JPH0417315B2 - - Google Patents

Info

Publication number
JPH0417315B2
JPH0417315B2 JP58030100A JP3010083A JPH0417315B2 JP H0417315 B2 JPH0417315 B2 JP H0417315B2 JP 58030100 A JP58030100 A JP 58030100A JP 3010083 A JP3010083 A JP 3010083A JP H0417315 B2 JPH0417315 B2 JP H0417315B2
Authority
JP
Japan
Prior art keywords
pressure
container
hydrogen
resistant
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58030100A
Other languages
Japanese (ja)
Other versions
JPS59155699A (en
Inventor
Kenji Nasako
Ikuro Yonezu
Naojiro Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58030100A priority Critical patent/JPS59155699A/en
Publication of JPS59155699A publication Critical patent/JPS59155699A/en
Publication of JPH0417315B2 publication Critical patent/JPH0417315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は金属あるいは合金と水素の吸熱及び放
熱反応を利用して太陽熱等の余剰熱を長期にわた
つて蓄える蓄熱システムに係り、金属水素化物よ
り解離した水素を貯蔵する水素貯蔵容器に関する
ものである。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a heat storage system that stores surplus heat such as solar heat over a long period of time by utilizing endothermic and heat-radiating reactions between metals or alloys and hydrogen. This invention relates to a hydrogen storage container that stores hydrogen dissociated from a compound.

(ロ) 従来技術 従来の蓄熱システムでは使用されている耐圧水
素容器が耐高圧性のものに限られ、この種の耐高
圧性水素容器に対してとられている安全対策は、
機械的な強度の向上或いは水素脆性等容器内が高
圧になつたときの為のものであり、容器内が低圧
になつた場合の安全対策が考慮だにされてはいな
かつた。
(b) Prior art The pressure-resistant hydrogen containers used in conventional heat storage systems are limited to those that are resistant to high pressure, and the safety measures taken for this type of high-pressure resistant hydrogen containers are as follows:
This was intended to improve mechanical strength or prevent hydrogen embrittlement when the inside of the container becomes high pressure, and no consideration was given to safety measures when the inside of the container becomes low pressure.

ところが近年、上記蓄熱システムにおける水素
は新しいエネルギーとして注目を浴び、水素容器
内の圧力は水素の流入、或いは流出に伴ない高圧
←→低圧へ状態が移行し、従来の耐高圧性水素容器
ではこのように激しく変遷する水素容器内圧に対
して安定な状態を維持できず、特に水素容器内の
圧力が低圧になつたときの種々の安全対策が問題
とされる。
However, in recent years, hydrogen in the above-mentioned heat storage system has attracted attention as a new energy, and the pressure inside the hydrogen container changes from high pressure to low pressure as hydrogen flows in or out. It is not possible to maintain a stable state against the rapidly changing internal pressure of the hydrogen container, and various safety measures are problematic, especially when the pressure inside the hydrogen container becomes low.

例えば金属水素化物を利用する蓄熱システムで
は耐圧水素容器内における該金属水素化物の水素
解離状態と水素吸収状態とによつて耐圧水素容器
内で圧力差が生じる。耐圧水素容器は前述の如く
規準以下の高圧に対して強度が維持されているも
のであるから、水素吸収状態における耐圧水素容
器内の圧力をこの規準以下に設定してやると、必
然的に水素解離状態では低圧状態になる可能性を
生じる。
For example, in a heat storage system using a metal hydride, a pressure difference occurs within the pressure-resistant hydrogen container depending on the hydrogen dissociation state and the hydrogen absorption state of the metal hydride in the pressure-resistant hydrogen container. As mentioned above, the pressure-resistant hydrogen container maintains its strength against high pressures below the standard, so if the pressure inside the pressure-resistant hydrogen container is set to below this standard in the hydrogen absorption state, it will inevitably lead to a state of hydrogen dissociation. This creates the possibility of low pressure conditions.

