JPH04172257A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH04172257A
JPH04172257A JP29883090A JP29883090A JPH04172257A JP H04172257 A JPH04172257 A JP H04172257A JP 29883090 A JP29883090 A JP 29883090A JP 29883090 A JP29883090 A JP 29883090A JP H04172257 A JPH04172257 A JP H04172257A
Authority
JP
Japan
Prior art keywords
acceleration
cavity
fluid
pressure
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29883090A
Other languages
Japanese (ja)
Inventor
Jun Shibata
潤 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29883090A priority Critical patent/JPH04172257A/en
Publication of JPH04172257A publication Critical patent/JPH04172257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rugged, highly accurate acceleration sensor by providing a plurality of pressure detecting means for detecting the pressure distribution of fluid with acceleration on the inner wall surface of a cavity wherein liquid is tightly sealed. CONSTITUTION:Piezoelectric elements 1a and 1b which are arranged at the right and left sides so as to face each other are electrically connected to leads 4 through metal thin wires 3. The inside of a case 10 is used as a cavity 11. The elements 1a and 1b are attached to the inner wall surface of the cavity. The inside of the cavity 11 is filled with fluid 12 in a tightly sealed state. By this constitution, when an acceleration sensor is subject to the accelerations in the components in the right and left directions, the pressure distribution corresponding to the accelerations is generated in the fluid 12. The different pressures are applied on the elements 1a and 1b, respectively, and the difference occurs between the generated voltages. The acceleration is computed based on the voltage difference. Namely, e.g. when the pressure in the rightward direction is applied, the fluid 12 is pushed to the left wall surface by the law of inertia, and the pressure on the left wide becomes larger than the right side. The fact is detected with the elements 1a and 1b.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、加速度センサに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an acceleration sensor.

[従来の技術] 第6図は、従来の加速度センサを示し、図において、変
形によって歪を生じる半導体素子(1)に溝部(2)が
形成されており、溝部(2)の上面に前記の歪を検出す
る回路が設けられている。金属細線(3)は半導体素子
(1)とリード(4)を電気的に接続している。半導体
素子(1)の端部には重り(5)が取付けられている。
[Prior Art] FIG. 6 shows a conventional acceleration sensor. In the figure, a groove (2) is formed in a semiconductor element (1) that is distorted due to deformation, and the above-mentioned groove (2) is formed on the upper surface of the groove (2). A circuit for detecting distortion is provided. The thin metal wire (3) electrically connects the semiconductor element (1) and the lead (4). A weight (5) is attached to the end of the semiconductor element (1).

半導体素子(1)は台座(6)に取付けられ、台座(6
)は基板(7)に固定されている。基板(7)とキャッ
プ(8)によって密閉された空間に粘性流体(9)が満
たされている。
The semiconductor element (1) is attached to the pedestal (6), and the pedestal (6)
) is fixed to the substrate (7). A space sealed by the substrate (7) and the cap (8) is filled with a viscous fluid (9).

以上の構成により、半導体素子(1)は台座(6)に片
持ち梁状態で固定されているので、加速度センサが片持
ち梁と垂直方向成分の加速度を受けた場合、片持ち梁の
先端に取付けられた重り(5)が慣性力を受け、半導体
素子(1)が曲げ力を受けることになる。半導体素子(
1)には溝部(2)が設けられているので、曲げ力によ
る歪は溝部(2)に集中し、溝部(2)の上面に設けら
れた回路により歪み量が検出される。検出された歪み量
より、センサが受けた加速度が求められる。
With the above configuration, the semiconductor element (1) is fixed to the pedestal (6) in a cantilever state, so when the acceleration sensor receives acceleration in a direction perpendicular to the cantilever, the tip of the cantilever The attached weight (5) receives an inertial force, and the semiconductor element (1) receives a bending force. Semiconductor element (
1) is provided with the groove (2), so the strain caused by the bending force is concentrated in the groove (2), and the amount of strain is detected by a circuit provided on the upper surface of the groove (2). The acceleration received by the sensor is determined from the detected amount of distortion.

粘性流体(9)は、加速度センサが衝撃的な大きい加速
度を受けたとき、半導体素子(1)が過度の振動により
破壊限界を越えて変形するのを防止する振動抑制作用を
する。
The viscous fluid (9) acts as a vibration suppressor to prevent the semiconductor element (1) from being deformed beyond the destruction limit due to excessive vibration when the acceleration sensor receives a shockingly large acceleration.

「発明が解決しようとする課題] 従来の加速度センサは以上のように構成されているので
、大きな加速度が働いたとき、半導体素子の溝部に応力
か集中し、溝部が破壊するという問題がある。それを防
止するために、センサのケース内を粘性流体で満たすこ
とが必要であり、そのことによりセンサの感度が低下す
るなどの問題点があった。
[Problems to be Solved by the Invention] Since the conventional acceleration sensor is configured as described above, there is a problem in that when a large acceleration is applied, stress concentrates on the groove portion of the semiconductor element, causing the groove portion to break. In order to prevent this, it is necessary to fill the inside of the sensor case with viscous fluid, which causes problems such as a decrease in the sensitivity of the sensor.

この発明は上記のような問題点を解消するためになされ
たもので、大きな加速度が加わっても破壊しに<(、粘
性流体によるダンピングの必要がなく、感度のよい加速
度センサを得ることを目的とする。
This invention was made to solve the above-mentioned problems.The purpose of this invention is to obtain an acceleration sensor that does not break even when a large acceleration is applied, does not require damping by viscous fluid, and has high sensitivity. shall be.

[課題を解決するための手段] この発明に係る加速度センサは、流体を密閉したキャビ
ティと、その内部の流体の圧力分布を測定する複数個の
圧力検出手段とを備えている。
[Means for Solving the Problems] An acceleration sensor according to the present invention includes a fluid-tight cavity and a plurality of pressure detection means for measuring the pressure distribution of the fluid inside the cavity.

[作 用] この発明においては、キャビティ内に封入された流体は
重りの役目をし、センサが受けた加速度に応じてキャビ
ティ内に圧力分布を生じ、それをキャビティ内に取付け
られた圧力検出手段により検出する。
[Function] In this invention, the fluid sealed in the cavity acts as a weight, and generates a pressure distribution in the cavity according to the acceleration received by the sensor, which is then detected by the pressure detection means installed in the cavity. Detected by.

[実施例] 以下、この発明の一実施例を第1図について説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

第1図は圧力検出手段に圧電素子を用いた加速度センサ
であり、図において、左右に対向して配置された圧電素
子(la)、 (lb)は、金属細線(3)によりリー
ド(4)と電気的に接続されている。
Fig. 1 shows an acceleration sensor using a piezoelectric element as a pressure detection means. electrically connected to.

ケース(10)内はキャビティ(11)となっており、
キャビティの内壁面に圧電素子(la)、 (lb)が
取付けられている。また、キャビティ(11)内には流
体(12)が密閉して満たされている。
Inside the case (10) is a cavity (11),
Piezoelectric elements (la) and (lb) are attached to the inner wall surface of the cavity. Further, the cavity (11) is filled with a fluid (12) in a sealed manner.

その他、第6図におけると同一符号は同一乃至相当部分
である。
In addition, the same reference numerals as in FIG. 6 indicate the same or corresponding parts.

次に動作について説明する。加速度センサが図で左右方
向成分の加速度を受けた場合、キャビティ(11)内部
に密封されている流体(12)に加速度に応じた圧力分
布を生じ、圧電素子(Ia)、 (Ib)にそれぞれ異
った圧力か加わり、発生する電圧に差か生じる。その電
圧差により加わった加速度を算出する。例えば、第1図
において、右方向の圧力か加わった場合、慣性の法則に
より流体(12)は左側壁面に押しつけられ、右側に比
へ左側の圧力か大き(なる。これを圧電素子(la)、
 (lb)により検出することにより加速度を算出する
Next, the operation will be explained. When the acceleration sensor receives acceleration in the left-right direction component as shown in the figure, a pressure distribution is generated in the fluid (12) sealed inside the cavity (11) according to the acceleration, and the piezoelectric elements (Ia) and (Ib) respectively Different pressures are applied, resulting in a difference in the voltage generated. The acceleration applied due to the voltage difference is calculated. For example, in Fig. 1, when pressure is applied in the right direction, the fluid (12) is pressed against the left wall surface due to the law of inertia, and the pressure on the left side becomes larger than that on the right side (the piezoelectric element (la) ,
Acceleration is calculated by detecting (lb).

第2図は、圧力検出手段として感圧面を有する半導体素
子を用いた他の実施例であり、図において、感圧面を有
する半導体素子(13a)、 (13b)が台座(6a
)、 (6b)にそれぞれボンディングされている。
FIG. 2 shows another embodiment in which a semiconductor element having a pressure sensitive surface is used as the pressure detection means.
) and (6b), respectively.

(14a)、 (14b)は感圧面として作動するダイ
アフラム部であり、その上には圧力によってダイアフラ
ム部が変形したときの歪みを検出する回路が設けられて
いる。ダイアフラム部(14a)、 (14b)と台座
(6a)、 (6b)により形成されたキャビティ(1
5a)。
(14a) and (14b) are diaphragm sections that operate as pressure-sensitive surfaces, and a circuit is provided above them to detect distortion when the diaphragm section is deformed by pressure. A cavity (1) formed by the diaphragm portions (14a), (14b) and the pedestals (6a), (6b).
5a).

(15b)の内部は真空または同じ圧力2体積の気体が
密封されている。
The inside of (15b) is sealed with a vacuum or with gas at the same pressure and 2 volumes.

その他、第1図におけると同一符号は同一乃至相当部分
である。
In addition, the same reference numerals as in FIG. 1 indicate the same or corresponding parts.

以上の構成により、加速度センサが加速度を受は流体(
12)に圧力分布が生じると、ダイアフラム部(14a
)、 (14b)の変形の程度に差異を生じ、それによ
って加速度を検出する。
With the above configuration, the acceleration sensor receives acceleration from the fluid (
12), the diaphragm part (14a
) and (14b), and the acceleration is detected accordingly.

第3図はさらに他の実施例を示し、圧電素子を6つ用い
て3次元方向の加速度を検出できるようにしたものであ
る。すなわち、圧電素子(1a)〜(1d)は立方体の
キャビティ(11)の各面に取り付けられている。
FIG. 3 shows yet another embodiment, in which six piezoelectric elements are used to detect acceleration in three-dimensional directions. That is, the piezoelectric elements (1a) to (1d) are attached to each surface of the cubic cavity (11).

その他、第1図におけると同一符号は同一乃至相当部分
である。
In addition, the same reference numerals as in FIG. 1 indicate the same or corresponding parts.

以上の構成により、圧電素子(la)、 (Ib)によ
って左右方向の加速度、圧電素子(lc)、 (ld)
によって上下方向の加速度、図には描れていないが前。
With the above configuration, the piezoelectric elements (la) and (Ib) cause acceleration in the left and right direction, and the piezoelectric elements (lc) and (ld)
Due to the acceleration in the vertical direction, it is not shown in the figure, but it is the front.

後面に取付けられた圧電素子により前後方向の加速度を
検出することにより、3次元方向の加速度を検出する。
Three-dimensional acceleration is detected by detecting acceleration in the front-rear direction using a piezoelectric element attached to the rear surface.

また、第4図、第5図は別の実施例であり、この実施例
では圧電素子を4つ用いて3次元方向の加速度を検出で
きるようにしたものである。圧電素子(la)と(lb
)、Ub)と(lc)、 (Ic)と(1d)の3つの
組合せにより3次元方向の加速度を検出する。
Further, FIGS. 4 and 5 show another embodiment, in which four piezoelectric elements are used to detect acceleration in three-dimensional directions. Piezoelectric elements (la) and (lb
), Ub) and (lc), and (Ic) and (1d) to detect acceleration in three-dimensional directions.

なお、第3図の実施例、第4図の実施例において圧力検
出手段に圧電素子を用いたが、感圧面を有する半導体素
子を用いても同様の効果が得られることはいうまでもな
い。
Although a piezoelectric element is used as the pressure detection means in the embodiment shown in FIG. 3 and the embodiment shown in FIG. 4, it goes without saying that similar effects can be obtained by using a semiconductor element having a pressure-sensitive surface.

[発明の効果] 以上のように、この発明によれば、キャビティ内の流体
の圧力分布を検出することにより加速度を検出するよう
にしたので、堅牢で精度の高い加速度センサが得られる
効果かある。
[Effects of the Invention] As described above, according to the present invention, since acceleration is detected by detecting the pressure distribution of the fluid within the cavity, it is possible to obtain a robust and highly accurate acceleration sensor. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はそれぞれこの発明の実施例の縦断面図
、第5図は第4図のV−v線に沿う平面による断面図、
第6図は従来の加速度センサの縦断面図である。 (la)、(lb)、(lc)、(ld)  ・・圧電
素子(圧力検出手段’) 、(10)・・ケース、(1
1)・・キャピテイ、(12)−・流体、(13a)、
(13b)・・半導体素子(圧力検出手段) 、(14
a)、(14b)  ・・ダイアフラム部。 なお、各図中、同一符号は同一または相当部分を示す。
1 to 4 are longitudinal cross-sectional views of embodiments of the present invention, and FIG. 5 is a cross-sectional view taken along the line V-v in FIG. 4.
FIG. 6 is a longitudinal sectional view of a conventional acceleration sensor. (la), (lb), (lc), (ld)...Piezoelectric element (pressure detection means'), (10)...Case, (1
1) Capity, (12)-Fluid, (13a),
(13b)...Semiconductor element (pressure detection means), (14
a), (14b)...Diaphragm part. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  流体を密封したキャビティと、このキャビティの内壁
面に取付けられ加速度による前記流体の圧力分布を検出
する複数個の圧力検出手段とを備えてなる加速度センサ
An acceleration sensor comprising a fluid-sealed cavity and a plurality of pressure detection means attached to the inner wall surface of the cavity to detect pressure distribution of the fluid due to acceleration.
JP29883090A 1990-11-06 1990-11-06 Acceleration sensor Pending JPH04172257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29883090A JPH04172257A (en) 1990-11-06 1990-11-06 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29883090A JPH04172257A (en) 1990-11-06 1990-11-06 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH04172257A true JPH04172257A (en) 1992-06-19

Family

ID=17864775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29883090A Pending JPH04172257A (en) 1990-11-06 1990-11-06 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH04172257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154803A (en) * 2011-01-26 2012-08-16 Denso Corp Angular velocity sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154803A (en) * 2011-01-26 2012-08-16 Denso Corp Angular velocity sensor device

Similar Documents

Publication Publication Date Title
US8322216B2 (en) Micromachined accelerometer with monolithic electrodes and method of making the same
JP2656566B2 (en) Semiconductor pressure transducer
KR20010021258A (en) Micromechanical rotary acceleration sensor
US20190301866A1 (en) Physical quantity sensor
IT201800002367A1 (en) MEMS PRESSURE SENSOR WITH MULTIPLE SENSITIVITY AND REDUCED DIMENSIONS
US10737929B2 (en) Trench-based microelectromechanical transducer and method for manufacturing the microelectromechanical transducer
US10393523B2 (en) Physical quantity sensor
KR20060047758A (en) Acceleration sensor
JPH04172257A (en) Acceleration sensor
JPH03113337A (en) Accelerometer integrated type pressure sensor
WO2018025434A1 (en) Pressure sensor and pressure sensor module
CN110501521B (en) Piezoelectric accelerometer
JPH0526754A (en) Sensor utilizing change in electrostatic capacitance
JPH06109755A (en) Semiconductor acceleration sensor
KR20200023214A (en) Sensor packages
JP5821158B1 (en) Compound sensor device
US10955434B2 (en) Resonant sensor device
US6938492B2 (en) Pressure sensor and manufacturing method of pressure sensor
JP5003161B2 (en) Acceleration detection unit
JP2552133Y2 (en) Acceleration sensor
JPH059746B2 (en)
JP2017062193A (en) Pressure sensor
JP2008170166A (en) Acceleration detection unit and acceleration sensor
JPH06160417A (en) Semiconductor acceleration sensor
JP3020829B2 (en) Force, acceleration, and magnetism detectors for multi-dimensional directions