JPH0417220B2 - - Google Patents

Info

Publication number
JPH0417220B2
JPH0417220B2 JP7551184A JP7551184A JPH0417220B2 JP H0417220 B2 JPH0417220 B2 JP H0417220B2 JP 7551184 A JP7551184 A JP 7551184A JP 7551184 A JP7551184 A JP 7551184A JP H0417220 B2 JPH0417220 B2 JP H0417220B2
Authority
JP
Japan
Prior art keywords
polyethylene
foam
weight
low density
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7551184A
Other languages
Japanese (ja)
Other versions
JPS60219235A (en
Inventor
Yutaka Ozaki
Hiroshi Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7551184A priority Critical patent/JPS60219235A/en
Publication of JPS60219235A publication Critical patent/JPS60219235A/en
Publication of JPH0417220B2 publication Critical patent/JPH0417220B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は耐熱性および独立気泡性に優れたポリ
エチレン系樹脂発泡体を押出発泡法により製造す
る方法に関する。 (従来技術) 揮発性発泡剤を用い、押出発泡法により発泡さ
せて得られるポリエチレン系発泡体は断熱材や緩
衝材として広く利用されている。ポリエチレン系
発泡体の原料となるポリエチレンとしては押出発
泡成形の容易な高圧法ポリエチレンが用いられ
る。その理由はこの高圧法ポリエチレンは広い温
度範囲にわたつて安定でありしかも特有の流動特
性と結晶化特性を有するからである。この高圧法
ポリエチレンを用いた発泡体の製造においては、
プロセスが簡単で複雑な設備が必要とされない。
しかし、得られた発泡体は、原料の高圧法ポリエ
チレンの融点が低く架橋構造を有していないた
め、耐熱性において充分ではなく、そのため、発
泡体の用途は著しく限定される。このようなポリ
エチレン系発泡体の耐熱性を向上させるべく、例
えば特公昭53−34226号公報、特公昭58−47408号
公報、特開昭54−161671号公報および特開昭55−
40739号公報には中低圧法線状ポリエチレンや中
低圧法線状ポリプロピレンを用いた発泡体が提案
されている。これら中低圧法によるポリエチレン
やポリプロピレンは耐熱性に優れているが、その
反面、単独で用いると押出発泡性に著しく劣り独
立気泡率の高い発泡体が得られない。そのため上
記公報では、中低圧法線状ポリエチレンやポリプ
ロピレンの分子に架橋構造を導入したりエラスト
マーを混合することにより押出発泡性の改善が図
られている。しかし、押出発泡体をはじめ、得ら
れた発泡体の耐熱性、熱安定性や生産コストの面
でこれら従来の方法はいずれにも充分であるとは
いえない。 特開昭54−33569号公報には、高圧法ポリエチ
レンと高融点のポリオレフインとの混合物に特定
の低融点有機溶剤発泡剤を混合し、低温低圧帯域
に押出して発泡体を得る方法が開示されている。
しかし、この方法によつても高圧法ポリエチレン
の融点以上の耐熱性を有する発泡体は得られな
い。 形成された発泡体に架橋構造をもたせて耐熱性
を向上させた例もある。例えば、特開昭55−
152724号公報、特開昭58−61129号公報および特
開昭58−1530号公報は高圧法ポリエチレンにシリ
ル化合物を反応させて加水分解性シリル基を有す
る架橋性高圧法ポリエチレンを得、これを用いて
発泡体を得る方法を開示している。これらの方法
は耐熱性に優れた発泡体を供給しうるが、熱安定
性に劣り加熱されると大きく収縮するという致命
的な欠点を有する。 (発明の目的) 本発明の目的は、耐熱性および熱安定性に優
れ、独立気泡率が高く、かつ安価に生産されうる
ポリエチレン系発泡体の製造方法を提供すること
にある。 (発明の構成) 本発明は加水分解性シリル基を有する架橋性高
圧法分岐ポリエチレンと特定の範囲にある融点を
もつ線状中低密度ポリエチレンとを触媒の存在下
に発泡させて水分と接触させれば架橋構造を有す
る、耐熱性に優れた発泡体が得られうるとの発明
者の知見にもとづいて完成された。したがつて、
本発明のポリエチレン系樹脂発泡体の製造方法は
高圧法分岐ポリエチレンに加水分解性シリル基が
結合した架橋性高圧法分岐ポリエチレン95〜50重
量%と、融点が下記(1)式を充足しうる線状中低密
度ポリエチレン5〜50重量%とを含有するポリエ
チレン組成物100重量部を加熱・溶融し、これに
シラノール縮合触媒の存在下で揮発性発泡剤5〜
50重量部を加えて低圧帯域へ押出し、水分と接触
させることを特徴とし、そのことにより上記目的
が達成される。 120℃<線状中低密度ポリエチレンの融点<高圧
法分岐ポリエチレンの融点+10℃ ……(1) 本発明の架橋性高圧法分岐ポリエチレンは高
圧法分岐ポリエチレンに加水分解可能な有機基を
もつ不飽和シランをラジカル発生剤の存在下にグ
ラフトさせる方法、もしくはエチレンと加水分
解可能な有機基をもつ不飽和シランを高圧下で共
重合させる方法により得られる。上記および
の加水分解可能な有機基としてはメトキシ基、エ
トキシ基およびブトキシ基のようなアルコキシ
基;ホルミルオキシ基、アセトキシ基、プロピオ
ノキシ基のようなアシルオキシ基;−ON=C
(CH32,−ON=CCH3C2H5,−ON=C(C6H52
のようなオキシム基;−NHCH3,−NHC2H5,−
NH(C6H5)のような置換されたアミノ基などが
ある。これらのうちメトキシ基、エトキシ基が特
に好ましい。このような加水分解可能な有機基を
もつ不飽和シランのうちビニルトリメトキシシラ
ン、ビニルトリエトキシシラン、γ−メタクリロ
イルオキシプロピルトリメトキシシランなどが好
んで用いられる。高圧法分岐ポリエチレンの密度
は0.915〜0.935g/cm3である。メルトインデツク
ス(MI)は、0.1〜20.0の範囲にあることが望ま
しく、特に0.3〜5.0であることが好ましい。融点
は高い方が望ましい。DSCで測定した融点が110
℃以上であれよいが、112℃以上であることがさ
らに好ましく、110℃以下であると線状中低密度
ポリエチレンとの融点の差が10℃以内となり前記
(1)式を満足できない。もしくはの方法による
架橋性高圧法分岐ポリエチレンの製造およびその
組成は格別である必要はなく、例えば、特公昭48
−1711号公報や特開昭55−9611号公報に詳しく開
示されている。このようにして得られた架橋性高
圧法分岐ポリエチレンはシラノール縮合触媒の存
在下で水と接触すると容易に架橋する性質を有す
る。 本発明の線状中低密度ポリエチレンはエチレン
にα−オレフインを少量添加し、これを共重合し
て得られる。α−オレフインとしてはプロピレ
ン、1−ブテン、4−メチル−1−ペンテンなど
がある。線状中低密度ポリエチレンの密度は
0.915〜0.945g/cm3である。その融点は120℃〜
(高圧法分岐ポリエチレンの融点+10℃)である。
融点が120℃を下まわると得られる発泡体の耐熱
性が不充分である。融点が高すぎると独立気泡率
の高い発泡体を得ることが困難になる。このよう
な線状中低密度ポリエチレンは市販の中密度ポリ
エチレンあるいは線状低密度ポリエチレンを利用
できる。線状中低密度ポリエチレンが加水分解性
シリル基を有する場合には架橋性高圧法分岐ポリ
エチレンとの反応性がさらに向上する。加水分解
性シリル基を有する線状中低密度ポリエチレンは
架橋性高圧法分岐ポリエチレンを得る場合と同様
に線状中低密度ポリエチレンに不飽和シランをグ
ラフトすることにより容易に得ることができる。 上記の架橋性高圧法分岐ポリエチレン95〜5重
量%と線状中低密度ポリエチレン5〜50重量%と
の混合物を加熱・溶融し、これにシラノール縮合
触媒と揮発性発泡剤とを加えて発泡体組成物を得
る。これを低圧帯域に押出し、発泡させて水分と
接触させることにより発泡体が得られる。上記混
合物中の線状中低密度ポリエチレンが5重量%を
下まわると得られる発泡体が耐熱性に劣る。過剰
であると得られる発泡体の独立発泡率が低い。な
お、加水分解性シリル基をもたない高圧法分岐ポ
リエチレンと加水分解性シリル基をもたない線状
中低密度ポリエチレンとの混合物に不飽和シラン
をグラフトさせれば、高圧法分岐ポリエチレンと
線状中低密度ポリエチレンとの両者に加水分解性
シリル基が導入される。上記組成物中のシラノー
ル縮合触媒には例えば特公昭48−1711号公報に開
示された化合物が使用可能である。それらのうち
ジブチル錫ジラウレート、ジオクチル錫ジラウレ
ートなどが好適に用いられる。揮発性発泡剤とし
てはフルオロカーボン類、クロロカーボン類、炭
化水素類に属する低融点溶剤を利用することがで
きる。それらのうちジクロルジフルオロメタン、
トリクロルフルオロメタン、1・2−ジクロルテ
トラフルオロエタン、トリクロロトリフルオロエ
タン、ペンタン、ブタンなどが好適に用いられ
る。シラノール縮合触媒や発泡剤とともに上記組
成物には必要に応じて発泡核剤、抗酸化剤、光安
定剤、難燃剤、帯電防止剤、着色剤などが添加さ
れうる。 発泡体組成物が低圧帯域に押出されて得られた
発泡体を室温で空気中に放置すると、空気中の水
分により架橋反応が進行する。発泡体を高温高湿
度下に放置すると架橋反応は促進される。このよ
うにして架橋構造を有し、耐熱性に優れた発泡体
を得ることができる。 (実施例) 以下に本発明を実施例について説明する。 実施例 1 (A) 架橋性高圧法分岐ポリエチレンの調製:高圧
法分岐ポリエチレンとしてユカロンNF−90
(三菱油化(株)製:密度0.930g/cm3,MI1.5、融点
116℃)を用いた。ユカロンNF−90のペレツ
ト100重量部にビニルトリメトキシシラン(チ
ツソ(株)製:VTS−M)1.2重量部およびジクミ
ルパーオキシド(パークミルD:日本油脂(株)
製)0.06重量部を加えた。これを口径50mm、
L/D=26の二軸押出機を用い押出量15Kg/hr
で押出し架橋性高圧法分岐ポリエチレンとして
シラングラフトポリエチレンペレツト(MI=
1.1、到達ゲル分率75%)を得た。温度条件は
バレルが160℃,180℃,200℃,200℃、金型が
200℃,180℃である。 (B) 発泡体の調製:(A)項で得られたシラングラフ
トポリエチレンペレツト70重量部に線状中低密
度ポリエチレンとしてユカロンLL9150M(三菱
油化(株)製:密度0.936g/cm3,MI5.0、融点125
℃)のペレツト30重量部を加えた。さらにユカ
ロンNF−90 100重量部、ジブチル錫ジラウレ
ート2重量部、タルク5重量部、ヒンダードフ
エノール系抗酸化剤(アダカアーガス(株)製:
MARK AO−60)3重量部からなるマスター
バツチペレツト5重量部を添加しタンブラーミ
キサーで均一に混合した。これを口径3mmのノ
ズル金型をとりつけた口径40mm、L/D=30の
押出機を用い押出量8Kg/hrで押出し発泡させ
た。バレル温度は120℃,150℃,160℃,140℃
で、金型温度は115℃である。なお、バレル途
中から1・2−ジクロルテトラフルオロエタン
を上記配合物100重量部に対して28重量部、高
圧ポンプにより圧入した。 (C) 発泡体の性能評価:(B)項で得られた発泡体は
表面が平滑で弾力性があつた。発泡体の密度と
独立気泡率を測定した。さらに発泡体を120℃
の乾燥機の中に24時間放置し、その体積収縮率
を測定した。その結果を表1に示す。 実施例 2 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:シラングラフトポリエチレン
を90重量部、線状中低密度ポリエチレンを10重
量部用いたこと以外は実施例1(B)項と同様であ
る。なお、実施例2〜5および比較例1〜3に
おいて金型温度は、それぞれの発泡体組成物に
最適の温度に調製した。 (C) 発泡体の性能評価:実施例1(C)項と同様であ
る。 実施例 3 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:シラングラフトポリエチレン
を80重量部、線状中低密度ポリエチレンを20重
量部用いたこと以外は実施例1(B)項と同様であ
る。 (C) 発泡体の性能評価:実施例1(C)項と同様であ
る。 実施例 4 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:シラングラフトポリエチレン
を60重量部、線状中低密度ポリエチレンを40重
量部用いたこと以外は実施例1(B)項と同様であ
る。 (C) 発泡体の性能評価:実施例1(C)項と同様であ
る。 実施例 5 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:シラングラフトポリエチレン
を50重量部、線状中低密度ポリエチレンを50重
量部用いたこと以外は実施例1(B)項と同様であ
る。 (C) 発泡体の性能評価:(B)項で得られた発泡体
は、発泡後やや収縮したが発泡状態は良好であ
つた。 比較例 1 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:シラングラフトポリエチレン
を100重量部用い、線状中低密度ポリエチレン
使用しなかつたこと以外は実施例1(B)項と同様
である。 (C) 発泡体の性能評価:実施例1(C)項と同様であ
る。 比較例 2 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:シラングラフトポリエチレン
を40重量部、線状中低密度ポリエチレンを60重
量部用いたこと以外は実施例1(B)項と同様であ
る。 (C) 発泡体の性能評価:(B)項で得られた発泡体
は、発泡後、すぐに収縮した。発泡体の密度お
よび独立気泡率を測定した。その結果を表1に
示す。 比較例 3 (A) 発泡体の調製シラングラフトポリエチレンを
用いず、線状中低密度ポリエチレンを100重量
部用いたこと以外は実施例1(B)項と同様であ
る。押出機を用いて押出したがほとんど発泡せ
ず、発泡体は得られなかつた。
(Technical Field) The present invention relates to a method for producing a polyethylene resin foam having excellent heat resistance and closed cell properties by an extrusion foaming method. (Prior Art) Polyethylene foams obtained by foaming by an extrusion foaming method using a volatile foaming agent are widely used as heat insulating materials and cushioning materials. High-pressure polyethylene, which can be easily extruded and foam-molded, is used as the raw material for the polyethylene foam. This is because this high-pressure polyethylene is stable over a wide temperature range and has unique fluidity and crystallization properties. In the production of foam using this high-pressure polyethylene,
The process is simple and no complicated equipment is required.
However, the obtained foam does not have sufficient heat resistance because the raw material high-pressure polyethylene has a low melting point and does not have a crosslinked structure, and therefore, the uses of the foam are significantly limited. In order to improve the heat resistance of such polyethylene foams, for example, Japanese Patent Publication No. 1983-34226, Japanese Patent Publication No. 58-47408, Japanese Patent Application Laid-open No. 54-161671, and Japanese Patent Application Laid-Open No. 1982-1989 have been proposed.