尚、上述の如き金属水素化物を利用したシステ
ムにおいては、金属に対して水素を吸収させる場
合と解離させる場合とによる耐圧水素容器内の圧
力差を小さくするためには、原理的に高圧下で蓄
熱システムを構成するよるも低圧下で構成する方
が有利であるから、よつて低圧下でも使用可能な
耐圧水素容器が必要となる。
In addition, in a system using a metal hydride as described above, in principle, in order to reduce the pressure difference in the pressure-resistant hydrogen container between when the metal absorbs hydrogen and when it dissociates, it is necessary to Since it is more advantageous to configure the heat storage system under low pressure than to configure it, a pressure-resistant hydrogen container that can be used even under low pressure is required.

一方従来の耐圧水素容器は低圧下での空気(特
に酸素)の自然流入或いは亀裂による流入に対す
る安全対策が取られていないために低圧下で前記
耐圧容器を使用することは不可能に近い。更に金
属水素化物を利用する場合は特に酸素の流入によ
つて耐圧水素容器内の金属が酸化し、その活性を
失うと共に酸化反応が急激であると、爆発した
り、金属の再活性化を不可能にしてしまう。
On the other hand, since conventional pressure-resistant hydrogen containers do not have safety measures against the natural inflow of air (particularly oxygen) or inflow due to cracks under low pressure, it is almost impossible to use the pressure-resistant containers under low pressure. Furthermore, when using metal hydrides, the metal in the pressure-resistant hydrogen container may oxidize due to the influx of oxygen and lose its activity, and if the oxidation reaction is rapid, it may explode or prevent metal reactivation. It makes it possible.

(ハ) 発明の目的 本発明は上述の如き従来技術の問題点に鑑み成
されたものであり、耐圧水素容器内の圧力が高圧
になつても低圧になつても使用に耐え得る安全手
段を具備した水素貯蔵容器を提供しようとするも
のである。
(c) Purpose of the Invention The present invention has been made in view of the problems of the prior art as described above, and provides a safety measure that can withstand use even when the pressure inside the pressure-resistant hydrogen container becomes high or low. The purpose of the present invention is to provide a hydrogen storage container equipped with the following.

(ニ) 発明の構成 内部に酸素センサを具備した断熱性耐圧水素容
器に外部制御によつて開閉自在な電磁バルブを具
備した連結管を介してアルゴン等の不活性ガスが
充填された加圧不活性ガス容器を連結すると共
に、前記酸素センサは前記耐圧水素容器が低圧に
なつて内部に酸素が流入した際に流入した酸素の
濃度を検出してコントロールボツクスへ信号を送
り、該コントロールボツクスからの信号によつて
前記バルブを開いて前記耐圧水素容器を加圧下に
保ち過度の酸素の流入を防ぐようにしたものであ
る。
(d) Structure of the Invention A pressurized inert gas in which an insulating pressure-resistant hydrogen container equipped with an oxygen sensor inside is filled with an inert gas such as argon via a connecting pipe equipped with an electromagnetic valve that can be opened and closed by external control. In addition to connecting the active gas container, the oxygen sensor detects the concentration of oxygen flowing into the pressure-resistant hydrogen container when the pressure becomes low and sends a signal to the control box. The valve is opened in response to a signal to maintain the pressure-resistant hydrogen container under pressure and prevent excessive oxygen from flowing into the container.

(ホ) 実施例 以下本発明を添付の図面に沿つて説明する。(e) Examples The present invention will be described below with reference to the accompanying drawings.

1は耐圧水素容器である。この耐圧水素容器1
はその周囲を断熱材(図示せず)で包まれ外気と
遮断されてなり、一側に水素出入管2が前記耐圧
水素容器1内部に貫通して設けられている。そし
て前記水素出入管2の一端はここでは図示しない
が一般の太陽熱利用システムに接続されている金
属水素化物蓄熱容器に接続されている。
1 is a pressure-resistant hydrogen container. This pressure-resistant hydrogen container 1
is surrounded by a heat insulating material (not shown) to be isolated from the outside air, and a hydrogen inlet/outlet pipe 2 is provided on one side to penetrate inside the pressure-resistant hydrogen container 1. Although not shown here, one end of the hydrogen inlet/outlet pipe 2 is connected to a metal hydride heat storage container connected to a general solar heat utilization system.

