JPH0417242A - Color cathode-ray tube with light selecting/absorbing film - Google Patents

Color cathode-ray tube with light selecting/absorbing film

Info

Publication number
JPH0417242A
JPH0417242A JP2122364A JP12236490A JPH0417242A JP H0417242 A JPH0417242 A JP H0417242A JP 2122364 A JP2122364 A JP 2122364A JP 12236490 A JP12236490 A JP 12236490A JP H0417242 A JPH0417242 A JP H0417242A
Authority
JP
Japan
Prior art keywords
light
ray tube
cathode ray
color cathode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2122364A
Other languages
Japanese (ja)
Other versions
JP2967832B2 (en
Inventor
Yasuo Iwasaki
安男 岩崎
Hiroshi Okuda
奥田 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2122364A priority Critical patent/JP2967832B2/en
Priority to CA002041089A priority patent/CA2041089C/en
Priority to KR1019910006670A priority patent/KR940005169B1/en
Priority to US07/695,322 priority patent/US5200667A/en
Priority to GB9109714A priority patent/GB2246012B/en
Publication of JPH0417242A publication Critical patent/JPH0417242A/en
Application granted granted Critical
Publication of JP2967832B2 publication Critical patent/JP2967832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To alleviate a coloring phenomenon of reflection light on a fluorescent screen by specifying absorption peaks of main and sub absorbing bands of a light selecting/absorbing film, respectively. CONSTITUTION:An absorption peak of a main absorbing band of a light selecting/absorbing film 2 is set within 570-610nm of light spectrum wavelengths of green and red lights emitted from a color cathode-ray tube 11. An absorption peak of a sub absorbing band of the light selecting/absorbing film is set within 380-420nm on a short wavelength side of the light spectrum wavelength of blue emitted light or within 470-510nm of the light spectrum wavelengths of the blue and green emitted lights. Therefore, the color cathode-ray tube 11 with the light selecting film can be obtained without any colored reflection light by a neutralization effect of the sub absorbing band even if the absorption peak of the main absorbing band is set within 570-610nm where an effect of contrast enhancement is high.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明はフェース・プレート部に光選択吸収膜を形成
した光選択吸収膜付カラー陰極線管に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a color cathode ray tube with a light selective absorption film in which a light selective absorption film is formed on the face plate portion.

[従来の技術] 近年のカラー陰極線管の大型化および輝度性能やフォー
カス性能の改善にともない、陰極線管の蛍光面に印加す
る電圧、すなわち電子ビームの加速電圧が高くなってき
ている。たとえば、21型クラスの従来のカラー陰極線
管において、蛍光面に印加する高圧は25〜27KV程
度であったのが、最近の30型以上のカラー陰極線管に
よれば、その蛍光面に30〜34KVもの高圧が印加さ
れる。そのため、とくにテレビセットの電源の0N−O
FF時にカラー陰極線管のフェース・プレート部の外表
面がチャージアップして、フェース・プレート部の外表
面に空気中の細かいゴミが付着して、汚れが目立ちやす
くなり、結果としてカラー陰極線管の輝度性能を劣化さ
せる原因になっている。また、チャージアップしたフェ
ース・ブレ−ト部の外表面に観視者が近付いた時に放電
現象が起り、観視者に不快感を与える不都合もある。
[Prior Art] As color cathode ray tubes have become larger in size and their brightness performance and focus performance have improved in recent years, the voltage applied to the phosphor screen of the cathode ray tube, that is, the voltage for accelerating the electron beam, has become higher. For example, in conventional color cathode ray tubes of the 21-inch class, the high voltage applied to the phosphor screen was about 25 to 27 KV, but with recent color cathode ray tubes of 30 inches or larger, the voltage applied to the phosphor screen is 30 to 34 KV. Very high pressure is applied. Therefore, especially the 0N-O of the power supply of the TV set
During FF, the outer surface of the face plate of the color cathode ray tube is charged up, and fine dust in the air adheres to the outer surface of the face plate, making the dirt more noticeable, and as a result, the brightness of the color cathode ray tube decreases. This causes performance to deteriorate. Furthermore, when a viewer approaches the charged-up outer surface of the face/brate portion, a discharge phenomenon occurs, causing an inconvenience to the viewer.

第8図は陰極線管のフェース・プレート部の表面電位の
変化を示すグラフで、同図中の(L)は電源ONのとき
の表面電位の変化曲線であり、また(Ll)は電源OF
Fのときの表面電位の変化曲線である。
Figure 8 is a graph showing changes in the surface potential of the face plate of a cathode ray tube. In the graph, (L) is a curve of changes in surface potential when the power is turned on, and (Ll) is a curve when the power is turned on.
It is a change curve of surface potential at F.

このような陰極線管のフェース争プレート部の外表面の
チャージアップ現象をなくするために、陰極線管のフェ
ース・プレート部の外表面に平滑な透明導電膜を形成し
てチャージをアースへ逃すようにした帯電防止処理型陰
極線管が近年使用されるようになってきた。
In order to eliminate this charge-up phenomenon on the outer surface of the face plate portion of a cathode ray tube, a smooth transparent conductive film is formed on the outer surface of the face plate portion of the cathode ray tube to release the charge to the ground. Antistatically treated cathode ray tubes have come into use in recent years.

第7図は上記した帯電防止処理型陰極線管の帯電防止の
原理を説明する図であり、同図において、(6)はネッ
ク部で、電子銃(図示を省略)を内蔵している。(7)
は偏向ヨーク、(13)はファンネル部、(4)はフェ
ース・プレート部、(5)は高圧ボタンで、上記偏向ヨ
ーマ(7)はリード線(7a)を介して偏向電源に、が
っ電子銃はリード線(8a)を介して駆動電源に、また
高圧ボタン(5)はリード線(5a)を介して高圧電源
にそれぞれ接続されている。
FIG. 7 is a diagram illustrating the principle of preventing static electricity in the above-mentioned antistatic cathode ray tube. In the figure, (6) is a neck portion which houses an electron gun (not shown). (7)
is the deflection yoke, (13) is the funnel part, (4) is the face plate part, (5) is the high voltage button, and the deflection yoke (7) is connected to the deflection power supply via the lead wire (7a). The gun is connected to a drive power source via a lead wire (8a), and the high voltage button (5) is connected to a high voltage power source via a lead wire (5a).