Publication No. 40739 proposes a foam using medium-low pressure normal polyethylene or medium-low pressure normal polypropylene. Polyethylene and polypropylene produced by these medium-low pressure methods have excellent heat resistance, but on the other hand, when used alone, extrusion foamability is extremely poor and a foam with a high closed cell ratio cannot be obtained. Therefore, in the above-mentioned publication, an attempt is made to improve the extrusion foamability by introducing a crosslinked structure into the molecules of normal polyethylene or polypropylene at medium and low pressures or by mixing an elastomer. However, none of these conventional methods can be said to be sufficient in terms of heat resistance, thermal stability, and production costs of extruded foams and other foams obtained. JP-A-54-33569 discloses a method of obtaining a foam by mixing a specific low-melting-point organic solvent blowing agent with a mixture of high-pressure polyethylene and high-melting-point polyolefin and extruding the mixture into a low-temperature, low-pressure zone. There is.
However, even with this method, a foam having a heat resistance higher than the melting point of high-pressure polyethylene cannot be obtained. There are also examples in which the formed foam has a crosslinked structure to improve heat resistance. For example, JP-A-55-
No. 152724, JP-A No. 58-61129, and JP-A No. 58-1530 disclose methods of reacting high-pressure polyethylene with a silyl compound to obtain crosslinkable high-pressure polyethylene having hydrolyzable silyl groups, and using this. A method for obtaining a foam is disclosed. Although these methods can provide foams with excellent heat resistance, they have the fatal drawback of poor thermal stability and large shrinkage when heated. (Objective of the Invention) An object of the present invention is to provide a method for producing a polyethylene foam that has excellent heat resistance and thermal stability, has a high closed cell ratio, and can be produced at low cost. (Structure of the Invention) The present invention involves foaming crosslinkable high-pressure branched polyethylene having a hydrolyzable silyl group and linear medium-low density polyethylene having a melting point within a specific range in the presence of a catalyst and contacting it with water. This was completed based on the inventor's knowledge that a foam having a crosslinked structure and excellent heat resistance could be obtained by doing so. Therefore,
The method for producing the polyethylene resin foam of the present invention uses 95 to 50% by weight of crosslinkable high-pressure branched polyethylene in which a hydrolyzable silyl group is bonded to high-pressure branched polyethylene, and a melting point that satisfies the following formula (1). 100 parts by weight of a polyethylene composition containing 5% to 50% by weight of medium-low density polyethylene is heated and melted, and 5% to 50% by weight of a volatile blowing agent is added to this in the presence of a silanol condensation catalyst.
It is characterized in that 50 parts by weight are added and extruded into a low pressure zone and brought into contact with moisture, thereby achieving the above object. 120℃<Melting point of linear medium-low density polyethylene<Melting point of high-pressure branched polyethylene+10℃...(1) The crosslinkable high-pressure branched polyethylene of the present invention is unsaturated with an organic group that can be hydrolyzed into high-pressure branched polyethylene. It can be obtained by grafting silane in the presence of a radical generator, or by copolymerizing ethylene and an unsaturated silane having a hydrolyzable organic group under high pressure. Hydrolyzable organic groups of the above and above include alkoxy groups such as methoxy, ethoxy and butoxy groups; acyloxy groups such as formyloxy, acetoxy and propionoxy groups; -ON=C
(CH 3 ) 2 , −ON=CCH 3 C 2 H 5 , −ON=C (C 6 H 5 ) 2
Oxime groups such as -NHCH 3 , -NHC 2 H 5 , -
Examples include substituted amino groups such as NH (C 6 H 5 ). Among these, methoxy group and ethoxy group are particularly preferred. Among such unsaturated silanes having a hydrolyzable organic group, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, etc. are preferably used. The density of high-pressure branched polyethylene is 0.915 to 0.935 g/cm 3 . The melt index (MI) is preferably in the range of 0.1 to 20.0, particularly preferably 0.3 to 5.0. A higher melting point is desirable. Melting point measured by DSC is 110
℃ or higher, but it is more preferably 112℃ or higher, and if it is 110℃ or lower, the difference in melting point with linear medium-low density polyethylene will be within 10℃, and the above-mentioned
Equation (1) cannot be satisfied. The production of crosslinkable high-pressure branched polyethylene by the method described in or above and its composition do not need to be special;
This is disclosed in detail in Publication No. 1711 and Japanese Unexamined Patent Publication No. 55-9611. The crosslinkable high-pressure branched polyethylene thus obtained has the property of being easily crosslinked when it comes into contact with water in the presence of a silanol condensation catalyst. The linear medium-low density polyethylene of the present invention is obtained by adding a small amount of α-olefin to ethylene and copolymerizing the mixture. Examples of α-olefins include propylene, 1-butene, and 4-methyl-1-pentene. The density of linear medium-low density polyethylene is
It is 0.915-0.945g/ cm3 . Its melting point is 120℃ ~
(Melting point of high-pressure branched polyethylene +10°C).
If the melting point is below 120°C, the resulting foam will have insufficient heat resistance. If the melting point is too high, it will be difficult to obtain a foam with a high closed cell ratio. As such linear medium-low density polyethylene, commercially available medium-density polyethylene or linear low-density polyethylene can be used. When the linear medium-low density polyethylene has a hydrolyzable silyl group, the reactivity with the crosslinkable high-pressure branched polyethylene is further improved. Linear medium-low density polyethylene having hydrolyzable silyl groups can be easily obtained by grafting unsaturated silane to linear medium-low density polyethylene in the same manner as in the case of obtaining crosslinkable high-pressure branched polyethylene. A mixture of 95 to 5% by weight of the above-mentioned crosslinkable high-pressure branched polyethylene and 5 to 50% by weight of linear medium-low density polyethylene is heated and melted, and a silanol condensation catalyst and a volatile blowing agent are added thereto to form a foam. Obtain a composition. A foam is obtained by extruding this into a low pressure zone, foaming it and bringing it into contact with moisture. If the linear medium-low density polyethylene in the mixture is less than 5% by weight, the resulting foam will have poor heat resistance. If it is in excess, the closed foam rate of the resulting foam will be low. In addition, if unsaturated silane is grafted onto a mixture of high-pressure branched polyethylene that does not have hydrolyzable silyl groups and linear medium-low density polyethylene that does not have hydrolyzable silyl groups, it is possible to Hydrolyzable silyl groups are introduced into both the medium and low density polyethylene. As the silanol condensation catalyst in the above composition, for example, the compounds disclosed in Japanese Patent Publication No. 1711/1982 can be used. Among them, dibutyltin dilaurate, dioctyltin dilaurate, etc. are preferably used. As the volatile blowing agent, low melting point solvents belonging to fluorocarbons, chlorocarbons, and hydrocarbons can be used. Among them, dichlorodifluoromethane,
Trichlorofluoromethane, 1,2-dichlorotetrafluoroethane, trichlorotrifluoroethane, pentane, butane, etc. are preferably used. In addition to the silanol condensation catalyst and the blowing agent, a foaming nucleating agent, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, a coloring agent, and the like may be added to the composition as necessary. When the foam composition is extruded into a low pressure zone and the resulting foam is left in the air at room temperature, the crosslinking reaction proceeds due to moisture in the air. The crosslinking reaction is accelerated when the foam is left under high temperature and high humidity. In this way, a foam having a crosslinked structure and excellent heat resistance can be obtained. (Example) The present invention will be described below with reference to Examples. Example 1 (A) Preparation of crosslinkable high-pressure branched polyethylene: Yucalon NF-90 as high-pressure branched polyethylene
(Mitsubishi Yuka Co., Ltd.: density 0.930g/cm 3 , MI1.5, melting point
116°C). To 100 parts by weight of Yucalon NF-90 pellets, 1.2 parts by weight of vinyltrimethoxysilane (VTS-M, manufactured by Chitsuso Corporation) and dicumyl peroxide (Percumyl D, manufactured by NOF Corporation) were added.
0.06 part by weight was added. This is caliber 50mm,
Extrusion rate 15Kg/hr using twin screw extruder with L/D=26
Silane-grafted polyethylene pellets (MI=
1.1, the achieved gel fraction was 75%). The temperature conditions are 160℃, 180℃, 200℃, 200℃ for the barrel, and 200℃ for the mold.
200℃ and 180℃. (B) Preparation of foam: Yucalon LL9150M (manufactured by Mitsubishi Yuka Co., Ltd., density 0.936 g/cm 3 MI5.0, melting point 125
30 parts by weight of pellets (°C) were added. Additionally, 100 parts by weight of Yucalon NF-90, 2 parts by weight of dibutyltin dilaurate, 5 parts by weight of talc, and a hindered phenol antioxidant (manufactured by Adaka Argus Co., Ltd.)
5 parts by weight of masterbatch pellets consisting of 3 parts by weight (MARK AO-60) were added and mixed uniformly with a tumbler mixer. This was extruded and foamed at an extrusion rate of 8 kg/hr using an extruder with a diameter of 40 mm and L/D = 30 equipped with a nozzle mold having a diameter of 3 mm. Barrel temperature is 120℃, 150℃, 160℃, 140℃
And the mold temperature is 115℃. Incidentally, 28 parts by weight of 1,2-dichlorotetrafluoroethane per 100 parts by weight of the above-mentioned compound was pressurized from the middle of the barrel using a high-pressure pump. (C) Performance evaluation of foam: The foam obtained in section (B) had a smooth surface and elasticity. The density and closed cell ratio of the foam were measured. Further foam at 120℃
The sample was left in a dryer for 24 hours, and its volumetric shrinkage rate was measured. The results are shown in Table 1. Example 2 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Same as Example 1 (B) except that 90 parts by weight of silane grafted polyethylene and 10 parts by weight of linear medium-low density polyethylene were used. In addition, in Examples 2 to 5 and Comparative Examples 1 to 3, the mold temperature was adjusted to the optimum temperature for each foam composition. (C) Performance evaluation of foam: Same as Example 1 (C). Example 3 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Same as Example 1 (B) except that 80 parts by weight of silane grafted polyethylene and 20 parts by weight of linear medium-low density polyethylene were used. (C) Performance evaluation of foam: Same as Example 1 (C). Example 4 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Same as Example 1 (B) except that 60 parts by weight of silane grafted polyethylene and 40 parts by weight of linear medium-low density polyethylene were used. (C) Performance evaluation of foam: Same as Example 1 (C). Example 5 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Same as Example 1 (B) except that 50 parts by weight of silane grafted polyethylene and 50 parts by weight of linear medium-low density polyethylene were used. (C) Performance evaluation of foam: The foam obtained in section (B) shrank slightly after foaming, but the foamed state was good. Comparative Example 1 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Same as Example 1 (B) except that 100 parts by weight of silane grafted polyethylene was used and linear medium-low density polyethylene was not used. (C) Performance evaluation of foam: Same as Example 1 (C). Comparative Example 2 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Same as Example 1 (B) except that 40 parts by weight of silane grafted polyethylene and 60 parts by weight of linear medium-low density polyethylene were used. (C) Performance evaluation of foam: The foam obtained in section (B) shrunk immediately after foaming. The density and closed cell ratio of the foam were measured. The results are shown in Table 1. Comparative Example 3 (A) Preparation of foam Same as Example 1 (B) except that silane grafted polyethylene was not used and 100 parts by weight of linear medium-low density polyethylene was used. Although it was extruded using an extruder, there was almost no foaming and no foam was obtained.

【表】【table】

【表】 実施例 6 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 線状中低密度ポリエチレンとしてネオゼツク
ス3510F(三井石油化学(株)製:密度0.955、
MI1.6、融点122℃)を用いたこと以外は実施
例1(B)項と同様である。 (C) 発泡体の性能評価:得られた発泡体の密度と
独立気泡率を測定した。さらに発泡体120℃の
乾燥機の中に24時間放置し、その体積収縮率を
測定した。その結果を表2に示す。なお、使用
した高圧法分岐ポリエチレンと線状中低密度ポ
リエチレンの種類も表2に示す。比較のため実
施例1の結果も表2に示す。 実施例 7 (A) 架橋性高圧法分岐ポリエチレンの調整:実施
例1(A)項と同様である。 (B) 発泡体の調製:線状中低密度ポリエチレンと
してウルトゼツクス2020L(三井石油化学(株)
製:密度0.920、MI2.1、融点120℃)を用いた
こと以外は実施例1(B)項と同様である。 (C) 発泡体の性能評価:実施例6(C)項と同様であ
る。 比較例 4 (A) 発泡体の調製:シラングラフトしていないユ
カロンNF−90を使用したこと以外は実施例1
(B)項と同様である。 (B) 発泡体の性能評価:実施例6(C)項と同様であ
る。 比較例 5 (A) 架橋性高圧法分岐ポリエチレンの調製:高圧
法分岐ポリエチレンとしてユカロンYK−30
(三菱油化(株)製:密度0.920、MI4.0融点109℃)
を用いてシラングラフトポリエチレン
(MI3.1、到達ゲル分率66%)を得たこと以外
は実施例1(A)項と同様である。 (B)発泡体の調製:実施例1(B)項と同様である。 (C) 発泡体の性能評価:実施例6(C)項と同様であ
る。 比較例 6 (A) 架橋性高圧法分岐ポリエチレンの調製:比較
例5(A)項と同様である。 (B) 線状中低密度ポリエチレンとしてウルトゼツ
クス2020Lを用いたこと以外は実施例1(B)項と
同様である。 (C) 発泡体の性能評価:実施例6(C)項と同様であ
る。 比較例 7 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 発泡体の調製:線状中低密度ポリエチレンと
してハイゼツクス3300F(三井石油化学(株)製:
密度0.954、MI1.2、融点131℃)を用いたこと
以外は実施例1(B)項と同様である。 (C) 発泡体の性能評価:実施例6(C)項と同様であ
る。
[Table] Example 6 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) NEOSEX 3510F (manufactured by Mitsui Petrochemical Co., Ltd.: density 0.955,
The procedure was the same as in Example 1 (B) except that MI1.6, melting point 122°C) was used. (C) Performance evaluation of foam: The density and closed cell ratio of the obtained foam were measured. Further, the foam was left in a dryer at 120°C for 24 hours, and its volumetric shrinkage rate was measured. The results are shown in Table 2. Table 2 also shows the types of high-pressure branched polyethylene and linear medium-low density polyethylene used. For comparison, the results of Example 1 are also shown in Table 2. Example 7 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Urtozex 2020L (Mitsui Petrochemical Co., Ltd.) as linear medium-low density polyethylene
The procedure was the same as in Example 1 (B) except that a material (density 0.920, MI 2.1, melting point 120°C) was used. (C) Performance evaluation of foam: Same as Example 6 (C). Comparative Example 4 (A) Preparation of foam: Example 1 except that Yucalon NF-90 without silane grafting was used.
Same as paragraph (B). (B) Performance evaluation of foam: Same as Example 6 (C). Comparative Example 5 (A) Preparation of crosslinkable high-pressure branched polyethylene: Yucalon YK-30 as high-pressure branched polyethylene
(Mitsubishi Yuka Co., Ltd.: density 0.920, MI4.0 melting point 109℃)
The procedure was the same as in Example 1 (A) except that silane-grafted polyethylene (MI 3.1, achieved gel fraction 66%) was obtained using . (B) Preparation of foam: Same as Example 1 (B). (C) Performance evaluation of foam: Same as Example 6 (C). Comparative Example 6 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Comparative Example 5 (A). (B) Same as Example 1 (B) except that Urtozex 2020L was used as the linear medium-low density polyethylene. (C) Performance evaluation of foam: Same as Example 6 (C). Comparative Example 7 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Preparation of foam: Hi-Zex 3300F (manufactured by Mitsui Petrochemical Co., Ltd.) as linear medium-low density polyethylene.
The procedure is the same as in Example 1 (B) except that a material with a density of 0.954, an MI of 1.2, and a melting point of 131°C was used. (C) Performance evaluation of foam: Same as Example 6 (C).

【表】 実施例 8 (A) 架橋性高圧法分岐ポリエチレンの調製:実施
例1(A)項と同様である。 (B) 線状中低密度ポリエチレンのシリル化:ユカ
ロンLL9150M100重量部にビニルトリメトキシ
シラン1.2重量部およびジクミルパーオキシド
0.04重量部を加えてシリル化したシラングラフ
ト線状中低密度ポリエチレン(MI2.6、到達ゲ
ル分率66%)を得た。 (C) 発泡体の調製:ユカロンLL9150Mの代わり
に(B)項で得られたシラングラフト線状中低密度
ポリエチレンを使用したこと以外は実施例1(B)
項と同様である。 (D) 発泡体の性能評価:実施例1(C)項と同様であ
る。その結果は表3に示す。比較のため実施例
1の結果も表3に示す。 実施例 9 (A) 発泡体の調製:ユカロンNF−90 70重量部
と、ユカロンLL9150M30重量部とをタンブラ
ーミキサーで均一に混合した混合物100重量部
にビニルトリメトキシシラン1.2重量部および
ジクミルパーオキシド0.05重量部を添加し、シ
ラングラフトポリエチレン(MI1.8、到達ゲル
分率68%)を得た。以下、実施例1と同様のマ
スターバツチペレツトを添加し発泡体を得た。 (B) 発泡体の性能評価:実施例1(C)項と同様であ
る。その結果は表3に示す。
[Table] Example 8 (A) Preparation of crosslinkable high-pressure branched polyethylene: Same as Example 1 (A). (B) Silylation of linear medium-low density polyethylene: 100 parts by weight of Yucalon LL9150M, 1.2 parts by weight of vinyltrimethoxysilane and dicumyl peroxide.
Silane-grafted linear medium-low density polyethylene (MI2.6, achieved gel fraction 66%) was obtained by adding 0.04 parts by weight of silylated silane-grafted linear polyethylene. (C) Preparation of foam: Example 1 (B) except that the silane-grafted linear medium-low density polyethylene obtained in section (B) was used instead of Yucalon LL9150M.
Same as section. (D) Performance evaluation of foam: Same as Example 1 (C). The results are shown in Table 3. For comparison, the results of Example 1 are also shown in Table 3. Example 9 (A) Preparation of foam: 100 parts by weight of a mixture of 70 parts by weight of Yucalon NF-90 and 30 parts by weight of Yucalon LL9150M uniformly mixed in a tumbler mixer, 1.2 parts by weight of vinyltrimethoxysilane and dicumyl peroxide. 0.05 part by weight was added to obtain silane grafted polyethylene (MI 1.8, achieved gel fraction 68%). Thereafter, masterbatch pellets similar to those in Example 1 were added to obtain a foam. (B) Performance evaluation of foam: Same as Example 1 (C). The results are shown in Table 3.

【表】 (発明の効果) 本発明によれば、このように、加水分解性シリ
ル基を有する架橋性高圧法分岐ポリエチレンと特
定の範囲にある融点をもつ線状中低密度ポリエチ
レンとを用いて架橋構造を有する発泡体が製造さ
れるので得られた発泡体は耐熱性に優れている。
熱安定性も充分であり、得られた発泡体を高温に
長時間放置しても寸法変化は極小である。独立発
泡率も80%前後と、従来のものに比較して著しく
高い。そのため、断熱材や緩衝材をはじめ広汎な
用途に利用されうる。
[Table] (Effects of the Invention) According to the present invention, crosslinkable high-pressure branched polyethylene having a hydrolyzable silyl group and linear medium-low density polyethylene having a melting point within a specific range are used. Since a foam having a crosslinked structure is produced, the resulting foam has excellent heat resistance.
Thermal stability is also sufficient, and dimensional changes are minimal even when the resulting foam is left at high temperatures for a long period of time. The closed foam rate is also around 80%, which is significantly higher than conventional products. Therefore, it can be used for a wide range of purposes including insulation and cushioning materials.

Claims (1)

【特許請求の範囲】 1 高圧法分岐ポリエチレンに加水分解性シリル
基が結合した架橋性高圧法分岐ポリエチレン95〜
50重量%と、融点が下記(1)式を充足しうる線状中
低密度ポリエチレン5〜50重量%とを含有するポ
リエチレン組成物100重量部を加熱・溶融し、こ
れにシラノール縮合触媒の存在下で揮発性発泡剤
5〜50重量部を加えて低圧帯域へ押出し、水分と
接触させることを特徴とするポリエチレン系樹脂
発泡体の製造方法。 120℃<線状中低密度ポリエチレンの融点<高圧
法分岐ポリエチレンの融点+10℃ ……(1) 2 前記線状中低密度ポリエチレンが分子内に加
水分解性のシリル基を含有する特許請求の範囲第
1項に記載の方法。
[Scope of Claims] 1. Crosslinkable high-pressure branched polyethylene 95~ in which a hydrolyzable silyl group is bonded to high-pressure branched polyethylene
100 parts by weight of a polyethylene composition containing 50% by weight and 5 to 50% by weight of linear medium-low density polyethylene whose melting point satisfies the following formula (1) is heated and melted, and the presence of a silanol condensation catalyst is added to the polyethylene composition. A method for producing a polyethylene resin foam, which comprises adding 5 to 50 parts by weight of a volatile blowing agent and extruding the foam into a low-pressure zone and bringing it into contact with moisture. 120°C<melting point of linear medium-low density polyethylene<melting point of high-pressure branched polyethylene+10°C... (1) 2. Claims in which the linear medium-low density polyethylene contains a hydrolyzable silyl group in its molecule The method described in paragraph 1.
JP7551184A 1984-04-13 1984-04-13 Production of polyethylene resin foam Granted JPS60219235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7551184A JPS60219235A (en) 1984-04-13 1984-04-13 Production of polyethylene resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7551184A JPS60219235A (en) 1984-04-13 1984-04-13 Production of polyethylene resin foam

Publications (2)

Publication Number Publication Date
JPS60219235A JPS60219235A (en) 1985-11-01
JPH0417220B2 true JPH0417220B2 (en) 1992-03-25

Family

ID=13578333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7551184A Granted JPS60219235A (en) 1984-04-13 1984-04-13 Production of polyethylene resin foam

Country Status (1)

Country Link
JP (1) JPS60219235A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296040A (en) * 1985-06-25 1986-12-26 Mitsubishi Petrochem Co Ltd Foamable composition of crosslinkable polyethylene resin

Also Published As

Publication number Publication date
JPS60219235A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
EP0910605B1 (en) Cross-linked foamable compositions of silane-grafted, essentially linear polyolefins blended with polypropylene
EP0181637B1 (en) Process for making lightly crosslinked linear polymer foams
EP0262249B1 (en) Alcohol control of lightly crosslinked foamed polymer production
US4554293A (en) Lightly crosslinked linear olefinic polymer foam blends and process for making
US4591606A (en) Polyolefin foam foamed with water and cross-linked with silane, and procedure for its manufacturing
US4581383A (en) Lightly crosslinked linear olefinic polymer foam blends and process for making
US6800669B2 (en) Propylene copolymer foams
US20080262116A1 (en) Cross-Linked Polypropylene Resins, Method of Making Same, and Articles Formed Therefrom
EP0702032A2 (en) Cross-linked foam structures of essentially linear polyolefines and process for manufacture
US11685840B2 (en) Rubber replacement material comprising terpolymers
JPH0417220B2 (en)
JPH0417221B2 (en)
JP7200484B2 (en) insulation
JP2665373B2 (en) Partially crosslinked thermoplastic elastomer foam and method for producing the same
RU2777646C2 (en) Material replacing rubber, containing terpolymers
JPH1017625A (en) Water-cross-linkable compound and water-cross-linked molded item
JPS60124632A (en) Production of open-cellular crosslinked ethylene resin foam
CA1272349A (en) Alcohol control of lightly crosslinked foamed polymer production
JP2023510147A (en) Crosslinked polyolefin foam and process for making same
JPS58141215A (en) Expansion of ethylene or propylene polymer
KR880001637B1 (en) Composition for a crosslinked polyolefin foam
JPH01234430A (en) Foamed polyolefin resin material
JPS59223733A (en) Expanded polypropylene resin particle and production thereof
JPH03287635A (en) Flexible open-cell resin foam composition
JPH03269026A (en) Composition of non-staining open-cell type propylene based resin foam