前記耐圧水素容器1の内部には水素との反応熱
が比較的小さく、水素吸蔵能力に優れた
LaNi5H6等の金属水素化物が充填されている。
また前記耐圧水素容器1の上面から内部に貫通し
た先端に酸素センサ3を具備するシリンダ4が設
けられている。そして前記酸素センサ3はケーブ
ルA5を介して内部に比較器(図示せず)を有す
るコントロールボツクス6に接続されている。
The inside of the pressure-resistant hydrogen container 1 has a relatively small reaction heat with hydrogen and has an excellent hydrogen storage capacity.
Filled with metal hydrides such as LaNi 5 H 6 .
Further, a cylinder 4 having an oxygen sensor 3 is provided at the tip penetrating into the inside from the upper surface of the pressure-resistant hydrogen container 1 . The oxygen sensor 3 is connected via a cable A5 to a control box 6 having a comparator (not shown) therein.

前記耐圧水素容器1の他側には途中に電磁バル
ブ7を有した連結管8を介して加圧不活性ガス容
器9が接続される。そして前記電磁バルブ7は前
記コントロールボツクス6にケーブルB10を介
して接続され、該コントロールボツクス6からの
制御信号によつて開閉自在とされている。
A pressurized inert gas container 9 is connected to the other side of the pressure-resistant hydrogen container 1 via a connecting pipe 8 having an electromagnetic valve 7 in the middle. The electromagnetic valve 7 is connected to the control box 6 via a cable B10, and can be opened and closed by a control signal from the control box 6.

尚前記加圧不活性ガス容器9に充填され得る不
活性ガスとしては、Ar(アルゴン)、N2(窒素)
CO2(二酸化炭素)等が考えられる。しかしN2
CO2では前記耐圧水素容器1内の金属水素化物が
LaNi5H6である場合、反応してLaN3やLaCO2
の化合物が生成され、結果的に金属水素化物を劣
化させる原因とも成るのでArを使うのが最も好
ましい。
The inert gas that can be filled in the pressurized inert gas container 9 includes Ar (argon) and N 2 (nitrogen).
Possible sources include CO 2 (carbon dioxide). But N 2 and
In CO 2 , the metal hydride in the pressure-resistant hydrogen container 1
In the case of LaNi 5 H 6 , it is most preferable to use Ar because it reacts to produce compounds such as LaN 3 and LaCO 2 , which eventually causes the metal hydride to deteriorate.

次にこの発明による作用を説明する。 Next, the effects of this invention will be explained.

前記水素出入管2を経て水素が前記耐圧水素容
器1内に流入すると、その内部の金属水素化物が
流入して来た水素を吸蔵する。この時前記耐圧水
素容器1は冷却水(図示せず)等の作用によつて
低温に保たれており、しかも流入して来た水素の
為に高圧になつている。従つて外気より酸素の流
入は殆ど起こらず前記電磁バルブ7も閉じたまま
で、且極めて安全である。
When hydrogen flows into the pressure-resistant hydrogen container 1 through the hydrogen inlet/output pipe 2, the metal hydride therein absorbs the incoming hydrogen. At this time, the pressure-resistant hydrogen container 1 is kept at a low temperature by the action of cooling water (not shown), and is at high pressure due to the hydrogen that has flowed into it. Therefore, almost no oxygen flows in from the outside air, and the electromagnetic valve 7 remains closed, making it extremely safe.

さて前記耐圧水素容器1を熱交換器(図示せ
ず)等で加熱し高温化してやると前記耐圧水素容
器1内に貯蔵されていた水素は内部の金属水素化
物から離れ前記水素出入管2を通じて流出する。
この時前記耐圧水素容器1内は大気に対して低圧
となり、容器の隙間をぬつて酸素等が侵入し始め
る。そして前記耐圧水素容器1内における酸素の
濃度が規準以上に上がると、常時前記耐圧水素容
器1内の酸素の濃度を検知して、前記ケーブルA
5を通して信号を前記コントロールボツクス6へ
送つている酸素センサ3が過度の酸素濃度を検知
し電気信号の形で前記コントロールボツクス6へ
送る。こうして送られた信号は前記コントロール
ボツクス6内で規準信号と比較され、酸素濃度が
規準以上になつていることを認識し、該コントロ
ールボツクス6から制御信号を前記ケーブルB1
0を介して前記電磁バルブ7へ送り、該電磁バル
ブ7を開放する。
Now, when the pressure-resistant hydrogen container 1 is heated to a high temperature using a heat exchanger (not shown) or the like, the hydrogen stored in the pressure-resistant hydrogen container 1 separates from the metal hydride inside and flows out through the hydrogen inlet/output pipe 2. do.
At this time, the pressure inside the pressure-resistant hydrogen container 1 becomes low with respect to the atmosphere, and oxygen and the like begin to enter through gaps in the container. When the concentration of oxygen in the pressure-resistant hydrogen container 1 rises above the standard, the concentration of oxygen in the pressure-resistant hydrogen container 1 is constantly detected, and the cable A
Oxygen sensor 3, which sends a signal through 5 to said control box 6, detects excessive oxygen concentration and sends it to said control box 6 in the form of an electrical signal. The signal sent in this way is compared with a standard signal in the control box 6, and it is recognized that the oxygen concentration is higher than the standard, and a control signal is sent from the control box 6 to the cable B1.
0 to the electromagnetic valve 7, and the electromagnetic valve 7 is opened.

このようにして前記電磁バルブ7が開くと、前
記加圧不活性ガス容器9内のガスが拡散し、前記
耐圧水素容器1内の圧力を加圧するので、外気か
らの規準以上の酸素の流入が抑えられる。
When the electromagnetic valve 7 is opened in this way, the gas in the pressurized inert gas container 9 diffuses and pressurizes the pressure in the pressure-resistant hydrogen container 1, so that the inflow of oxygen exceeding the standard from the outside air is prevented. It can be suppressed.

(ヘ) 発明の効果 本発明は以上の説明の如く、内部に酸素センサ
を具備した耐圧水素容器にバルブ付連結管を介し
て加圧不活性ガス容器を連結すると共に、前記酸
素センサは前記耐圧水素容器内に侵入する酸素濃
度を検出し、前記連結管のバルブを開閉制御する
ものであるから耐圧水素容器内の金属水素化物か
らの水素解離時において容器内が低圧になつても
不活性ガスによつて容器内への過剰な酸素の流入
が抑えられ金属水素化物を安定に維持でき、容器
の使用可能な圧力範囲が大幅に拡大できると共に
低圧下で水素貯蔵容器を使用できるので原理的に
都合が良い。
(F) Effects of the Invention As described above, the present invention connects a pressurized inert gas container to a pressure-resistant hydrogen container equipped with an oxygen sensor inside through a connecting pipe with a valve, and the oxygen sensor The device detects the concentration of oxygen entering the hydrogen container and controls the opening and closing of the valve of the connecting pipe, so even if the pressure inside the container becomes low when hydrogen is dissociated from the metal hydride in the pressure-resistant hydrogen container, inert gas will not be removed. By suppressing the inflow of excess oxygen into the container, the metal hydride can be maintained stably, the usable pressure range of the container can be greatly expanded, and the hydrogen storage container can be used under low pressure, so in principle convenient.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明における水素貯蔵容器の概略断面
図である。 3……酸素センサ、1……耐圧水素容器、7…
…バルブ、8……連結管、9……加圧不活性ガス
容器。
The drawing is a schematic cross-sectional view of a hydrogen storage container according to the present invention. 3...Oxygen sensor, 1...Pressure-resistant hydrogen container, 7...
...Valve, 8... Connecting pipe, 9... Pressurized inert gas container.

Claims (1)

【特許請求の範囲】 1 内部に酸素センサを具備した耐圧水素容器
と、 この耐圧水素容器に接続されたバルブ付き連結
管と、 この連結管を介して上記耐圧水素容器に連結さ
れ、上記バルブ開放時に上記耐圧水素容器側へ不
活性ガスを拡散する圧力で該不活性ガスを充填し
てなる加圧不活性ガス容器と、からなり、 上記酸素センサで上記耐圧水素容器内に進入す
る酸素濃度を検出し、その酸素濃度が基準以上に
なつた時、前記バルブを開放することを特徴とし
た水素貯蔵容器。
[Scope of Claims] 1. A pressure-resistant hydrogen container equipped with an oxygen sensor inside; a connecting pipe with a valve connected to the pressure-resistant hydrogen container; and a connecting pipe connected to the pressure-resistant hydrogen container via the connecting pipe, the valve being opened. a pressurized inert gas container filled with the inert gas at a pressure that causes the inert gas to diffuse into the pressure-resistant hydrogen container; and the oxygen sensor measures the concentration of oxygen entering the pressure-resistant hydrogen container. A hydrogen storage container characterized in that the valve is opened when the oxygen concentration is detected and exceeds a standard.
JP58030100A 1983-02-23 1983-02-23 Hydrogen storage container Granted JPS59155699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030100A JPS59155699A (en) 1983-02-23 1983-02-23 Hydrogen storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030100A JPS59155699A (en) 1983-02-23 1983-02-23 Hydrogen storage container

Publications (2)

Publication Number Publication Date
JPS59155699A JPS59155699A (en) 1984-09-04
JPH0417315B2 true JPH0417315B2 (en) 1992-03-25

Family

ID=12294354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030100A Granted JPS59155699A (en) 1983-02-23 1983-02-23 Hydrogen storage container

Country Status (1)

Country Link
JP (1) JPS59155699A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980608A (en) * 1998-01-07 1999-11-09 Advanced Technology Materials, Inc. Throughflow gas storage and dispensing system
CN102942159B (en) * 2012-11-26 2015-11-18 北京浩运金能科技有限公司 A kind of Composite hydrogen storage system

Also Published As

Publication number Publication date
JPS59155699A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
CA2167389A1 (en) Thermite Compositions for Use as Gas Generants
CA2197863A1 (en) Method and Apparatus for the Oxidation of Carbon Monoxide
US6099811A (en) Self-heating metal-hydride hydrogen storage system
CA1136417A (en) Hydrogen injection into gas pipelines and other pressurized gas containers
Wang et al. Surface characteristics of fluorinated hydriding alloys
JPH0417315B2 (en)
Uchida et al. Kinetics of hydrogen absorption by LaNi5 with oxide surface layers
Sandrock Hydrogen-metal systems
GR3033921T3 (en) Hydrogenation method and reactor
Heung Tritium transport vessel using depleted uranium
KR102188389B1 (en) Method for Multistage combustor combustion catalyst starting of Fuel Reforming Plant
JP3327564B2 (en) Hydrogen storage device
CA1177624A (en) Hydrogen storage
Oesterreicher et al. Catalytic activity of metal hydrides
EP3699991A1 (en) Systems and reactors for storage of electrical energy
Fujitani et al. Development of hydrogen-absorbing rare earth-Ni alloys for a− 20° C refrigeration system
Bratanich et al. Reversible Hydriding of LaNi5− x Al x―Pd Composites in the Presence of Carbon Monoxide
JPH039386B2 (en)
MP et al. Surface studies on activated and hydrided CaNi 5 alloy
KR102466571B1 (en) The method for highly activated surface modification of hydrogen storage alloy and hydrogen storage alloy with improved surface activation properties
JPS55154304A (en) Refiner for hydrogen gas
Züttel et al. Properties of hydrogen
Sridhar Kumar et al. Surface studies on activated and hydrided CaNi 5 alloy
JPS60121398A (en) Hydrogen storage container using mixed hydrogen occluding alloy
Demina et al. The decrease of equilibrium tritium pressure for LaNi sub 5-x Al sub x tritides during tritium aging