上記構成の陰極線管において、ネック部(6)に内蔵し
た電子銃から発した電子線を偏向ヨーク(7)により陰
極線管の外部から電磁的に偏向する一方、高圧ボタン(
5)を介してフェース・プレート部(4)の内面に設け
られた蛍光面に高圧を印加する。これにより、上記電子
線を加速してそのエネルギーにより蛍光面を励起発光し
て光出力を取りだす。このフェース・プレート部(4)
の内面の蛍光面に印加する高圧の影響で、上述したよう
に、フェース争プレート部(4)の外表面の電位が変化
して、ゴミの付着などの弊害か生じる。
In the cathode ray tube configured as described above, the electron beam emitted from the electron gun built in the neck part (6) is electromagnetically deflected from the outside of the cathode ray tube by the deflection yoke (7), while the high voltage button (
5), a high voltage is applied to the fluorescent screen provided on the inner surface of the face plate portion (4). As a result, the electron beam is accelerated, and its energy excites the phosphor screen to emit light, thereby producing light output. This face plate part (4)
Under the influence of the high voltage applied to the phosphor screen on the inner surface of the face plate (4), the potential on the outer surface of the face plate portion (4) changes as described above, causing problems such as the adhesion of dust.

そこで、このような弊害をなくする対策として、第7図
で示すように、フェース・プレート部(4)の外表面に
平滑な透明導電膜(1)を形成し、この透明導電膜(1
)をアースに落すことにより、チャージを常にアースへ
逃してチャージアップを防いだのが帯電防止処理型陰極
線管(3)である。
Therefore, as a measure to eliminate such adverse effects, as shown in FIG. 7, a smooth transparent conductive film (1) is formed on the outer surface of the face plate portion (4).
) is connected to the ground, thereby constantly discharging the charge to the ground and preventing charge-up in the antistatic cathode ray tube (3).

ところで、この帯電防止処理型陰極線管(3)において
、上記フェース・プレート部(4)の外表面に形成した
透明導電膜(1)をアースに落すには、第7図に示すよ
うに、フェース・プレート部(4)の側壁部に巻き付け
た金属製防爆バンド(8)と透明導電膜(1)との間を
導電性テープ(12)により導通させる。これにより、
上記金属製防爆バンド(8)は取付は耳(9)に引っか
けたアース線(10)によりアース(IOA)に接合さ
れているので、透明導電膜(1)をアースに落すことは
容易に可能となる。
By the way, in this antistatic cathode ray tube (3), in order to ground the transparent conductive film (1) formed on the outer surface of the face plate portion (4), as shown in FIG. - A conductive tape (12) is used to establish electrical continuity between the metal explosion-proof band (8) wrapped around the side wall of the plate part (4) and the transparent conductive film (1). This results in
The metal explosion-proof band (8) is attached to the ground (IOA) by the ground wire (10) hooked to the ear (9), so it is easy to drop the transparent conductive film (1) to the ground. becomes.

第8図中の曲線(M)および(Ml)は、フェース・プ
レート部の外表面に平滑な透明導電膜(1)を形成した
帯電防止処理型陰極線管(3)の電源0N−OFF時の
フェース・プレート部の外表面の電位変化を示すもので
あり、従来よりも大幅にチャージアップが小さくなって
いることがわかる。
Curves (M) and (Ml) in Fig. 8 indicate the power supply ON-OFF state of an antistatic cathode ray tube (3) with a smooth transparent conductive film (1) formed on the outer surface of the face plate. This shows the potential change on the outer surface of the face plate, and it can be seen that the charge-up is significantly smaller than in the past.

上記フェース・プレート部(4)の表面に形成する平滑
な透明導電膜(1)は、ある程度の硬さと接着性を要求
されるので、一般にシリカ(SiO2)系の膜を形成す
る。
The smooth transparent conductive film (1) formed on the surface of the face plate portion (4) is required to have a certain degree of hardness and adhesion, so a silica (SiO2) based film is generally formed.

従来、このシリカ系の平滑な透明導電膜(1)を形成す
る方法の一つとしては、官能基として一〇H基、−OR
基などを有するSi(シリコン)アルコキシドのアルコ
ール溶液を陰極線管のフェース・プレート部(4)の外
表面にスピンコード法などで均一かつ平滑に塗布したの
ち、比較的低温、たとえば100℃以下で焼付は処理を
行う方法かとられていた。
Conventionally, one of the methods for forming this silica-based smooth transparent conductive film (1) is to use 10H group, -OR group as a functional group.
After applying an alcoholic solution of Si (silicon) alkoxide containing groups, etc., uniformly and smoothly to the outer surface of the face plate portion (4) of the cathode ray tube using a spin cord method, etc., it is baked at a relatively low temperature, for example, 100°C or less. was considered to be a method of processing.

上記のような方法で形成された平滑な透明導電膜(11
)は多孔質であるとともに、シラノール基(S 1−0
H)を有しているので、空気中の水分を吸着して表面抵
抗を下げることができる。しかしなから、このような従
来の平滑な透明導電膜(])は高温で焼付は処理を行う
と、シラノール基の−OHかなくなるうえに、多孔質中
に取り込んでいる水分もなくなるので、表面抵抗値があ
がってしまい、所定どおりの導電性が得られなくなる。
A smooth transparent conductive film (11
) is porous and has silanol groups (S 1-0
H), it can adsorb moisture in the air and lower surface resistance. However, when such a conventional smooth transparent conductive film () is baked at high temperature, not only the -OH of the silanol group disappears, but also the water trapped in the porosity disappears, so the surface The resistance value increases and it becomes impossible to obtain the desired conductivity.

このため、低温焼付けが必須であり、膜の強度はあまり
強くない。また、乾燥した環境下で長く使用すると、多
孔質中の水分がぬけてしまい、表面抵抗値も経時的に上
昇する。この多孔質中から一旦水分がぬけると、つぎに
入り込むのが困難である。
Therefore, low-temperature baking is essential, and the strength of the film is not very strong. Furthermore, if used for a long time in a dry environment, the moisture in the porous material will escape, and the surface resistance value will increase over time. Once moisture escapes from this porous structure, it is difficult for it to penetrate next time.

以上のように、従来の平滑な透明導電膜(1)は、膜強
度および抵抗値の経時的な安定度の面で大きな欠点を有
していた。また、このような欠点を改善するために、上
記塗液中のアルコキシド構造にZr(ジルコニウム)な
どの金属原子を結合させて導電性を付与することも行わ
れていたが、大幅な改善を期待することができない。
As described above, the conventional smooth transparent conductive film (1) had major drawbacks in terms of film strength and stability of resistance value over time. In addition, in order to improve these drawbacks, it has been attempted to bond metal atoms such as Zr (zirconium) to the alkoxide structure in the coating liquid to give it conductivity, but it is hoped that this will lead to a significant improvement. Can not do it.

これらを根本的に解決できるもう1つの方法として、上
記St(シリコン)アルコキシドのアルコール溶液中に
導電性フィラーとしてS n O2(酸化スズ)やIn
2O3(酸化インジウム)の微粒子を混合分散させると
ともに、半導体的性質を付与するために微量のP(リン
)またはsb(アンチモン)を加えた塗液を用いて陰極
線管のフェース・プレート部(4)の外表面に従来と同
様に、スピンコード法などで均一かつ平滑に塗布して比
較的高い温度(たとえば、100℃〜200℃)で焼付
は処理を行う方法がある。この方法では膜強度を強くし
、かつ、どのような環境下でも抵抗値が経時的に変化し
ない平滑な透明導電膜(1)を得ることかできる。
Another method that can fundamentally solve these problems is to add SnO2 (tin oxide) or In as a conductive filler to the alcohol solution of St (silicon) alkoxide.
The face plate part (4) of a cathode ray tube is coated using a coating liquid in which fine particles of 2O3 (indium oxide) are mixed and dispersed, and a trace amount of P (phosphorus) or sb (antimony) is added to impart semiconducting properties. As in the past, there is a method of uniformly and smoothly coating the outer surface of the film using a spin code method or the like and then baking at a relatively high temperature (for example, 100° C. to 200° C.). With this method, it is possible to increase the film strength and obtain a smooth transparent conductive film (1) whose resistance value does not change over time under any environment.

従来このような方法によりカラー陰極線管の帯電防止処
理が行われていたが、最近のカラーテレビの高画質化へ
の強い要求とともにこの透明導電膜(1)を着色してカ
ラー陰極線管のコントラストや発光色調の改善をも合せ
て行う方法が実用化され始めた。即ち従来の透明導電膜
(1)を得るための塗液をベース塗粉としてこの中に有
機系又は無機系の染料又は顔料を混合して着色し光選択
吸収塗液を作り従来と同様のスピン・コート法等により
カラー陰極線管のフェース・プレート外面に塗布・成膜
して帯電防止機能を持った光選択吸収膜付カラー陰極線
管ができあがる。第9図は帯電防止型光選択吸収膜(2
)を有する帯電防止処理型光選択吸収膜付カラー陰極線
管(11)の構造を示す図であり、帯電防止型光選択吸
収膜(2)以外は第7図で示した従来の帯電防止処理型
陰極線管(3)と全く同じである。
Conventionally, this method was used to prevent static electricity on color cathode ray tubes, but with the recent strong demand for higher image quality in color televisions, this transparent conductive film (1) has been colored to improve the contrast of color cathode ray tubes. A method that also improves the color tone of emitted light has begun to be put into practical use. That is, the conventional coating liquid for obtaining the transparent conductive film (1) is used as a base coating powder, and organic or inorganic dyes or pigments are mixed into the coating powder to create a light-selective absorption coating liquid, which is then spun as in the conventional method.・A color cathode ray tube with a light-selective absorption film that has an antistatic function is created by coating and forming a film on the outer surface of the face and plate of a color cathode ray tube using a coating method. Figure 9 shows an antistatic photo-selective absorption film (2
) is a diagram showing the structure of a color cathode ray tube (11) with an antistatic treated light-selective absorption film (11), in which the parts other than the antistatic light-selective absorption film (2) are of the conventional antistatic treated type shown in FIG. It is exactly the same as the cathode ray tube (3).

第10図はこのような従来の帯電防止光選択吸収膜(2
)の光学特性を説明するための図である。
Figure 10 shows such a conventional antistatic light selective absorption film (2
) is a diagram for explaining the optical characteristics of.

図中(B)はカラー陰極線管の蛍光面の青色発光の相対
発光強度のスペクトル分布を示し約450nmに光スペ
クトル波長を有する。同様に(G)、(R)は各々緑色
発光及び赤色発光の相対発光強度のスペクトル分布を示
し、各々約535nm及び625nmに光スペクトル波
長を有する。又(II)及び(m)はカラー陰極線管の
蛍光面が形成されているフェース・プレート(4)の分
光透過率分布を示すもので(II)は可視光領域の分光
透過率が約85%のクリアー・タイプ、(m)は50%
のティニド中タイプのフェース・プレート部(4)の分
光透過率分布を示す。フェース・プレート部(4)の分
光透過率は低いほどカラー陰極線管の蛍光面の輝度性能
としては不利になることは(B)、(G)、(R)の蛍
光面の相対発光強度のスペクトル分布との関係より明ら
かであるが、カラー陰極線管の蛍光面に入射する外光か
有効に除去できるのでコントラスト性能上は有利となり
、最近のカラー・テレビの画質重視の傾向とともに現在
はティニド・タイプのフェース・プレト部(4)が多く
使用されている。図中(I)は更にコントラスト性能を
あげるために前述した如くフェース・プレート部(4)
の外面に形成された従来の帯電防止型光選択吸収膜(2
)の分光透過率分布の一例を示す。(G)、(R)の相
対発光強度のスペクトル分布の光スペクトル波長間53
5nm乃至625nmの内この光スペクトル波長に近い
部分にこの帯電防止型光選択吸収膜(2)の吸収ピーク
(A)があるとカラー陰極線管の蛍光面の輝度性能上不
利となるためこの吸収帯の半値巾等も考慮して、通常5
70nm乃至610nmの範囲に主吸収帯の吸収ピーク
(A)は置かれる。この範囲の波長の光は人間の目の視
感度の比較的高い領域と一致するので、外光(白色光)
成分の内この領域の光が吸収、除去されるとコントラス
ト性能上好ましい。
In the figure, (B) shows the spectral distribution of the relative emission intensity of blue light emitted from the phosphor screen of a color cathode ray tube, and has a light spectral wavelength of about 450 nm. Similarly, (G) and (R) respectively show the spectral distribution of the relative emission intensity of green emission and red emission, and have optical spectral wavelengths at about 535 nm and 625 nm, respectively. Also, (II) and (m) show the spectral transmittance distribution of the face plate (4) on which the fluorescent screen of the color cathode ray tube is formed, and (II) shows the spectral transmittance in the visible light region of about 85%. Clear type, (m) is 50%
The spectral transmittance distribution of the face plate portion (4) of the Tinid medium type is shown. The lower the spectral transmittance of the face plate portion (4), the worse the brightness performance of the phosphor screen of a color cathode ray tube. It is clear from the relationship with distribution that external light entering the phosphor screen of a color cathode ray tube can be effectively removed, which has an advantage in terms of contrast performance. The face/plate part (4) of is often used. In the figure (I) is the face plate part (4) as mentioned above to further improve the contrast performance.
A conventional antistatic photo-selective absorption film (2
) shows an example of the spectral transmittance distribution. 53 between optical spectrum wavelengths of spectral distribution of relative emission intensity of (G) and (R)
If the absorption peak (A) of the antistatic light-selective absorption film (2) exists in a portion close to this wavelength of the optical spectrum between 5 nm and 625 nm, it will be disadvantageous in terms of the brightness performance of the phosphor screen of the color cathode ray tube. Considering the half-width of
The absorption peak (A) of the main absorption band is located in the range of 70 nm to 610 nm. Light in this range of wavelengths corresponds to the relatively high visual sensitivity area of the human eye, so it is called external light (white light).
It is preferable in terms of contrast performance that light in this region of the components is absorbed and removed.

即ち、従来の帯電防止処理型光選択吸収膜付カラー陰極
線管(11)の帯電防止型光選択吸収膜(2)の光学特
性としては人間の目の視感度として割りと高く、又蛍光
面からの発光にできるだけ影響の少ない570nm乃至
610nmの範囲に主吸収帯の吸収ピーク(A)を置い
て蛍光面の輝度性能を維持しつつ外光を有効に吸収して
コントラスト性能の向上をはかるようにしたものであっ
た。このような光学特性を持った有機系の染料又は顔料
の選定が非常に重要であり曲線(1)の場合572nm
に主吸収帯の吸収ピーク(A)を持たせた例を示す。こ
のような帯電防止処理型光選択吸収膜付カラー陰極線管
(11)ではベース塗粉に混合する有機系や無機系の染
料や顔料の光学的な光吸収特性が比較的ブロードである
ため蛍光面の発光の内例えば緑色発光の場合光スペクト
ル波長の長波長側のテール部、赤色発光の場合光スペク
トル波長の短波長側のサブピーク部がこの光選択吸収膜
により吸収されて発光色調の改善を同時に行うことが可
能である。
In other words, the optical properties of the antistatic light selective absorption film (2) of the conventional color cathode ray tube (11) with antistatic light selective absorption film are relatively high in terms of visibility for the human eye, and the optical characteristics are relatively high for human eyes. The absorption peak (A) of the main absorption band is placed in the range of 570 nm to 610 nm, which has as little influence on the luminescence of the phosphor screen as possible, in order to effectively absorb external light and improve contrast performance while maintaining the luminance performance of the phosphor screen. That's what I did. It is very important to select an organic dye or pigment that has such optical properties, and in the case of curve (1), 572 nm
An example in which the absorption peak (A) of the main absorption band is given is shown below. In such a color cathode ray tube (11) with an antistatically treated light-selective absorption film, the optical light absorption characteristics of the organic or inorganic dyes and pigments mixed in the base coating powder are relatively broad; Of the light emission, for example, in the case of green light emission, the tail part on the long wavelength side of the light spectrum wavelength, and in the case of red light emission, the subpeak part on the short wavelength side of the light spectrum wavelength are absorbed by this light selective absorption film, improving the light emission color tone at the same time. It is possible to do so.

[発明が解決しようとする課題] 従来の帯電防止処理型光選択吸収膜付カラー陰極線管で
は帯電防止型光選択吸収膜の光学特性として570nm
乃至610nmの範囲に主吸収帯の吸収ピークを有して
いるので外光(白色光)かこの帯電防止処理型光選択吸
収膜付カラー陰極線管の蛍光面に入射した後反射されて
出てくると主吸収帯によりこの範囲の波長の光が特に多
く除去されるために反射光に色がついてしまうという問
題を生じる。この問題を第11図により更に詳しく説明
する。第11図はCIEの色度図上に半値巾輻射の軌跡
(IV)を合せて示す。図の馬蹄型の上は各単色光の色
度点を示す。外光(白色光)はその種類によって少し異
なるが基本的には太陽光のように各単色光の集まったも
のであり、代表的には(D)点で示す4500に程度の
色温度のものが多い。光選択吸収膜の付いていない従来
のカラー陰極のフェースQプレートも含めた蛍光面体色
は無彩色ではほぼ灰色であり可視光の全波長領でほぼ均
等に吸収が行われるので蛍光面で反射されて出てくる反
射光もほぼ入射光と同様の波長成分を持った光となりご
く自然な反射光となる。
[Problem to be solved by the invention] In a conventional color cathode ray tube with an antistatic treated light selective absorption film, the optical characteristic of the antistatic light selective absorption film is 570 nm.
Since the absorption peak of the main absorption band is in the range of 610 nm, external light (white light) enters the phosphor screen of the color cathode ray tube with an antistatic treatment type light-selective absorption film and then is reflected and comes out. Since a particularly large amount of light with a wavelength in this range is removed by the main absorption band, a problem arises in that the reflected light is colored. This problem will be explained in more detail with reference to FIG. FIG. 11 shows the locus (IV) of half-width radiation on the CIE chromaticity diagram. The upper part of the horseshoe shape in the figure shows the chromaticity point of each monochromatic light. Ambient light (white light) differs slightly depending on the type, but basically it is a collection of monochromatic lights like sunlight, and typically has a color temperature of about 4500 as shown by point (D). There are many. The color of the phosphor body, including the face Q plate of conventional color cathodes that do not have a light selective absorption film, is almost gray in achromatic colors, and since visible light is absorbed almost equally in the entire wavelength range, it is not reflected by the phosphor screen. The reflected light that comes out has almost the same wavelength components as the incident light, making it a very natural reflected light.

一方第10図の(1)で示したような572nmに主吸
収帯の吸収ピーク(A)を持った光選択吸収膜付の従来
のカラー陰極線管の場合、蛍光面に入射した外光(白色
光)の内572nm付近の光がこの主吸収帯により吸収
、除去されるので反射光の色度点は入射してくる元の外
光(白色光)の色度点(D)からズレる方向に動く。即
ち色度図上では4500にの外光(白色光)の色度点(
D)と572nmの単色光の色度点を結んだ線分上を5
72nmの単色光の色度点から遠ざかる方向にベクトル
aが生じて反射光の色度点が動き反射光に色がついてし
まう。
On the other hand, in the case of a conventional color cathode ray tube equipped with a light-selective absorption film that has an absorption peak (A) of the main absorption band at 572 nm as shown in (1) in Figure 10, external light (white light) incident on the phosphor screen Since the light around 572 nm (light) is absorbed and removed by this main absorption band, the chromaticity point of the reflected light shifts in the direction from the chromaticity point (D) of the original external light (white light) that is incident. Move. In other words, on the chromaticity diagram, the chromaticity point of external light (white light) is 4500 (
5 on the line segment connecting D) and the chromaticity point of monochromatic light of 572 nm.
A vector a is generated in the direction away from the chromaticity point of the 72 nm monochromatic light, and the chromaticity point of the reflected light moves, causing the reflected light to be colored.

カラー陰極線管の場合、映像の黒レベルはこの蛍光面の
体色そのものを見ているのであり、蛍光面の反射光に色
がつくと黒が非常に不自然となりカラー・テレビの映像
の品位を著しく低下させてしまう。
In the case of a color cathode ray tube, the black level of the image is determined by the color of the phosphor screen itself, and if the reflected light from the phosphor screen is colored, the black becomes very unnatural and affects the quality of the color TV image. It will reduce it significantly.

この発明は上記のような問題点を解決するためになされ
たものであり、コントラスト向上の効果として非常に高
い570nm乃至610nmの範囲に主吸収帯の吸収ピ
ークを持たせても反射光に色かついたりすることのない
光選択膜付カラー陰極線管を提供することを目的とする
This invention was made to solve the above problems, and even if the absorption peak of the main absorption band is in the range of 570 nm to 610 nm, which has a very high effect of improving contrast, the reflected light does not have color and color. It is an object of the present invention to provide a color cathode ray tube with a photoselective film that does not cause any damage.

[課題を解決するための手段] 上記目的を達成するために、この発明の光選択吸収膜付
カラー陰極線管は、光選択吸収膜の主吸収帯の吸収ピー
クが、該カラー陰極線管の緑色発光と赤色発光の光スペ
クトル波長間の570nm乃至610nmの範囲にあり
、かつ該光選択吸収膜の副吸収帯の吸収ピークが、青色
発光の光スペクトル波長の短波長側の380nm乃至4
200mの範囲と青色発光と緑色発光の光スペクトル波
長間の470nm乃至510nmの範囲の少なくともい
ずれかの範囲にあることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the color cathode ray tube with a light-selective absorption film of the present invention has an absorption peak in the main absorption band of the light-selective absorption film that corresponds to the green emission of the color cathode-ray tube. and 570 nm to 610 nm between the light spectrum wavelengths of red light emission, and the absorption peak of the sub-absorption band of the light selective absorption film is between 380 nm and 4 nm on the short wavelength side of the light spectrum wavelength of blue light emission.
It is characterized by being in at least one of the range of 200 m and the range of 470 nm to 510 nm between the light spectrum wavelengths of blue light emission and green light emission.

[作用] この発明によればコントラスト向上の効果として非常に
高い570nm乃至610nmの範囲に光選択吸収膜の
主吸収帯の吸収ピークを持たせても、380nm乃至4
20nmの範囲及び470nm乃至510nmの範囲の
少なくともいずれかの範囲に吸収ピークを有する副吸収
帯の中和効果により蛍光面の反射光に着色を生じる現象
を緩和することができる。
[Function] According to the present invention, even if the absorption peak of the main absorption band of the photoselective absorption film is in the range of 570 nm to 610 nm, which has a very high effect of contrast improvement, the absorption peak of the main absorption band of 380 nm to 4
Due to the neutralization effect of the sub-absorption band having an absorption peak in at least one of the range of 20 nm and the range of 470 nm to 510 nm, it is possible to alleviate the phenomenon of coloring of reflected light from the phosphor screen.

[実施例] 以下、この発明の実施例を図面にもとづいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第11の曲線(V)はこの発明の一実施例による光選択
吸収膜付カラー陰極線管の光選択吸収膜の分光透過率分
布の例を示す。この場合従来の572nmに吸収ピーク
を有する主吸収帯に加えて青色発光の光スペクトル波長
(約550nm)の短波長側の410nmに副吸収帯の
吸収ピークを有する。この場合の反射光の着色及びそれ
を緩和する効果について第4図のCIE色度図により説
明する。即ち4500にの色温度の外光(白色光)の色
度点を(D)で示すと蛍光面に入射した外光(白色光)
の内572nmの付近の光がこの主吸収帯により吸収・
除去されるので反射光の色度点は入射してくる元の外光
(白色光)の色度点(D)からズレる方向に動く、即ち
色度図上では4500にの外光(白色光)の色度点(D
)と572nmの単色光の色度点を結んだ線分(1)上
を572nmの単色光の色度点から遠ざかる方向にベク
トルaが生じて反射光の色度点が動き反射光に色がつい
てしまう。
The eleventh curve (V) shows an example of the spectral transmittance distribution of the light selective absorption film of the color cathode ray tube with a light selective absorption film according to an embodiment of the present invention. In this case, in addition to the conventional main absorption band having an absorption peak at 572 nm, a sub-absorption band has an absorption peak at 410 nm on the short wavelength side of the light spectrum wavelength of blue light emission (approximately 550 nm). The coloring of the reflected light in this case and the effect of alleviating it will be explained with reference to the CIE chromaticity diagram shown in FIG. In other words, if the chromaticity point of external light (white light) with a color temperature of 4500 is shown by (D), the external light (white light) incident on the phosphor screen is
Light around 572 nm is absorbed by this main absorption band.
Since the reflected light is removed, the chromaticity point of the reflected light moves in a direction that deviates from the chromaticity point (D) of the original incident external light (white light). ) chromaticity point (D
) and the chromaticity point of the 572 nm monochromatic light, a vector a is generated in the direction away from the chromaticity point of the 572 nm monochromatic light, and the chromaticity point of the reflected light moves, causing the reflected light to change color. It sticks to me.

前述の線分(、e)が再び色度図の馬蹄型の線と交わる
点が410nmの波長と一致する。従って第1図に示す
ごと<410nmに副吸収帯の吸収ピークがあると前記
572nmの主吸収帯の吸収ピークによって生じるベク
トルaを打ち消すベクトル(b)が生じ反射光の色度点
のズレが修正される。完全にこの入射光と反射光の色点
のズレを補正するために主吸収帯と副吸収帯の吸収ピー
クの吸収量のバランスをとる必要がある。又この場合副
吸収体の吸収ピークの位置は青色発光の光スペクトル波
長(450nm)の短波長側に位置させるが、主スペク
トル波長(450nm)の近い部分にあるとカラー陰極
線管の蛍光面の輝度性能上不利になるのでこの吸収帯の
半値中等を考慮して380nm乃至420nmの範囲に
この副吸収帯の吸収ピークは置かれる。
The point where the aforementioned line segment (, e) intersects the horseshoe-shaped line of the chromaticity diagram again coincides with the wavelength of 410 nm. Therefore, as shown in Fig. 1, if there is an absorption peak of the sub-absorption band at <410 nm, a vector (b) will be generated that cancels the vector a caused by the absorption peak of the main absorption band of 572 nm, and the shift in the chromaticity point of the reflected light will be corrected. be done. In order to completely correct this shift in color point between the incident light and the reflected light, it is necessary to balance the absorption amounts of the absorption peaks of the main absorption band and the sub absorption band. In this case, the absorption peak of the sub-absorber is located on the short wavelength side of the light spectrum wavelength (450 nm) of blue light emission, but if it is close to the main spectrum wavelength (450 nm), the brightness of the phosphor screen of the color cathode ray tube will decrease. Since this is disadvantageous in terms of performance, the absorption peak of this sub-absorption band is placed in the range of 380 nm to 420 nm, taking into account the half value of this absorption band.

第2図は同様にこの発明の他の実施例による光選択吸収
膜付カラー陰極線管の光選択吸収膜の分光透過率分布の
例(VI)を示す。この場合580nmに吸収ピークを
有する主吸収帯に加えて青色発光と緑色発光の光スペク
トル波長間の4800mに副吸収帯のピークを有する。
Similarly, FIG. 2 shows an example (VI) of the spectral transmittance distribution of a light selective absorption film of a color cathode ray tube with a light selective absorption film according to another embodiment of the present invention. In this case, in addition to a main absorption band having an absorption peak at 580 nm, a sub-absorption band has a peak at 4800 m between the optical spectrum wavelengths of blue emission and green emission.

この場合の反射光の着色及びそれを緩和する効果を示す
のが第5図のCIE色度図である。580nmの主吸収
帯の吸収ピークにより生じたベクトルCと4800mの
副吸収帯の吸収ピークにより生じたベクトルdとが打ち
消し合って反射光の色度点のズレが修正される。又この
場合の副吸収帯の吸収ピークの位置は青色発光と緑色発
光の光スペクトル波長間の450nm乃至535nmの
内の光スペクトル波長に近い部分ではカラー陰極線管の
蛍光面の輝度性能上不利となるためにこの吸収帯の半値
巾等を考慮して470nm乃至510nmの範囲に置か
れる。
The CIE chromaticity diagram shown in FIG. 5 shows the coloring of reflected light in this case and the effect of alleviating it. The vector C generated by the absorption peak of the main absorption band at 580 nm and the vector d generated by the absorption peak of the sub absorption band at 4800 m cancel each other out, correcting the shift in the chromaticity point of the reflected light. In addition, in this case, the position of the absorption peak of the sub-absorption band is disadvantageous in terms of brightness performance of the phosphor screen of the color cathode ray tube in a portion close to the optical spectrum wavelength of 450 nm to 535 nm between the optical spectrum wavelengths of blue emission and green emission. Therefore, the wavelength is set in the range of 470 nm to 510 nm, taking into consideration the half width of this absorption band.

第3図は同様にこの発明のもう一つの他の実施例による
光選択吸収膜付カラー陰極線管の光選択吸収膜の分光透
過率の例(■)を示す。この場合585nmに吸収ピー
クを有する主吸収帯に加えて青色発光と緑色発光の光ス
ペクトル波長間の495nm及び青色発光の光スペクト
ル波長の短波長側の410nmの2個所に副吸収帯のピ
ークを有する。この場合の反射光の着色及びそれを緩和
する効果を示すのが第6図のCIE色度図である。
FIG. 3 similarly shows an example (■) of the spectral transmittance of a light selective absorption film of a color cathode ray tube with a light selective absorption film according to another embodiment of the present invention. In this case, in addition to the main absorption band having an absorption peak at 585 nm, there are two sub-absorption band peaks at 495 nm between the light spectrum wavelengths of blue and green light emission and at 410 nm on the shorter wavelength side of the light spectrum wavelength of blue light emission. . The CIE chromaticity diagram shown in FIG. 6 shows the coloration of reflected light in this case and the effect of alleviating it.

この場合585nmの主吸収帯の吸収ピークにより生じ
たベクトルfと410nmと495nmの両方の副吸収
体の吸収ピークにより生じたベクトルgとベクトルhの
合成ベクトルiとが打ち消し合って反射光の色度点のズ
レが修正されるものである。
In this case, the vector f generated by the absorption peak of the main absorption band at 585 nm and the composite vector i of vector g and vector h generated by the absorption peaks of the sub-absorber at both 410 nm and 495 nm cancel each other out, resulting in the chromaticity of the reflected light. The point deviation is corrected.

以上は従来の帯電防止処理型陰極線管の透明導電膜に有
機系又は無機系の塗粉又は顔料を混合して光選択吸収特
性を持たせる場合について述べたが本発明はこれに限ら
れるものではなく帯電防止機能を持たない透明膜にも同
様に適用できる。又透明なベース塗粉としては官能基と
して一〇H基や−OR基を有するシリコン(Si)のア
ルコキシドのアルコール溶液に限られるものではなくエ
ポキシ樹脂系やアクリル樹脂系等のプラスチックス系の
塗物も同様に使用できる。
The above describes the case where organic or inorganic coating powder or pigment is mixed into the transparent conductive film of a conventional antistatic cathode ray tube to impart light selective absorption characteristics, but the present invention is not limited to this. It can be similarly applied to transparent films that do not have an antistatic function. Transparent base coating powders are not limited to alcoholic solutions of silicon (Si) alkoxides having 10H or -OR groups as functional groups, but also include plastic coatings such as epoxy resins and acrylic resins. Objects can be used in the same way.

[発明の効果コ 以上のようにこの発明によれば、コントラスト向上の効
果として非常に高い570nm乃至610nmの範囲に
光選択吸収膜の主吸収帯の吸収ピークを持たせても38
0nm乃至420nmの範囲及び470nm乃至510
nmの範囲のどちらか又は両方に吸収ピークを有する副
吸収帯の中和効果により蛍光面の反射光の着色現象が緩
和されるのでコントラスト性能が非常に優れかつ蛍光面
の体色即ちカラー・テレビの映像の黒レベルが自然な高
品質な映像を実現できる光選択吸収膜付カラー陰極線管
を得ることができる。
[Effects of the Invention] As described above, according to the present invention, even if the absorption peak of the main absorption band of the light-selective absorption film is in the range of 570 nm to 610 nm, which has a very high effect of improving contrast,
0nm to 420nm range and 470nm to 510nm
Due to the neutralization effect of the sub-absorption bands that have absorption peaks in either or both of the nanometer ranges, the coloring phenomenon of reflected light from the phosphor screen is alleviated, resulting in very excellent contrast performance and the ability to display the body color of the phosphor screen, i.e., color television. It is possible to obtain a color cathode ray tube with a light-selective absorption film that can realize high-quality images with natural black levels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はこの発明の実施例による光選択吸収
膜付カラー陰極線管の光選択吸収膜の分光透過率分布の
例を示す図、第4図乃至第6図はこの発明の反射光の着
色及びそれを緩和する効果について説明するCIE色度
図、第7図は帯電防止処理型陰極線管の帯電防止の原理
を説明する図、第8図は陰極線管のフェース・プレート
の表面電位の変化を示す図、第9図は帯電防止処理型光
選択吸収膜付カラー陰極線管の構造を示す図、第10図
は従来の帯電防止光選択吸収膜の光学特性を説明するた
めの図、第11図は従来の帯電防止処理型光選択吸収膜
付カラー陰極線管の外光の反射光を説明するためのCI
E色度図である。 図中、(1)は透明導電膜、(2)は帯電防止型光選択
吸収膜、(3)は帯電防止処理型陰極線管、(4)はフ
ェース・プレート部、(5)は高圧ボタン、(6)はネ
ック、(7)は偏向ヨーク、(8)は金属製防爆バンド
、(9)は取付は耳、(10)はアース線、(IOA)
はアース、(11)は帯電防止処理型光選択吸収膜付カ
ラー陰極線管、(12)は導電性テープ、(6a)、(
7a)はリード線である。 なお、各図中同一符号は同一または相当部分を示す。 代理人 弁理士 吉 1)研 二 (外2名) 範+:、掬瞬弔鰐・噸餐W? □厭−〜号−−4J4−瞥2 大2L、1)、J乃&屓回 第4図 一娑基宥1凍情餐杵? 大2LIjJ句色力ロ目 第5図 第 図 浮理!jI−1目 第7図 構造↓見明組 第9図 娑大顯@*Q・4A’lA* i 1.事件の表示 特願平 2−122364号 2、発明の名称 光選択吸収膜付カラー陰極線管 3、補正をする者 4、代 理 人 躾未っf!=A rfJ 第11図 5、補正の対象 明細書の特許請求の範囲及び発明の詳細な説明の欄。 6、補正の内容 特許請求の範囲 有機系又は無機系の透明なベース塗料に有機系又は無機
系の染料又は顔料を混合した光選択吸収塗液をカラー陰
極線管のフェースプレート部に塗布・成膜した光選択吸
収膜付カラー陰極線管において、 該光選択吸収膜の主吸収帯の吸収ピークが、該カラー陰
極線管の緑色発光と赤色発光の主スペクトル波長間の5
70nm乃至610nmの範囲にあり、かつ 該光選択吸収膜の副吸収帯の吸収ピークが、青色発光の
主スペクトル波長の短波長側の3800m乃至420n
mの範囲と青色発光と緑色発光の主スペクトル波長間の
470nm乃至510nmの範囲の少なくともいずれか
の範囲にあることを特徴とする光選択吸収膜付カラー陰
極線管。
1 to 3 are diagrams showing examples of the spectral transmittance distribution of a light selective absorption film of a color cathode ray tube with a light selective absorption film according to an embodiment of the present invention, and FIGS. The CIE chromaticity diagram explains the coloring of light and the effect of mitigating it. Figure 7 is a diagram explaining the principle of antistatic treatment of antistatic treated cathode ray tubes. Figure 8 is the surface potential of the face plate of a cathode ray tube. 9 is a diagram showing the structure of a color cathode ray tube with an antistatic treated light selective absorption film, and FIG. 10 is a diagram illustrating the optical characteristics of a conventional antistatic light selective absorption film. Figure 11 shows CI for explaining the reflected light of external light of a conventional color cathode ray tube with an antistatic treatment type light selective absorption film.
It is an E chromaticity diagram. In the figure, (1) is a transparent conductive film, (2) is an antistatic light selective absorption film, (3) is an antistatic treated cathode ray tube, (4) is a face plate part, (5) is a high voltage button, (6) is the neck, (7) is the deflection yoke, (8) is the metal explosion-proof band, (9) is the mounting ear, (10) is the ground wire, (IOA)
is ground, (11) is a color cathode ray tube with an antistatic treated light selective absorption film, (12) is a conductive tape, (6a), (
7a) is a lead wire. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Yoshi 1) Kenji (2 others) Han+:, Kikushun Condolence Wani W? □Kan-~No.--4J4-Met2 Dai2L, 1), Jno & Kai times 4th figure Ichijo Motoya 1 Freezejo restaurant pestle? Large 2LIjJ phrase color power b eye figure 5 figure floating! jI-1 Eye Figure 7 Structure ↓Mimeigumi Figure 9 Saki Dai-ku @*Q・4A'lA* i 1. Indication of the case Japanese Patent Application No. 2-122364 2, Name of the invention, Color Cathode Ray Tube with Light Selective Absorption Film 3, Person Making Amendment 4, Agent Not Disciplined! =A rfJ Figure 11: 5, Claims and Detailed Description of the Invention column of the specification subject to amendment. 6. Contents of the amendment Claims Application and formation of a light-selective absorption coating liquid, which is a mixture of an organic or inorganic transparent base paint and an organic or inorganic dye or pigment, on the face plate of a color cathode ray tube. In a color cathode ray tube with a light-selective absorption film, the absorption peak of the main absorption band of the light-selective absorption film is within the wavelength range of 5 between the main spectral wavelengths of green light emission and red light emission of the color cathode ray tube.
70 nm to 610 nm, and the absorption peak of the sub absorption band of the photoselective absorption film is 3800 m to 420 nm on the short wavelength side of the main spectrum wavelength of blue light emission.
1. A color cathode ray tube with a light selective absorption film, characterized in that the color cathode ray tube is in at least one of the ranges of 470 nm to 510 nm between the main spectral wavelengths of blue light emission and green light emission.

Claims (1)

【特許請求の範囲】 有機系又は無機系の透明なベース塗料に有機系又は無機
系の染料又は顔料を混合した光選択吸収塗液をカラー陰
極線管のフェースプレート部に塗布・成膜した光選択吸
収膜付カラー陰極線管において、 該光選択吸収膜の主吸収帯の吸収ピークが、該カラー陰
極線管の緑色発光と赤色発光の光スペクトル波長間の5
70nm乃至610nmの範囲にあり、かつ 該光選択吸収膜の副吸収帯の吸収ピークが、青色発光の
光スペクトル波長の短波長側の380nm乃至420n
mの範囲と青色発光と緑色発光の光スペクトル波長間の
470nm乃至510nmの範囲の少なくともいずれか
の範囲にあることを特徴とする光選択吸収膜付カラー陰
極線管。
[Scope of Claims] A light selective absorption coating liquid made by mixing an organic or inorganic transparent base paint with an organic or inorganic dye or pigment is applied to the face plate of a color cathode ray tube to form a film. In a color cathode ray tube with an absorption film, the absorption peak of the main absorption band of the light-selective absorption film is located between the light spectral wavelengths of green emission and red emission of the color cathode ray tube.
70 nm to 610 nm, and the absorption peak of the sub-absorption band of the photoselective absorption film is 380 nm to 420 nm on the short wavelength side of the optical spectrum wavelength of blue light emission.
1. A color cathode ray tube with a light selective absorption film, characterized in that the color cathode ray tube is in at least one of the ranges of 470 nm to 510 nm between the light spectrum wavelength of blue light emission and green light emission.
JP2122364A 1990-05-10 1990-05-10 Color cathode ray tube with light selective absorption film Expired - Fee Related JP2967832B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2122364A JP2967832B2 (en) 1990-05-10 1990-05-10 Color cathode ray tube with light selective absorption film
CA002041089A CA2041089C (en) 1990-05-10 1991-04-24 Coating film for the faceplate of a colour cathode ray tube
KR1019910006670A KR940005169B1 (en) 1990-05-10 1991-04-25 Color crt having optical coating film
US07/695,322 US5200667A (en) 1990-05-10 1991-05-03 Color cathode-ray-tube with electrical and optical coating film
GB9109714A GB2246012B (en) 1990-05-10 1991-05-03 Color cathode-ray-tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122364A JP2967832B2 (en) 1990-05-10 1990-05-10 Color cathode ray tube with light selective absorption film

Publications (2)

Publication Number Publication Date
JPH0417242A true JPH0417242A (en) 1992-01-22
JP2967832B2 JP2967832B2 (en) 1999-10-25

Family

ID=14834054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122364A Expired - Fee Related JP2967832B2 (en) 1990-05-10 1990-05-10 Color cathode ray tube with light selective absorption film

Country Status (1)

Country Link
JP (1) JP2967832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540442A (en) * 1999-01-21 2002-11-26 旭硝子株式会社 Dye combinations for image quality improvement filters of color video displays

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922501B1 (en) * 2003-01-21 2009-10-20 주식회사 메르디안솔라앤디스플레이 Color CRT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814454A (en) * 1981-07-17 1983-01-27 Mitsubishi Electric Corp Color cathode-ray tube
JPS5923306A (en) * 1982-07-30 1984-02-06 Kyowa Gas Chem Ind Co Ltd Optical resin material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814454A (en) * 1981-07-17 1983-01-27 Mitsubishi Electric Corp Color cathode-ray tube
JPS5923306A (en) * 1982-07-30 1984-02-06 Kyowa Gas Chem Ind Co Ltd Optical resin material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540442A (en) * 1999-01-21 2002-11-26 旭硝子株式会社 Dye combinations for image quality improvement filters of color video displays

Also Published As

Publication number Publication date
JP2967832B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
KR940005169B1 (en) Color crt having optical coating film
US5627429A (en) Color cathode ray tube having an intermediate layer between a face plate and a tricolor phosphor layer
KR950003460B1 (en) Crt
JPH05113505A (en) Cathode ray tube with low-reflection film and production thereof
JPH04334853A (en) Cathode-ray tube coated with low reflection film
JP3276105B2 (en) Color picture tube
JPH0417242A (en) Color cathode-ray tube with light selecting/absorbing film
JP2801600B2 (en) Cathode ray tube
JPH0433240A (en) Color cathode-ray tube
JPH11283530A (en) Cathode-ray tube and its manufacture
JP2667068B2 (en) Color cathode ray tube with light selective absorption layer
JPH03254048A (en) High contrast electroconductive film
JP2546054B2 (en) Cathode ray tube with low reflection film
JPH04115446A (en) Selective light absorptive membrane-attached color cathode-ray tube
US7148615B2 (en) Color cathode ray tube
JPH04345736A (en) Color cathode-ray tube with neutral filter layer
JPH04112436A (en) Color cathode-ray tube with light selective absorbing film
JP2685771B2 (en) Color picture tube
JPH03254049A (en) Color crt electroconductive film for high contrast
JPS6359501B2 (en)
JPH0541186A (en) Correction method for color cathode-ray tube having antistatic processing type light selecting and absorbing film and correction method for antistatic processing type color cathode-ray tube having transparent conductive film
JPH03231988A (en) Color cathode-ray tube
JPH10125252A (en) Color cathode-ray tube
KR970012944A (en) Cathode ray tube and its manufacturing method
JPH07240156A (en) Color picture tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees