JPH04172963A - Output circuit - Google Patents

Output circuit

Info

Publication number
JPH04172963A
JPH04172963A JP29740190A JP29740190A JPH04172963A JP H04172963 A JPH04172963 A JP H04172963A JP 29740190 A JP29740190 A JP 29740190A JP 29740190 A JP29740190 A JP 29740190A JP H04172963 A JPH04172963 A JP H04172963A
Authority
JP
Japan
Prior art keywords
output
voltage
circuit
turned
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29740190A
Other languages
Japanese (ja)
Other versions
JP2718258B2 (en
Inventor
Takeshi Mitsuda
満田 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2297401A priority Critical patent/JP2718258B2/en
Publication of JPH04172963A publication Critical patent/JPH04172963A/en
Application granted granted Critical
Publication of JP2718258B2 publication Critical patent/JP2718258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To protect the gate of an output transistor against breakdown by providing a booster circuit for generating a voltage higher than a power supply voltage to be fed to the gate of an output N-channel FET through a constant voltage circuit with reference to the power supply voltage. CONSTITUTION:When the output 13 of an inverter 8 is 'L' and the output 14 of an inverter 10 is 'H', switches 1, 2, 3 are turned, respectively, ON, OFF and ON and the potential at a contact 11 elevates to VDD. When the outputs 13, 14 are inverted, respectively, to 'H' and 'L', the switches 1, 2, 3 are turned, respectively, OFF, ON and OFF and when the contact 13 has a potential of VDD, potential at the contact 11 is elevated to VDD1+V1 thus charging a capacitor 5. When the inverters 13, 14 are inverted again, the switches 1, 2, 3 are turned, respectively, ON, OFF and ON to elevate the potentials at an output 12 and a contact 12, respectively, to VDD1 and VDD1+V1+V1 thus feeding a voltage to the gate of an output FET 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は出力回路に係り、特に出力にソースフォロアと
したNチャネル電界効果トランジスタを使用し、出力ト
ランジスタのゲート電圧を正の電源電位より高電圧に昇
圧してドライブする出力回路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an output circuit, and in particular uses an N-channel field effect transistor as a source follower for the output, and sets the gate voltage of the output transistor higher than the positive power supply potential. This invention relates to an output circuit that boosts and drives a voltage.

〔従来の技術〕[Conventional technology]

従来のこの種の出力回路は、第3図に示す様に、電源V
DDと接地電位GNDの間の電圧VDD1(V)を基に
した昇圧回路で、ゲート電圧をVDDより高圧に昇圧す
る構成となっていた。その動作を以下に説明する。
A conventional output circuit of this type, as shown in FIG.
This booster circuit is based on the voltage VDD1 (V) between DD and the ground potential GND, and is configured to boost the gate voltage to a higher voltage than VDD. Its operation will be explained below.

発振器6の出力信号を電圧VDDIを基にした信号とし
、インバータ8の出力13が“L”、インバータ10の
出力14が“HIIの時、スイッチ1をON、スイッチ
2をOFF、スイッチ3をONとし、接点11の電圧v
nntまで上げ、次にインバータ8の出力13が“H”
、インバータ10の出力14が“L”と反転したとき、
スイッチ1をOFF、スイッチ2をON、スイッチ3を
OFFとし、インバータ8の出力13が電圧VDDIに
なると、第5図に示すように、接点11を〔2×VDD
I(V):]に昇圧し、コンデンサ5に充電する。再び
、インバータ8の出力13とインバータ10の出力14
が反転するとき、スイッチ1をON、スイッチ2をOF
F、 スイッチ3をONとし、インバータ10の出力1
4が電圧V。0.に上がると、接点12は(:3XVD
Dl  (V):)に昇圧し、昇圧した電圧を出力電界
効果トランジスタ7のゲートに供給する。こうすること
で、ソースフォロア出力のトランジスタ7のオン抵抗を
十分に下げ、パワーロスを小さくするようにしている。
The output signal of the oscillator 6 is a signal based on the voltage VDDI, and when the output 13 of the inverter 8 is "L" and the output 14 of the inverter 10 is "HII", switch 1 is turned on, switch 2 is turned off, and switch 3 is turned on. and the voltage of contact 11 v
nnt, then the output 13 of inverter 8 goes “H”
, when the output 14 of the inverter 10 is inverted to "L",
When the switch 1 is turned off, the switch 2 is turned on, and the switch 3 is turned off, and the output 13 of the inverter 8 becomes the voltage VDDI, the contact 11 is set to [2×VDD] as shown in FIG.
I(V):] and charges the capacitor 5. Again, the output 13 of inverter 8 and the output 14 of inverter 10
When reverses, switch 1 is turned on, switch 2 is turned off
F. Turn on switch 3 and output 1 of inverter 10.
4 is the voltage V. 0. , contact 12 becomes (:3XVD
The voltage is boosted to Dl (V):) and the boosted voltage is supplied to the gate of the output field effect transistor 7. By doing so, the on-resistance of the source follower output transistor 7 is sufficiently lowered to reduce power loss.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来の出力回路は、ソースフォロアの出力電界
効果トランジスタ7のゲート電圧を昇圧する昇圧回路を
、VD、−GND間の電圧VDD1で構成しているため
、電圧VDDIが変動すると、昇圧された電圧もVDD
に対して変動する。従って、負荷出力電流を供給する前
記Nチャネル電界効果トランジスタ7のゲート電位が変
化するため、前記Nチャネル電界効果トランジスタ7の
オン抵抗が電圧VDDIに依存して変化する。また電圧
VDD、が高い電圧になったとき、昇圧回路の過昇圧に
よりゲート破壊を起こすという欠点があった。
In the conventional output circuit described above, the booster circuit that boosts the gate voltage of the output field effect transistor 7 of the source follower is configured with the voltage VDD1 between VD and -GND, so when the voltage VDDI fluctuates, the boosted voltage increases. Voltage is also VDD
fluctuates relative to Therefore, since the gate potential of the N-channel field effect transistor 7 that supplies the load output current changes, the on-resistance of the N-channel field effect transistor 7 changes depending on the voltage VDDI. Another drawback is that when the voltage VDD becomes a high voltage, gate breakdown occurs due to excessive boosting of the booster circuit.

本発明の目的は、前記欠点を解決し、もとの電圧VDD
Iが変動しても、出力トランジスタがゲート破壊を起こ
すことのないようにした半導体装置を提供することにあ
る。
The purpose of the present invention is to solve the above-mentioned drawbacks and to restore the original voltage VDD
It is an object of the present invention to provide a semiconductor device in which gate breakdown of an output transistor does not occur even if I fluctuates.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の出力回路の構成は、出力Nチャネル電界効果ト
ランジスタのゲートに供給するV。0以上の電圧を、V
DDを基準にした定電圧回路を基に発生する昇圧回路を
備えていることを特徴とする。
The configuration of the output circuit of the present invention is such that V is supplied to the gate of the output N-channel field effect transistor. A voltage of 0 or more, V
It is characterized by being equipped with a booster circuit that generates voltage based on a constant voltage circuit with DD as a reference.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

第1図において、本実施例の出力回路は、定電圧回路工
6と、発振器6と、相補型電界効果トランジスタからな
るインバータ8,9.10と、コンデンサ4,5と、ス
イッチ1,2.3と、N型出力電界効果トランジスタ7
と、接点11〜14とを備え、負荷15に出力している
In FIG. 1, the output circuit of this embodiment includes a constant voltage circuit 6, an oscillator 6, inverters 8, 9, 10 consisting of complementary field effect transistors, capacitors 4, 5, switches 1, 2, . 3, and an N-type output field effect transistor 7
and contacts 11 to 14, and outputs to a load 15.

電源VDDと、これを基準とした定電圧回路16の出力
電圧との間の電圧(以降■、と記す)を基にした昇圧回
路で、ゲート電圧を電圧vDnより高圧に昇圧する構成
となっている。その動作を以下に説明する。
This is a booster circuit based on the voltage (hereinafter referred to as ■) between the power supply VDD and the output voltage of the constant voltage circuit 16 based on this, and is configured to boost the gate voltage to a higher voltage than the voltage vDn. There is. Its operation will be explained below.

インバータ8,9.10は、正の電源電圧を基準とした
定電圧回路16の出力電圧を電源とし、発振器6の出力
信号により動作する。初め、インバータ8の出力13が
“L”、インバータ10の出力14が“H”の時、スイ
ッチ1t−ON、 スイッチ2をOFF、スイッチ3を
ONとし、接点11の電位をVDDまで上げ、次にイン
バータ8の出力13が“H”、インバータ10の出力1
4が“L”と反転したとき、スイッチ1をOFF、 ス
イッチ2をON、スイッチ3をOFFとし、接点13が
vDDとなると、接点11は電圧(VDDI +V、)
に昇圧し、コンデンサ5に充電する。
The inverters 8, 9, and 10 are powered by the output voltage of the constant voltage circuit 16 based on the positive power supply voltage, and are operated by the output signal of the oscillator 6. Initially, when the output 13 of the inverter 8 is "L" and the output 14 of the inverter 10 is "H", switch 1t is turned on, switch 2 is turned off, switch 3 is turned on, the potential of contact 11 is raised to VDD, and then , the output 13 of the inverter 8 is “H” and the output 1 of the inverter 10 is “H”.
4 is reversed to "L", switch 1 is turned OFF, switch 2 is turned ON, switch 3 is turned OFF, and when contact 13 becomes vDD, contact 11 becomes voltage (VDDI +V, )
and charges the capacitor 5.

再び、インバータ出力13.14が反転したとき、スイ
ッチ1,2.3をそれぞれON、OFF、ONとし、イ
ンバータ10の出力14がvaotに上がると、接点1
2は電圧[:VDD1+Vt+V’t(第4図参照)〕
まで昇圧し、出力電界効果トランジスタ7のゲートに電
圧を供給する。
Again, when the inverter output 13.14 is inverted, switches 1 and 2.3 are turned ON, OFF, and ON, respectively, and when the output 14 of the inverter 10 rises to vaot, contact 1
2 is the voltage [:VDD1+Vt+V't (see Figure 4)]
and supplies the voltage to the gate of the output field effect transistor 7.

この際、電圧V、は電圧VDDIを基にした定電圧なの
で、出力電界効果トランジスタ7のゲート電圧は、電圧
V DDIに対して一定となる。
At this time, since the voltage V is a constant voltage based on the voltage VDDI, the gate voltage of the output field effect transistor 7 is constant with respect to the voltage VDDI.

次に本発明の第2の実施例の出力回路を説明する。第2
図は本発明の第2の実施例の基本のブロック図である。
Next, an output circuit according to a second embodiment of the present invention will be explained. Second
The figure is a basic block diagram of a second embodiment of the present invention.

第2図において、本実施例では、前記第1の実施例のス
イッチ1,2.3を、ダイオード1a+  2a、3a
とした。昇圧機構としては、前記第1の実施例の同じで
ある。本第2の実施例では、ダイオードla、2a、3
aを使用することにより、スイッチドライブを省略でき
る。
In FIG. 2, in this embodiment, the switches 1, 2.3 of the first embodiment are replaced with diodes 1a+2a, 3a.
And so. The boosting mechanism is the same as in the first embodiment. In this second embodiment, diodes la, 2a, 3
By using a, the switch drive can be omitted.

但し、昇圧値はダイオードの順方向電圧Vp分降下し、
電圧(VDDI +’VI +VI −3Vp :] 
(!:なる。
However, the boost value drops by the forward voltage Vp of the diode,
Voltage (VDDI +'VI +VI -3Vp:]
(!:Become.

〔発明の効果〕 以上説明したように、本発明は、ソースフォロアとした
Nチャネル電界効果トランジスタを使用した出力回路に
おいて、出力電界効果トランジス夕のゲート電圧を電源
電圧を基準とした定電圧下で昇圧するため、出力電界効
果トランジスタのゲートソース間電圧は電源電圧に対し
て常に一定となり、そのため出力オン抵抗の電源電圧依
存性がなくなり、また電圧VDDIが高い電圧のとき、
ゲート破壊も起こらないという効果を存する。
[Effects of the Invention] As explained above, the present invention provides an output circuit using an N-channel field effect transistor as a source follower, in which the gate voltage of the output field effect transistor is controlled under a constant voltage with reference to the power supply voltage. Since the voltage is boosted, the gate-source voltage of the output field effect transistor is always constant with respect to the power supply voltage, so the dependence of the output on-resistance on the power supply voltage disappears, and when the voltage VDDI is high,
This has the effect that gate destruction does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の出力回路を示す回路図
、第2図は本発明の第2の実施例の回路図、第3図は従
来技術の出力回路の回路図、第4図は第1図の特性を示
す電位図、第5図は従来回路の電位図である。 1.2.3・・・スイッチ、1 al  2 al  
3 a・・・ダイオード、4,5・・・コンデンサ、6
・・・発振器、7・・・出力電界効果トランジスタ、8
,9.10・・・CMOSインバータ、11,12.1
3.14・・・接点、15・・・負荷、16・・・安定
回路。
FIG. 1 is a circuit diagram showing an output circuit of a first embodiment of the present invention, FIG. 2 is a circuit diagram of a second embodiment of the present invention, FIG. 3 is a circuit diagram of a conventional output circuit, and FIG. FIG. 4 is a potential diagram showing the characteristics shown in FIG. 1, and FIG. 5 is a potential diagram of a conventional circuit. 1.2.3...Switch, 1 al 2 al
3 a...Diode, 4, 5... Capacitor, 6
...Oscillator, 7...Output field effect transistor, 8
, 9.10...CMOS inverter, 11, 12.1
3.14...Contact, 15...Load, 16...Stability circuit.

Claims (1)

【特許請求の範囲】[Claims] 出力にNチャネル電界効果トランジスタを使用したソー
スフォロアタイプの出力回路において、前記電界効果ト
ランジスタのゲート電圧を昇圧する昇圧回路が、正の電
源電位を基準とした定電圧回路で構成されていることを
特徴とする出力回路。
In a source follower type output circuit using an N-channel field effect transistor for output, a booster circuit that boosts the gate voltage of the field effect transistor is configured as a constant voltage circuit with a positive power supply potential as a reference. Features an output circuit.
JP2297401A 1990-11-02 1990-11-02 Output circuit Expired - Fee Related JP2718258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297401A JP2718258B2 (en) 1990-11-02 1990-11-02 Output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297401A JP2718258B2 (en) 1990-11-02 1990-11-02 Output circuit

Publications (2)

Publication Number Publication Date
JPH04172963A true JPH04172963A (en) 1992-06-19
JP2718258B2 JP2718258B2 (en) 1998-02-25

Family

ID=17846022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297401A Expired - Fee Related JP2718258B2 (en) 1990-11-02 1990-11-02 Output circuit

Country Status (1)

Country Link
JP (1) JP2718258B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1008142C2 (en) * 1997-01-27 2000-01-19 Honeywell Inc Bidirectional DC converter.
JP2002153045A (en) * 2000-11-10 2002-05-24 Denso Corp Charge-pump circuit and load-driving circuit using the same
WO2003034576A3 (en) * 2001-10-19 2004-06-03 Clare Micronix Integrated Syst Method and system for charge pump active gate drive
JP2005304144A (en) * 2004-04-08 2005-10-27 Nissan Motor Co Ltd Fet driving unit and method of controlling fet drive voltage
JP2005328625A (en) * 2004-05-13 2005-11-24 Fujitsu Ten Ltd Power unit, voltage control method, and voltage control program
US7079131B2 (en) 2001-05-09 2006-07-18 Clare Micronix Integrated Systems, Inc. Apparatus for periodic element voltage sensing to control precharge
US7079130B2 (en) 2001-05-09 2006-07-18 Clare Micronix Integrated Systems, Inc. Method for periodic element voltage sensing to control precharge
US7764113B2 (en) 2007-07-11 2010-07-27 Panasonic Corporation Output circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416118A (en) * 1987-07-10 1989-01-19 Nec Corp Gate driving circuit
JPS6414768U (en) * 1987-07-17 1989-01-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416118A (en) * 1987-07-10 1989-01-19 Nec Corp Gate driving circuit
JPS6414768U (en) * 1987-07-17 1989-01-25

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014047C2 (en) * 1997-01-27 2001-03-06 Honeywell Inc Device for simultaneously supplying different DC voltages.
NL1008142C2 (en) * 1997-01-27 2000-01-19 Honeywell Inc Bidirectional DC converter.
JP2002153045A (en) * 2000-11-10 2002-05-24 Denso Corp Charge-pump circuit and load-driving circuit using the same
US7079131B2 (en) 2001-05-09 2006-07-18 Clare Micronix Integrated Systems, Inc. Apparatus for periodic element voltage sensing to control precharge
US7079130B2 (en) 2001-05-09 2006-07-18 Clare Micronix Integrated Systems, Inc. Method for periodic element voltage sensing to control precharge
US6828850B2 (en) 2001-10-19 2004-12-07 Clare Micronix Integrated Systems, Inc. Method and system for charge pump active gate drive
US6995737B2 (en) 2001-10-19 2006-02-07 Clare Micronix Integrated Systems, Inc. Method and system for adjusting precharge for consistent exposure voltage
US7019719B2 (en) 2001-10-19 2006-03-28 Clare Micronix Integrated Systems, Inc. Method and clamping apparatus for securing a minimum reference voltage in a video display boost regulator
US7019720B2 (en) 2001-10-19 2006-03-28 Clare Micronix Integrated Systems, Inc. Adaptive control boost current method and apparatus
US7050024B2 (en) 2001-10-19 2006-05-23 Clare Micronix Integrated Systems, Inc. Predictive control boost current method and apparatus
US6943500B2 (en) 2001-10-19 2005-09-13 Clare Micronix Integrated Systems, Inc. Matrix element precharge voltage adjusting apparatus and method
WO2003034576A3 (en) * 2001-10-19 2004-06-03 Clare Micronix Integrated Syst Method and system for charge pump active gate drive
US7126568B2 (en) 2001-10-19 2006-10-24 Clare Micronix Integrated Systems, Inc. Method and system for precharging OLED/PLED displays with a precharge latency
JP2005304144A (en) * 2004-04-08 2005-10-27 Nissan Motor Co Ltd Fet driving unit and method of controlling fet drive voltage
JP4501509B2 (en) * 2004-04-08 2010-07-14 日産自動車株式会社 FET driving device and method for controlling FET driving voltage
JP2005328625A (en) * 2004-05-13 2005-11-24 Fujitsu Ten Ltd Power unit, voltage control method, and voltage control program
US7764113B2 (en) 2007-07-11 2010-07-27 Panasonic Corporation Output circuit

Also Published As

Publication number Publication date
JP2718258B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JP5354625B2 (en) Semiconductor device
US7224204B2 (en) Method and circuit for driving a gate of a MOS transistor negative
US6075404A (en) Substrate biasing circuit and semiconductor integrated circuit device
KR930024010A (en) Nonvolatile Semiconductor Memory
US4208595A (en) Substrate generator
JP2806717B2 (en) Charge pump circuit
EP0632456B1 (en) Voltage generator circuit generating negative potential
US4454571A (en) Circuit for generating a substrate bias voltage
JPH04172963A (en) Output circuit
JPH10173511A (en) Voltage level shifting circuit
KR960039569A (en) Booster circuit
US6225853B1 (en) Booster circuit
KR920005479A (en) MOS driver circuit
KR970071823A (en) Semiconductor integrated circuit
JP3314473B2 (en) Power MOSFET control device
US6424202B1 (en) Negative voltage generator for use with N-well CMOS processes
KR940023028A (en) Voltage / Current Conversion Circuit Using Metal Oxide Semiconductor (MOS) Transistors
JP3174027B2 (en) Signal level conversion circuit
JP3386661B2 (en) Output buffer
KR930015346A (en) Bipolar Complementary Metal Oxide Semiconductor (BICMOS) Output Buffer Noise Reduction Circuit
JPH03248619A (en) Semiconductor output circuit
US6163176A (en) AC-coupled driver with wide output dynamic range
JP2730071B2 (en) Semiconductor circuit
JPH0562477A (en) Charge pump circuit
KR19990024891A (en) Power-up circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees