス10と第2パル
ス11の同じ順番に位置するパルス、即ち第1パルス1
0の第N番目のパルスと第2パルス11の第N番目のパ
ルスのパルス幅は同等であり、位相は互いに略90°異
なっている。
In the nuclear magnetization excitation method according to the present invention, as shown in FIG. 2 Predetermined time τ2 from the falling edge of pulse 11
After that, import the data. Here, the first pulse 1
The 0 and second pulses 11 are each a composite pulse in which a plurality of pulses are combined without any time interval, and the number of pulses thereof is the same. Then, the pulses located in the same order of the first pulse 10 and the second pulse 11, that is, the first pulse 1
The Nth pulse of 0 and the Nth pulse of second pulse 11 have the same pulse width, and their phases differ from each other by approximately 90°.

第1パルス10と第2パルス11のパルス幅を同等とす
る理由は次のようである。有効帯域、即ち位相の揃った
磁化成分が98%以上の強度で観測される帯域は第1パ
ルス10と第2パルス11の帯域幅の狭い方で決定され
る。つまり、第1パルス10と第2パルス11のパルス
幅を興なるものとすることができるのは勿論であるが、
その場合には有効帯域の広い方のパルスは有効に利用さ
れないことになる。そこで、第1パルス10と第2パル
ス11の有効帯域を同等とするために、対応する位置に
あるパルスのパルス幅を同等なものとするのである。
The reason why the pulse widths of the first pulse 10 and the second pulse 11 are made equal is as follows. The effective band, that is, the band in which phase-aligned magnetization components are observed with an intensity of 98% or more, is determined by the narrower of the bandwidths of the first pulse 10 and the second pulse 11. In other words, it goes without saying that the pulse widths of the first pulse 10 and the second pulse 11 can be made different;
In that case, the pulse with the wider effective band will not be used effectively. Therefore, in order to make the effective bands of the first pulse 10 and the second pulse 11 the same, the pulse widths of the pulses at the corresponding positions are made the same.

更に、複合パルス内の隣接するパルスの位相は互いに1
80’異なるようになされている。
Furthermore, the phases of adjacent pulses within a composite pulse are 1 relative to each other.
80' are made differently.

第2図に第1パルス10または第2パルス11として使
用可能な複合パルスの例を示す。なお、図中各パルスに
記載した数値は上がパルス幅、下の括弧書きが位相を示
す。
FIG. 2 shows an example of a composite pulse that can be used as the first pulse 10 or the second pulse 11. In addition, in the numerical value written for each pulse in the figure, the upper part indicates the pulse width, and the lower part in parentheses indicates the phase.

第2図Aの複合パルスは、パルス幅が36.0’で位相
が270”のパルスと、パルス幅が147.8@で位相
が30″のパルスと、パルス幅が62.0’で位相が2
70”のパルスと、パルス幅が38.9゜位相が90″
のパルスの4個のパルスが時間間隔無しに組み合わされ
て構成されており、同様に同図Bの複合パルスは8個の
パルスが組み合わされて構成され、同図Cの複合パルス
は10個のパルスが組み合わされて構成されている。そ
れぞれの複合パルスを構成する各パルスのパルス幅及び
位相は図に示すとおりである。
The composite pulse in Figure 2A consists of a pulse with a pulse width of 36.0' and a phase of 270'', a pulse with a pulse width of 147.8@ and a phase of 30'', and a pulse with a pulse width of 62.0' and a phase of 270''. is 2
70" pulse with pulse width of 38.9° and phase of 90"
Similarly, the composite pulse shown in Figure B is composed of 8 pulses combined, and the composite pulse shown in Figure C is composed of 10 pulses. It is made up of a combination of pulses. The pulse width and phase of each pulse constituting each composite pulse are as shown in the figure.

なお、第2図A、  B、  Cに示す複合パルスを使
用した場合の有効帯域は、それぞれ、主1゜5γB1、
主2゜9γB8.±3.7γB、である。これに対して
従来のものは±0.5γB、程度であるから、第2図A
に示す複合パルスは、電圧では略3倍、電力では略3倍
となり、従って第2図Aの複合パルスを使用した場合に
は、ラジオ波強度が同じである場合には従来に比較して
励起できる周波数帯域は3倍となり、また同じ周波数帯
域を励起するためには従来の1/9の電力でよいことに
なる。
The effective bands when using the composite pulses shown in Fig. 2 A, B, and C are mainly 1°5γB1 and 1°5γB1, respectively.
Main 2゜9γB8. ±3.7γB. On the other hand, the conventional one is about ±0.5γB, so Fig. 2A
The composite pulse shown in Figure 2A has approximately three times the voltage and approximately three times the power. Therefore, when the composite pulse shown in Figure 2A is used, the excitation is greater than that of the conventional method when the radio wave intensity is the same. The possible frequency band is tripled, and to excite the same frequency band, 1/9th the power of the conventional method is required.

第2図A、  B、  Cに示す複合パルスはそのまま
第1パルス10または第2パルスとして使用することが
できるが、第2図に示すパルス配列を逆にしてもよい。
Although the composite pulses shown in FIGS. 2A, B, and C can be used as the first pulse 10 or the second pulse as they are, the pulse arrangement shown in FIG. 2 may be reversed.

例えば、第2図Aに示す複合パルスを例にとれば、パル
ス幅が36.9°で位相が90″のパルスと、パルス幅
が82.0’で位相が270°のパルスと、パルス幅が
147.8’で位相が80″のパルスと、パルス幅が3
8.0@で位相が270″′のパルスの4個のパルスを
この順序で配列した複合パルスも第1パルス10または
第2パルス11として使用することができる。
For example, taking the composite pulse shown in FIG. is 147.8', the phase is 80'', and the pulse width is 3.
A composite pulse in which four pulses of 8.0@ and a phase of 270'' are arranged in this order can also be used as the first pulse 10 or the second pulse 11.

第2図A、  B、  Cに示す複合パルスを第1パル
ス10として使用した場合には、第2パルス11として
は、第1パルス10の複合パルスを構成する各パルスと
パルス幅が同じで位相が906興なるパルスで構成され
る複合パルスを使用する。例えば、第2図Aに示す複合
パルスを第1パルス10または第2パルス11として使
用した場合には、第2パルス11または第1パルス10
は、パルス幅が38.0°で位相がθ°のパルスと、パ
ルス幅が147.8@で位相が180@のパルスと、パ
ルス幅が62.0″′で位相が0@のパルスと、パルス
幅が36.9″で位相が180”のパルスの4個のパル
スを組み合わせて構成する。第2図B、  Cに示す複
合パルスについても同様である。
When the composite pulses shown in FIG. 2 A, B, and C are used as the first pulse 10, the second pulse 11 has the same pulse width and phase as each pulse constituting the composite pulse of the first pulse 10. A composite pulse consisting of 906 pulses is used. For example, when the composite pulse shown in FIG. 2A is used as the first pulse 10 or the second pulse 11, the second pulse 11 or the first pulse 10
is a pulse with a pulse width of 38.0° and a phase of θ°, a pulse with a pulse width of 147.8@ and a phase of 180@, and a pulse with a pulse width of 62.0'' and a phase of 0@. , a pulse width of 36.9'' and a phase of 180''. The same applies to the composite pulses shown in FIGS. 2B and 2C.

なお、複合パルスを構成する各パルスのパルス幅は上記
の数値に限定されるものではなく、複合パルス全体とし
て±5°程度の許容範囲がある。
Note that the pulse width of each pulse constituting the composite pulse is not limited to the above numerical value, and there is a tolerance range of approximately ±5° for the composite pulse as a whole.

以上のような複合パルスからなる第1パルス10は、熱
平衡磁化をそれとは垂直なX−Y平面内に、第2パルス
11でリフオーカス可能なように倒す。また、第2パル
ス11は、印加後口極子エコーが観測できるように、x
−y平面内の磁化の符号を変える。
The first pulse 10 consisting of the above-described composite pulse tilts the thermal equilibrium magnetization in the X-Y plane perpendicular to the thermal equilibrium magnetization so that it can be refocused by the second pulse 11. In addition, the second pulse 11 is applied at x
- Change the sign of magnetization in the y-plane.

第1図中のτ1 、τ2は第1パルス10、第2パルス
11として使用する複合パルスによって異なるが、略l
O〜20μsec程度である。
τ1 and τ2 in FIG. 1 vary depending on the composite pulse used as the first pulse 10 and second pulse 11, but approximately l
It is about 0 to 20 μsec.

次に、上述した複合パルスの設計方法について説明する
Next, a method for designing the above-mentioned composite pulse will be explained.

まず、パルス幅が45″で位相が異なる下記のようなパ
ルス列を作成する。
First, the following pulse train with a pulse width of 45'' and different phases is created.

45@I+  + 45@12 H45@ii−+・・
・・・・・・・、45°i。
45@I+ + 45@12 H45@ii-+...
・・・・・・・・・45°i.

但し、2≦n:51Bであり、RF位相11は0″。However, 2≦n: 51B, and the RF phase 11 is 0″.

90’ 、 180’ 、 27G’の何れかである。It is either 90', 180', or 27G'.

なお、パルス幅を45@ とじたのは、従来使用されて
いるパルスはパルス幅が45″の倍数であるものが多く
、シミュレーシ2ンの手法も確立されており、従ってシ
ミュレーシロンの計算に要する時間を最短にできるから
である。また、パルスの個数を最大16個としたのは、
励起できる周波数帯域が概略複合パルスの全体のパルス
幅に比例することが推測され、従って最大18個程度の
パルス列からなる複合パルスを使用すれば従来より広い
周波数帯域を励起できる可能性があること、そしてそれ
以上の個数とした場合には緩和現象等が生じて実用性を
失うことが推測されるからである。
The reason why the pulse width was set at 45@ is because many conventionally used pulses have a pulse width that is a multiple of 45'', and the simulation 2 method has been established, so This is because the time required can be minimized.Also, the number of pulses is set to 16 at maximum because
It is estimated that the frequency band that can be excited is approximately proportional to the overall pulse width of the composite pulse, and therefore, it is possible to excite a wider frequency band than before by using a composite pulse consisting of a maximum of about 18 pulse trains; This is because if the number is larger than that, it is presumed that a relaxation phenomenon will occur and the practicality will be lost.

上記のパルス列の組み合わせは101e個程度存在する
が、その中から1例えば回転行列を掛ける等のシミュレ
ーシ冒ンを行って磁化の向く方向を求め、四極子結合定
数Δω。=0のときに90″パルスと同等の効果が得ら
れるパルス列をtOW個程度抽出する。
There are about 101e combinations of the above pulse trains, and from among them, for example, a simulation is performed such as multiplying by a rotation matrix to find the direction of magnetization, and the quadrupole coupling constant Δω is determined. When =0, about tOW pulse trains that can obtain the same effect as the 90'' pulse are extracted.

次に、このようにして抽出したパルス列を初期パルスと
して、パルス幅とRF位相を変数にして最適化を行う。
Next, using the pulse train extracted in this manner as an initial pulse, optimization is performed using the pulse width and RF phase as variables.

このような手法により得られた複合パルスの例が第2図
A、  B、  Cであり、これらの複合パルスと同等
な効果を有する複合パルスは多数確認されている。
Examples of composite pulses obtained by such a method are shown in FIGS. 2A, B, and C, and many composite pulses having effects equivalent to these composite pulses have been confirmed.

本発明に係る複合パルスを使用した場合と従来例との比
較を第3図に示す。第3図は上記のシミニレ−シロンの
結果得られたグラフであり、ω0/2ω1で正規化され
た周波数に対する磁化の状態を示すグラフであり、縦軸
のrlJは完全に励起された状態を示し、「O」は磁化
されていない状態を示し、r−IJは磁化が反転してい
る状態を示す。第3図Aは従来の90°パルスを使用し
た場合(τ1=200” 、 t@=245” ) 、
同図BはRalaigh氏等により提唱された複合パル
ス(第2図D)を使用した場合(τI=200@、τ2
:474’ )、同図Cは第2図Bに示す複合パルスを
使用した場合(τ+”2000、τ2:sos’ )、
同図りは第2図Cに示す複合パルスを使用した場合(τ
+=200’ 、τ2=883’ )を示す。
FIG. 3 shows a comparison between the case where the composite pulse according to the present invention is used and the conventional example. Figure 3 is a graph obtained as a result of the above-mentioned Siminireshiron, and is a graph showing the state of magnetization with respect to the frequency normalized by ω0/2ω1, and rlJ on the vertical axis indicates the completely excited state. , "O" indicates a non-magnetized state, and r-IJ indicates a state where the magnetization is reversed. Figure 3A shows the case where a conventional 90° pulse is used (τ1=200", t@=245"),
Figure B shows the case (τI=200@, τ2
:474'), and C in the same figure shows the case where the composite pulse shown in Fig. 2B is used (τ+"2000, τ2:sos'),
The same diagram shows the case where the composite pulse shown in Figure 2C is used (τ
+=200', τ2=883').

第3図から明らかなように、本発明によれば、広い周波
数帯域に渡って良好に磁化されることが分かる。
As is clear from FIG. 3, it can be seen that according to the present invention, magnetization is achieved satisfactorily over a wide frequency band.

第4図は四重極エコー法により測定したスペクトルによ
り比較した図であり、何れも試料はda−P M M 
A、 核は2H1共鳴周波数は41.5MHzである。
Figure 4 is a comparison of spectra measured by the quadrupole echo method, in which the samples are da-P M M
A. The 2H1 resonance frequency of the nucleus is 41.5MHz.

第4図Aは第2図Cに示す複合パルスを使用した場合の
スペクトルであり、ラジオ波強度γB+/2π=21k
H2である。同図Bは第5図Bに示すものと同じであり
、従来の90″パルスを使用した場合のスペクトルであ
り、ラジオ波強度γB +/ 2π=83kH2である
。同図CはRale1gh氏等により提唱された従来の
複合パルスを使用した場合のスペクトルであり、ラジオ
波強度γB1/2π=21kH2である。同図りは90
’パルスを使用した場合のスペクトルであるが、ラジオ
波強度はγB+/2π=21 kHzである。
Figure 4A shows the spectrum when the composite pulse shown in Figure 2C is used, and the radio wave intensity γB+/2π=21k
It is H2. Figure B is the same as that shown in Figure 5B, and is the spectrum when a conventional 90'' pulse is used, and the radio wave intensity γB +/2π = 83kHz. Figure C is based on Rale1gh et al. This is the spectrum when using the proposed conventional composite pulse, and the radio wave intensity γB1/2π = 21kHz.
'This is the spectrum when pulses are used, and the radio wave intensity is γB+/2π=21 kHz.

第4図A、  B、  C,Dを比較すれば、本発明に
係る複合パルスを使用した場合が低いラジオ波強度で広
い周波数帯域を励起できること、従って最も優れている
ことが分かる。第4図Bのスペクトルは第4図Aのスペ
クトルとほぼ同じ様であるが、ラジオ波強度は同図Aの
3倍必要であり、しかも±62kH2のピークが本来の
強度の70%になっていることが計算で確認されている
Comparing FIGS. 4A, B, C, and D, it can be seen that the use of the composite pulse according to the present invention can excite a wide frequency band with low radio wave intensity, and is therefore the best. The spectrum in Figure 4B is almost the same as the spectrum in Figure 4A, but the radio wave intensity is three times that of Figure A, and the peak at ±62kHz is 70% of the original intensity. It has been confirmed by calculation that there is.

[発明の効果コ 以上の説明から明らかなように、本発明によれば、シミ
ュレーションによりスピン量子数が1の系に最適な複合
パルスを得ることができるので、低いラジオ波強度で広
い周波数帯域に渡って四極子結合の影響を相殺して励起
することができる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, it is possible to obtain an optimal composite pulse for a system with a spin quantum number of 1 through simulation, so that it is possible to obtain a composite pulse that is optimal for a system with a spin quantum number of 1. can be excited by canceling out the effects of quadrupolar coupling across the range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る核磁化励起方法に使用するパルス
を説明する図、第2図は複合パルスの構成例を示す図、
第3図は本発明と従来例を磁イヒの状態により比較する
ための図、第4図は本発明と従来例をスペクトルにより
比較するための図、第5図は従来例を示す図である。 10・・・第1パルス、 11・・・第2)<)レス。 出  願  人 日本電子株式会社 代理人 弁理士 菅 井 英 雄(外7名)第1図 第3図 0       1       2   ωG/2ω
1く          ω 第3図 0       1       2 ωQ/2ω1第
5図 ′。′o、、、、。
FIG. 1 is a diagram illustrating pulses used in the nuclear magnetization excitation method according to the present invention, FIG. 2 is a diagram illustrating an example of the configuration of a composite pulse,
Fig. 3 is a diagram for comparing the present invention and the conventional example in terms of the state of magnetization, Fig. 4 is a diagram for comparing the present invention and the conventional example in terms of spectra, and Fig. 5 is a diagram showing the conventional example. . 10...1st pulse, 11...2nd)<)Response. Applicant JEOL Ltd. Agent Patent Attorney Hideo Sugai (7 others) Figure 1 Figure 3 0 1 2 ωG/2ω
1ku ω Fig. 3 0 1 2 ωQ/2ω1 Fig. 5'. 'o,,,,.

Claims (4)

【特許請求の範囲】[Claims] (1)第1パルスと第2パルスを所定の時間間隔で印加
する核磁化励起方法において、前記第1パルス及び第2
パルスは共に同じ数のパルス列からなる複合パルスから
なり、前記第1パルスと前記第2パルスの同じ順番に位
置するパルスはパルス幅は同等で位相は互いに略90゜
異なり、且つ複合パルス内で隣接するパルスの位相は互
いに略180゜異なることを特徴とする核磁化励起方法
(1) In a nuclear magnetization excitation method in which a first pulse and a second pulse are applied at a predetermined time interval, the first pulse and the second pulse are
The pulses are composed of composite pulses each consisting of the same number of pulse trains, and the pulses located in the same order of the first pulse and the second pulse have the same pulse width, differ in phase from each other by approximately 90°, and are adjacent to each other within the composite pulse. A nuclear magnetization excitation method characterized in that the phases of the pulses differ by approximately 180 degrees from each other.
(2)前記第1または第2パルスの一方に使用される複
合パルスは、パルス幅が略36゜で位相が略270゜の
パルスと、パルス幅が略148゜で位相が略90゜のパ
ルスと、パルス幅が略62゜で位相が略270゜のパル
スと、パルス幅が略37゜で位相が略90゜のパルスと
がこの順序または逆の順序に組み合わされていることを
特徴とする請求項1記載の核磁化励起方法。
(2) The composite pulse used for either the first or second pulse is a pulse with a pulse width of approximately 36° and a phase of approximately 270°, and a pulse with a pulse width of approximately 148° and a phase of approximately 90°. A pulse having a pulse width of approximately 62 degrees and a phase of approximately 270 degrees, and a pulse having a pulse width of approximately 37 degrees and a phase of approximately 90 degrees are combined in this order or in the reverse order. The nuclear magnetization excitation method according to claim 1.
(3)前記第1または第2パルスの一方に使用される複
合パルスは、パルス幅が略31゜で位相が略90°のパ
ルスと、パルス幅が略61゜で位相が略270゜のパル
スと、パルス幅が略74゜で位相が略90゜のパルスと
、パルス幅が略73゜で位相が略270゜のパルスとパ
ルス幅が略155゜で位相が略90゜のパルスと、パル
ス幅が略75゜で位相が略270゜のパルスと、パルス
幅が略65゜で位相が略90゜のパルスと、パルス幅が
略31゜で位相が略270゜のパルスとがこの順序また
は逆の順序に組み合わされていることを特徴とする請求
項1記載の核磁化励起方法。
(3) The composite pulse used for either the first or second pulse is a pulse with a pulse width of approximately 31° and a phase of approximately 90°, and a pulse with a pulse width of approximately 61° and a phase of approximately 270°. , a pulse with a pulse width of approximately 74 degrees and a phase of approximately 90 degrees, a pulse with a pulse width of approximately 73 degrees and a phase of approximately 270 degrees, a pulse with a pulse width of approximately 155 degrees and a phase of approximately 90 degrees, and a pulse with a pulse width of approximately 155 degrees and a phase of approximately 90 degrees. A pulse with a width of approximately 75 degrees and a phase of approximately 270 degrees, a pulse with a pulse width of approximately 65 degrees and a phase of approximately 90 degrees, and a pulse with a pulse width of approximately 31 degrees and a phase of approximately 270 degrees in this order or 2. The nuclear magnetization excitation method according to claim 1, wherein the nuclear magnetization excitation method is combined in a reverse order.
(4)前記第1または第2パルスの一方に使用される複
合パルスは、パルス幅が略83゜で位相が略90゜のパ
ルスと、パルス幅が略75゜で位相が略270゜のパル
スと、パルス幅が略158゜位相が略90゜のパルスと
、パルス幅が略66゜で位相が略270゜のパルスとパ
ルス幅が略117゜で位相が略90゜のパルスと、パル
ス幅が略42゜で位相が略270゜のパルスと、パルス
幅が略66゜で位相が略90゜のパルスと、パルス幅が
略158゜で位相が略270゜のパルスと、パルス幅が
略75゜で位相が略90゜のパルスと、パルス幅が略6
6゜で位相が略270゜のパルスとがこの順序または逆
の順序に組み合わされていることを特徴とする請求項1
記載の核磁化励起方法。
(4) The composite pulse used for either the first or second pulse includes a pulse with a pulse width of approximately 83° and a phase of approximately 90°, and a pulse with a pulse width of approximately 75° and a phase of approximately 270°. A pulse with a pulse width of approximately 158 degrees and a phase of approximately 90 degrees, a pulse with a pulse width of approximately 66 degrees and a phase of approximately 270 degrees, a pulse with a pulse width of approximately 117 degrees and a phase of approximately 90 degrees, and a pulse with a pulse width of approximately 117 degrees and a phase of approximately 90 degrees. A pulse with a pulse width of approximately 42 degrees and a phase of approximately 270 degrees, a pulse with a pulse width of approximately 66 degrees and a phase of approximately 90 degrees, a pulse with a pulse width of approximately 158 degrees and a phase of approximately 270 degrees, and a pulse with a pulse width of approximately 270 degrees. A pulse with a phase of approximately 90° at 75° and a pulse width of approximately 6
6° and a phase of approximately 270°, which are combined in this order or in the reverse order.
The nuclear magnetization excitation method described.
JP30190990A 1990-11-07 1990-11-07 Nuclear magnetization excitation method Expired - Fee Related JP2833855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30190990A JP2833855B2 (en) 1990-11-07 1990-11-07 Nuclear magnetization excitation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30190990A JP2833855B2 (en) 1990-11-07 1990-11-07 Nuclear magnetization excitation method

Publications (2)

Publication Number Publication Date
JPH04174380A true JPH04174380A (en) 1992-06-22
JP2833855B2 JP2833855B2 (en) 1998-12-09

Family

ID=17902574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30190990A Expired - Fee Related JP2833855B2 (en) 1990-11-07 1990-11-07 Nuclear magnetization excitation method

Country Status (1)

Country Link
JP (1) JP2833855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812112B1 (en) * 2000-08-11 2008-03-12 벨라타이레 인터내셔날 엘엘씨. High pressure and high temperature production of diamonds
WO2011161068A1 (en) * 2010-06-23 2011-12-29 Technische Universität München Cooperative pulses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812112B1 (en) * 2000-08-11 2008-03-12 벨라타이레 인터내셔날 엘엘씨. High pressure and high temperature production of diamonds
WO2011161068A1 (en) * 2010-06-23 2011-12-29 Technische Universität München Cooperative pulses
US9557398B2 (en) 2010-06-23 2017-01-31 Technische Universitaet Muenchen Cooperative pulses

Also Published As

Publication number Publication date
JP2833855B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
Levitt et al. Composite pulses constructed by a recursive expansion procedure
US4510449A (en) Method for recording two-dimensional nuclear magnetic resonance spectra and a device for carrying out the same
EP0206129B1 (en) Nmr magnetization inversion by non-linear adiabatic fast passage
JPS629857B2 (en)
JP2005221512A (en) Nuclear resonance test equipment and method therefor
JPS6250776B2 (en)
US4238735A (en) Indirect detection of nuclear spins of low gyromagentic ratio coupled to spins of high gyromagnetic ratio
US4470014A (en) NMR Spectroscopy
Mohebbi et al. Improvements in carbon-13 broadband homonuclear cross-polarization for 2D and 3D NMR
EP0394504B1 (en) A method for exciting transverse magnetization in NMR pulse experiments
EP0179816B1 (en) Spatially selective nuclear magnetic resonance pulse sequences
US5117186A (en) Method for increasing resolution in two-dimensional solid-state nmr heteronuclear correlation spectra
JPH0576296B2 (en)
Baker Nondipolar Interaction Between Nearest-Neighbor Neodymium Ions in the Ethyl Sulfate
JP3167146B2 (en) Rotor-tuned cross polarization of solid-state NMR
EP2549285B1 (en) Fourier tickling for homonuclear decoupling in NMR
DUMAZY et al. Theoretical and experimental study of quadrupolar echoes in solid state NMR
JPH04174380A (en) Nuclear magnetizing and exciting method
US4502008A (en) Method and apparatus for nuclear magnetic resonance spectroscopy
JPS6134451A (en) Method of exciting sample for nuclear magnetic resonance tomography
JPH02118441A (en) Recording of ion cyclotron resonance mass spectrum and ion cyclotron resonance mass spectrometer for implementing the same
JPH0196544A (en) Inspection of sample using nmr
JPS6238146A (en) Selective excitation of volume in matter
JPH074351B2 (en) NMR spectrum measurement method
Xia et al. Optimization of 1 H decoupling eliminates sideband artifacts in 3D TROSY-based triple resonance experiments

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees