JPH04171605A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH04171605A
JPH04171605A JP2295515A JP29551590A JPH04171605A JP H04171605 A JPH04171605 A JP H04171605A JP 2295515 A JP2295515 A JP 2295515A JP 29551590 A JP29551590 A JP 29551590A JP H04171605 A JPH04171605 A JP H04171605A
Authority
JP
Japan
Prior art keywords
graphite
conductive
resistance
conductive paste
gic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295515A
Other languages
Japanese (ja)
Inventor
Maki Toda
戸田 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2295515A priority Critical patent/JPH04171605A/en
Priority to DE19914136017 priority patent/DE4136017A1/en
Publication of JPH04171605A publication Critical patent/JPH04171605A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/0652Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To enhance humidity resistance stability to thereby enhance values of practical use by using an inter-graphite-layer compound in which PbCl2 is interposed between graphite layers as a conductive material. CONSTITUTION:At least an inter-graphite-layer compound in which PbCl2 is interposed graphite layers is used as a conductive material. Namely, a metal halogen compound capable of forming a inter-graphite-layer compound through reaction with graphite by itself and PbCl2 are used together, and they are reacted with graphite under a specified synthesizing conditions. Thereby PbCl2 can be inserted so that application to conductive paste of PbC-GIC is made possible. It is thus possible to have conductive paste high values of practical use suitable in forming a resistor and a conductive body excellent in humidity resistance stability, conductivity and characteristics against environment.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、抵抗体用の抵抗ペーストや導電体用の導電ペ
ーストなどとして利用される導電性ペーストに係り、特
に有機バインダ中に分散される導電材料に関する。
[Detailed Description of the Invention] C. Industrial Application Field] The present invention relates to a conductive paste used as a resistance paste for resistors, a conductive paste for conductors, etc. Regarding conductive materials.

[従来の技術] 抵抗体(抵抗パターン)や導電体(導電パターン)は一
般に、導電性ペーストをパターン形状に印刷してから乾
燥を経て熱硬化させることにより、形成される。かかる
導電性ペーストは、有機パインダと導電材料、溶剤等を
混練・してなるもので、有機バインダ中に分散させる導
電材料の種類により、硬化後の導電性は異なってくる。
[Prior Art] A resistor (resistance pattern) or a conductor (conductive pattern) is generally formed by printing a conductive paste in a pattern shape, drying it, and then thermally curing it. Such a conductive paste is made by kneading an organic binder, a conductive material, a solvent, etc., and the conductivity after curing varies depending on the type of conductive material dispersed in the organic binder.

すなわち、導電性ペーストの導電材料として従来広く知
られているものは、カーボンブラックや黒鉛(グラファ
イト)、銀粉等であり、高抵抗の抵抗体を形成する場合
には主として力iボンブラックが用いられるが、低抵抗
の抵抗体を形成する場合には主として黒鉛が用いられ、
また良導電性の導電体を形成する場合には主として銀粉
が用いられる。
In other words, conventionally widely known conductive materials for conductive paste include carbon black, graphite, and silver powder, and carbon black is mainly used when forming a high-resistance resistor. However, graphite is mainly used when forming a low resistance resistor.
Further, when forming a conductor with good conductivity, silver powder is mainly used.

しかるに、黒鉛を主たる導電材料とする抵抗体よりもさ
らに低抵抗の抵抗体を形成する場合や、銀粉のような高
価な材料を用いることなく導電体を形成する場合、黒鉛
や銀粉に代わりうる導電材料が必要となってくる。特に
銀系の導電体は高温多湿環境下でマイグレーションを起
こしやすいという不都合があるので、良導電性で耐環境
性に優れ、かつ安価な導電材料の出現が望まれていた。
However, when forming a resistor with lower resistance than a resistor using graphite as the main conductive material, or when forming a conductor without using expensive materials such as silver powder, it is necessary to use conductive materials that can replace graphite or silver powder. Materials will be needed. In particular, silver-based conductors have the disadvantage of being susceptible to migration in high-temperature and humid environments, so there has been a desire for a conductive material that is highly conductive, environmentally resistant, and inexpensive.

このような要求に応えつる導電材料として、近年、黒鉛
層間化合物が注目されている。黒鉛層間化合物とは、層
状の結晶構造を有するホストとしての黒鉛の層間に、原
子・分子・イオンなどをゲストとして介在せしめた層間
化合物であって、金属に匹敵する小さな比抵抗、すぐれ
た放電特性および摩擦特性を示すなどその機能性が高く
、原料コストも安く、比較的容易に合成可能である。
In recent years, graphite intercalation compounds have attracted attention as conductive materials that meet these demands. A graphite intercalation compound is an intercalation compound in which atoms, molecules, ions, etc. are interposed as guests between the layers of graphite as a host, which has a layered crystal structure.It has a low resistivity comparable to that of metals and excellent discharge characteristics. It has high functionality, exhibiting excellent friction properties, low raw material costs, and can be synthesized relatively easily.

なお、黒鉛層間化合物を導電材料として含有する導電性
ペーストの従来例としては、特開昭64−56777号
公報記載のものが挙げられる。
Incidentally, a conventional example of a conductive paste containing a graphite intercalation compound as a conductive material includes the one described in JP-A-64-56777.

[発明が解決しようとする課題] ところで、特開昭64−56777号公報の中では特に
言及されていないが、各種の黒鉛層間化合物(以下、し
ばしばGICと略称する)のうち、特にFeCQ、やC
uCf1.、A Q C8,、NiCM。
[Problems to be Solved by the Invention] Although not specifically mentioned in JP-A No. 64-56777, among various graphite intercalation compounds (hereinafter often abbreviated as GIC), FeCQ, etc. C
uCf1. , A Q C8, , NiCM.

等をゲストとする金属塩化物系GICは、高い導電性を
示し合成も容易であり、かつ大気中で比較的安定してい
るという評価を得ているので、導電材料として金属塩化
物系GICを含有する導電性ペーストを作成すれば、低
抵抗の抵抗体や良導電性の導電体を安価に形成すること
ができ、耐環境性も良好であると予測される。
Metal chloride-based GICs with such as guests are highly conductive, easy to synthesize, and have a reputation for being relatively stable in the atmosphere. By creating a conductive paste containing the above, it is possible to form a low-resistance resistor or a highly conductive conductor at a low cost, and it is expected to have good environmental resistance.

しかしながら、本発明者らが公知の金属塩化物系GIC
について、高湿度雰囲気下で環境試験を行ったところ、
大気中での安定性に富むとみなされていたNiCf1.
−CuCfi、−GICにおいても、その抵抗値の経時
変化が大きいことが判明した。
However, the present inventors discovered that the known metal chloride-based GIC
When an environmental test was conducted under a high humidity atmosphere,
NiCf1. which was considered to be highly stable in the atmosphere.
It was found that -CuCfi and -GIC also showed a large change in resistance value over time.

また、FeCQ3−GICを有機バインダ中に分散せし
めた導電性ペーストを印刷し熱硬化して試作した導電体
を、高湿度雰囲気下(40℃、90%RH)に放置した
場合、100時間経過した時点で抵抗値が30%近く増
大した。
In addition, when a conductor made by printing a conductive paste containing FeCQ3-GIC dispersed in an organic binder and thermally curing was left in a high humidity atmosphere (40°C, 90% RH), 100 hours elapsed. At this point, the resistance value increased by nearly 30%.

このように、導電性に優れるため導電材料としての利用
が期待される金属塩化物系GICは、これまでのところ
、高湿度雰囲気下での安定性に難があり、黒鉛層間化合
物を導電材料として含有する導電性ペーストを実用化し
ようとする場合、金属塩化物系に比べて導電性や製造の
容易さて劣る他の黒鉛層間化合物を用いざるを得ず、よ
って顕著な実用的効果は見られなかった。
As described above, metal chloride-based GIC, which is expected to be used as a conductive material due to its excellent conductivity, has so far had problems with stability in a high humidity atmosphere, and graphite intercalation compounds have been used as a conductive material. In order to put the conductive paste containing this into practical use, other graphite intercalation compounds, which are inferior in conductivity and ease of manufacture compared to metal chloride-based compounds, must be used, and therefore no significant practical effects have been observed. Ta.

したがって本発明の目的とするところは、金属塩化物系
の黒鉛層間化合物を用いつつ耐湿安定性を高め、実用的
価値の高い導電性ペーストを提供することにある。
Therefore, an object of the present invention is to provide a conductive paste that uses a metal chloride-based graphite intercalation compound, has improved moisture resistance stability, and has high practical value.

〔課題を解決するための手段〕[Means to solve the problem]

上記した本発明の目的は、有機バインダ中に導電材料を
分散せしめた導電性ペーストにおいて、上記導電材料と
して少なくとも、黒鉛の層間にpbcu、を介在させて
なる黒鉛層間化合物を用いたことによって達成される。
The above-mentioned object of the present invention is achieved by using, as the conductive material, at least a graphite intercalation compound in which PBCU is interposed between layers of graphite in a conductive paste in which a conductive material is dispersed in an organic binder. Ru.

[作用] 本発明者らの実験によると、PbCΩ2と他の金属ハロ
ゲン化物(例えばFeCΩ3やCu Cfi、)とをゲ
ストとして合成された黒鉛層間化合物は、高い導電性を
示すのみならず、公知の金属塩化物系GICに比べて高
湿度雰囲気下での安定性が飛躍的に向上することが確認
された。これは、大部分の金属塩化物は潮解性を示し水
に易溶性であるのに対し、PbCΩ2は例外的に潮解性
を示さず水に難溶性であるというPbCΩ2自身の特性
に起因するものである。黒鉛の層間に介在する挿入物で
ある金属ハロゲン化物は、挿入される前とほぼ同じ結晶
構造を持つことが知られており、従って、pbcg、の
場合も挿入後も難溶性である特性はそのままであり、以
上の結果として、PbCα2を挿入したGICは優れた
耐湿安定性を有するものと考えられる。
[Function] According to experiments conducted by the present inventors, a graphite intercalation compound synthesized using PbCΩ2 and other metal halides (e.g., FeCΩ3 or CuCfi) as guests not only exhibits high conductivity but also exhibits high conductivity. It was confirmed that the stability under a high humidity atmosphere was dramatically improved compared to metal chloride-based GIC. This is due to the characteristics of PbCΩ2 itself: most metal chlorides are deliquescent and easily soluble in water, whereas PbCΩ2 is exceptionally non-deliquescent and poorly soluble in water. be. It is known that metal halides, which are intercalated substances between layers of graphite, have almost the same crystal structure as before insertion, and therefore, even after insertion, the property of being poorly soluble remains unchanged in the case of PBCG. Therefore, as a result of the above, it is considered that GIC into which PbCα2 is inserted has excellent moisture resistance stability.

しかし、これまでにpbcQ、を黒鉛の層間に挿入した
例はなく、pbcn、単独ではいかなる条件下でも黒鉛
層間化合物を形成しないと考えられる。
However, there has been no example of inserting pbcQ between layers of graphite, and it is thought that pbcn alone does not form a graphite intercalation compound under any conditions.

本発明においては、単独で黒鉛と反応して黒鉛層間化合
物を形成し得る金属ハロゲン化物とpbcn、とを共存
させ、所定の合成条件下にて黒鉛と反応させることによ
り、PbCα2を黒鉛層間に挿入させることができたこ
とにより、そのPbCA、−GICを導電ペーストに利
用することを初めて可能にしたものである。
In the present invention, PbCα2 is inserted between graphite layers by allowing pbcn to coexist with a metal halide that can react with graphite alone to form a graphite intercalation compound, and by reacting with graphite under predetermined synthesis conditions. This made it possible for the first time to utilize PbCA, -GIC in a conductive paste.

PbCΩ2が黒鉛層間に挿入される過程は、前記ハロゲ
ン化物が、黒鉛と反応する際にp bcQ、。
The process in which PbCΩ2 is inserted between graphite layers is when the halide reacts with graphite.

を同時に黒鉛層間に取込むものと考えられる。従って合
成されたGICはpbcp、と前記ハロゲン化物の双方
を含有する。
It is thought that at the same time, it is taken in between the graphite layers. Therefore, the synthesized GIC contains both pbcp and the halides.

pbcg、とそれ以外の金属ハロゲン化物の仕込み比や
合成温度が異なると反応生成物(黒鉛層間化合物)の耐
湿安定性にも差異を生じる。
If the charging ratio or synthesis temperature of pbcg and other metal halides differs, the moisture resistance stability of the reaction product (graphite intercalation compound) also differs.

本発明の導電ペーストを使用した導電体について、本発
明者らが確認した結果によれば、耐湿安定性は黒鉛層間
化合物のゲスト中に占めるPbCQ 。
According to the results confirmed by the present inventors regarding the conductor using the conductive paste of the present invention, the moisture resistance stability is due to PbCQ occupying in the guest of the graphite intercalation compound.

の量に関係することが判った。−例として、ゲストをP
b(1,とFeCQ、としたときを第5図によって説明
すると、挿入物中のP b / F eのmol比が大
きくなると耐質安定性が増し、このPb/Feのmol
比が0.05以上であれば、従来のFeCQ、−GIC
を用いた導電体より耐湿安定性が良く、0.24以上で
あれば実用上問題のない耐湿安定性を示し、更に0.5
以上であればホストの黒鉛を使用した導電体と同等の値
まで耐湿安定性が良くなった。
It was found that it is related to the amount of -For example, guest P
b (1, and FeCQ). As shown in Fig. 5, as the molar ratio of P b / Fe in the insert increases, the resistance stability increases, and the molar ratio of Pb / Fe increases.
If the ratio is 0.05 or more, conventional FeCQ, -GIC
It has better moisture resistance stability than conductors using
If it is above, the moisture resistance stability has improved to a value equivalent to that of a conductor using graphite as a host.

本発明において、PbCl2と共に用いる金属ハロゲン
化物は、pbcQ、を黒鉛層間に先導する樹脂を有する
もので、FeCQ、、Cu C(1,、A ff Cg
、、GaCf1.、GoCFl、、M n CQ 、、
CrCQ、、MoCQ、、Cd(1,等が用いられるが
、その中でFeCR3およびCuCu、がそれ自身の不
均化反応により塩素ガスを発生するため、外部より有毒
な塩素ガスを導入する必要かなく、これらが黒鉛と反応
する最適温度(300〜55o’c)が工業的に有利な
点で好ましい。
In the present invention, the metal halide used together with PbCl2 has a resin that leads pbcQ between graphite layers, FeCQ, , Cu C(1,, A ff Cg
,,GaCf1. , GoCFl, , M n CQ , ,
CrCQ, MoCQ, Cd(1, etc.) are used, but since FeCR3 and CuCu generate chlorine gas through their own disproportionation reaction, is it necessary to introduce toxic chlorine gas from the outside? The optimum temperature (300 to 55 o'c) at which these react with graphite is preferable because it is industrially advantageous.

本発明に係わる黒鉛層間化合物を製造する際には、ホス
トとゲストの比、およびゲスト中のpbcg、と他の金
属ハロゲン化物との仕込比、および合成条件が重要であ
り、これらの条件が異なると得られる黒鉛層間化物の特
性も異なる。
When producing the graphite intercalation compound according to the present invention, the ratio of the host to the guest, the charging ratio of PBCG to other metal halides in the guest, and the synthesis conditions are important, and these conditions may differ. The characteristics of the graphite intercalation obtained are also different.

導電体の耐湿安定性を左右する黒鉛層間化合物のゲスト
中のP b CQ、比は、材料のpbcg、と他の金属
ハロゲン化物との仕込比と合成温度の双方に関連し、P
bCα2との仕込比が大きいほど、また合成温度が高い
ほど、生成した黒鉛層間化合物中のpb量が多くなり、
従って耐湿安定性が増す。−例として、ホストを平均粒
径10μmの天然黒鉛、ゲストをpbcQ、とF e 
CQ+とし封管中にて合成を行なった場合には、第6図
の状態図に示したように、合成温度が3oo℃以上であ
ればFeCQ、とともに少量ではあるが、PbCQ。
The ratio of P b CQ in the guest of the graphite intercalation compound, which influences the moisture resistance stability of the conductor, is related to both the preparation ratio of the material pbcg and other metal halides and the synthesis temperature, and
The larger the charging ratio with bCα2 and the higher the synthesis temperature, the larger the amount of PB in the generated graphite intercalation compound,
Therefore, moisture resistance stability increases. - As an example, the host is natural graphite with an average particle size of 10 μm, the guest is pbcQ, and Fe
When CQ+ is synthesized in a sealed tube, as shown in the phase diagram of FIG. 6, if the synthesis temperature is 300° C. or higher, FeCQ and a small amount of PbCQ are produced.

も黒鉛層間へ挿入され(図中に破線で示した範囲)、図
において斜線を付した範囲(A領域)あれば、ホストの
黒鉛を使用した導電体と同等または実用上問題のない耐
湿安定性を示す導電体を得ることができる。なお、上記
実用的にも最も望ましい範囲において、合成温度の上限
は954℃であり、これはpbcu、の沸点が954℃
であって、それ以上の温度では反応容器内の圧力が著し
く上昇し危険な状態になるからである。また、pbcn
えとFeCQ3との仕込比の左右の範囲はpbcQ。
If it is inserted between the graphite layers (the area indicated by the broken line in the figure) and the shaded area (area A) in the figure, the moisture resistance stability is equivalent to that of a conductor using host graphite or has no practical problems. It is possible to obtain a conductor that exhibits In addition, in the above-mentioned practically most desirable range, the upper limit of the synthesis temperature is 954°C, which means that the boiling point of pbcu is 954°C.
This is because, if the temperature is higher than that, the pressure inside the reaction vessel will increase significantly, resulting in a dangerous situation. Also, pbcn
The left and right range of the preparation ratio with FeCQ3 is pbcQ.

−95%、FeCQ、、−5%からPb(1,−40%
、FeCQ3−60%までである。これは混合物中のF
eCl2.の割合が少なすぎる場合には、PbCα6を
黒鉛層間へ先導するFeCα3の不足=8− により極少量しか黒鉛と反応せず、また、FeCQ 。
-95%, FeCQ, -5% to Pb (1, -40%
, FeCQ3-60%. This is F in the mixture
eCl2. If the proportion of PbCα6 is too small, only a very small amount will react with graphite due to the lack of FeCα3 leading PbCα6 to the graphite interlayer, and FeCQ.

の割合が多すぎる。ときには、F e CQ +が優先
的に黒鉛と反応してしまい、PbCl2、がほとんと挿
入されないためである。
The proportion of This is because, in some cases, Fe CQ + preferentially reacts with graphite, and PbCl2 is hardly inserted.

PbCα2と共に用いる金属ハロゲン化物を他のものに
する場合は、適宜合成条件を変更することにより、目的
の黒鉛層間化合物を得ることができる。
When using another metal halide together with PbCα2, the desired graphite intercalation compound can be obtained by appropriately changing the synthesis conditions.

したがって、上記のGICを用いれば、金属塩化物系の
特徴である低抵抗性を備えながら耐湿安定性に優れた黒
鉛層間化合物を導電材料として含有する新規の導電性ペ
ーストが得られ、このペーストを印刷することにより、
良導電性で耐環境性も良好な抵抗体や導電体を安価に形
成することができる。
Therefore, by using the above GIC, a new conductive paste containing a graphite intercalation compound as a conductive material, which has low resistance, which is a characteristic of metal chloride-based materials, and has excellent moisture resistance stability, can be obtained. By printing,
Resistors and conductors with good conductivity and environmental resistance can be formed at low cost.

〔実施例〕〔Example〕

以下、本発明の実施例を第1表および第1〜6図に基づ
いて説明する。
Examples of the present invention will be described below based on Table 1 and FIGS. 1 to 6.

平均粒径10μmの天然黒鉛をホストとし、仕込み比や
合成温度を変えて、混合法により9種類〜10− のPbCf1.−FeCα、−GICを合成した。すな
わち、原料黒鉛とPbCα2とFeCα3とを所定の仕
込み比でパイレックスガラス製の反応管に入れて混合し
、真空吸引しながら100℃で1時間加熱して十分に脱
水した後、反応管を溶封し、所定の温度(300〜54
0’C)で24時間加熱して反応させ、反応生成物を沸
とう水およびメタノールで繰り返し洗浄して表面の未反
応金属塩化物を除去することにより、第1表に示す走1
〜9のサンプル(黒鉛層間化合物)を得た。
Using natural graphite with an average particle size of 10 μm as a host, 9 to 10 − types of PbCf1. -FeCα and -GIC were synthesized. That is, raw material graphite, PbCα2, and FeCα3 are mixed in a Pyrex glass reaction tube at a predetermined charging ratio, heated at 100°C for 1 hour under vacuum suction for sufficient dehydration, and then the reaction tube is melt-sealed. and at a predetermined temperature (300-54
By heating the reaction product at 0'C) for 24 hours and washing the reaction product repeatedly with boiling water and methanol to remove unreacted metal chlorides on the surface, the reaction product shown in Table 1 was obtained.
~9 samples (graphite intercalation compound) were obtained.

次いで、この粉体サンプルを加圧した状態で通電し、圧
縮された粉体の電位差を測定するという4端子法により
、各サンプルの比抵抗を測定した。
Next, the specific resistance of each sample was measured by a four-terminal method in which electricity was applied to the powder sample under pressure and the potential difference of the compressed powder was measured.

その結果も第1表に示す。なお、原料黒鉛の比抵抗は8
.6mΩ師であった。
The results are also shown in Table 1. In addition, the specific resistance of raw material graphite is 8
.. It was 6mΩ.

同表から明らかなように、PbCΩ2の仕込み比が大き
いほど、また合成温度が高いほど、合成された黒鉛層間
化合物中のFeに対するpbの比率が高くなる傾向、つ
まり黒鉛の層間にPbCΩ2が挿入されやすくなる傾向
が認められる。
As is clear from the table, the larger the PbCΩ2 charge ratio and the higher the synthesis temperature, the higher the ratio of Pb to Fe in the synthesized graphite intercalation compound, which means that PbCΩ2 is inserted between the graphite layers. There is a tendency for it to become easier.

そして、比抵抗については、ホストに対するゲストの重
量が多くなれば低くなる傾向が認められ、ゲストの重量
が40%以上になるとホストの比抵抗の]、 / 2〜
1 / 3程度であり、FeCff、−GICと同程度
の高い導電性を示した。なお、第1表に示す値は圧粉体
のサンプルの比抵抗であって粒子間の接触抵抗も含まれ
ているので、生成物固有の比抵抗よりは若干大きな値に
なっているものと思われる。
As for the specific resistance, it is observed that the more the weight of the guest relative to the host, the lower it tends to be, and when the weight of the guest is 40% or more, the specific resistance of the host becomes ], / 2 ~
The conductivity was about 1/3, and exhibited high conductivity comparable to that of FeCff and -GIC. The values shown in Table 1 are the specific resistances of the powder compact sample and include the contact resistance between particles, so they are thought to be slightly larger than the specific resistance of the product. It can be done.

次いで、第1表に示したサンプル(陽l〜9)を、それ
ぞれ、溶剤の存在下で有機バインダ(フェノール樹脂)
中に分散させてペーストとなした後、印刷・熱硬化して
導電体を試作し、これらの導電体を高湿度雰囲気下(4
0℃、90%RH)に放置して抵抗値の経時変化を測定
することにより、各サンプルの耐湿安定性の評価を行っ
た。その結果を第1〜6図に示す。ここで、第1図は原
料黒鉛を使用した導電体の測定結果、第2図はNo、 
1〜3のサンプルを使用した導電体の測定結果、第3図
はNo、 4〜6のサンプルを使用した導電体の測定結
果、第4図はNi 7〜9のサンプルを使用した導電体
の測定結果、第5図はNa 1〜9のGIC中に含まれ
るPb/Fe(モル比)と、それらの耐湿250時間後
の評価結果、第6図はNo、 1〜9の合成条件(仕込
みと合成温度)をPbCα、−FeCΩ3系の状態図の
上にプロットした図である。(なお、第6図における各
点の上の数字はサンプルNoを、各点の横の数字は各サ
ンプルの耐湿250時間後の抵抗値変化率の評価結果で
ある。)また、比較のためにFeCQ、−GIGを同じ
有機バインダ内に分散させたペーストで抵抗体を試作し
、この抵抗体の抵抗値変化率を同条件で測定したところ
、100時間経過しても抵抗値の経時変化が飽和せず、
開始時に比べて抵抗値が平均27%増大してしまった。
Next, each of the samples shown in Table 1 (positive numbers 1 to 9) was treated with an organic binder (phenolic resin) in the presence of a solvent.
After dispersing it into a paste, we printed and heat-cured it to make prototype conductors.
The humidity stability of each sample was evaluated by leaving it at 0° C. and 90% RH and measuring the change in resistance value over time. The results are shown in Figures 1-6. Here, Figure 1 shows the measurement results of a conductor using graphite as a raw material, and Figure 2 shows No.
Measurement results of conductors using samples 1 to 3, Figure 3 shows measurement results of conductors using samples No. 4 to 6, Figure 4 shows results of conductors using Ni samples 7 to 9. The measurement results, Figure 5 shows the Pb/Fe (molar ratio) contained in the GIC of Na 1 to 9 and the evaluation results after 250 hours of humidity resistance, and Figure 6 shows the synthesis conditions (preparation) of No. 1 to 9. and synthesis temperature) are plotted on the phase diagram of the PbCα, -FeCΩ3 system. (In addition, the number above each point in Fig. 6 is the sample number, and the number next to each point is the evaluation result of the resistance value change rate after 250 hours of humidity resistance of each sample.) Also, for comparison, When we prototyped a resistor using a paste in which FeCQ and -GIG were dispersed in the same organic binder and measured the rate of change in resistance of this resistor under the same conditions, we found that the change in resistance over time was saturated even after 100 hours had passed. Without,
The resistance value increased by an average of 27% compared to the starting point.

第2〜6図のグラフに明らかなように、PbCα2−F
eCα、−GICを導電材料とする導電体は、抵抗値の
高湿度雰囲気下での経時変化が少なく、特に第6図のA
領域で示された合成条件で合成されたGICは、GIC
中のpbとFeのモル比にして0.2以上の量のPbを
含有し、その導電体は、原料黒鉛を使用した導電体と同
程度あるいは実用上問題のない優れた耐湿安定性を示し
た。
As is clear from the graphs in Figures 2 to 6, PbCα2-F
A conductor using eCα, -GIC as a conductive material shows little change in resistance value over time in a high humidity atmosphere, especially A in Fig. 6.
GIC synthesized under the synthesis conditions indicated in the area is GIC
Contains Pb in a molar ratio of Pb to Fe of 0.2 or more, and the conductor exhibits excellent moisture resistance stability comparable to that of conductors using graphite as a raw material, or without any practical problems. Ta.

このように、pbcg、と他の金属ハロゲン化物とを所
定の仕込み比(好ましくはPbCα2を他の金属塩化物
と同等以上のモル比)で黒鉛に混合し、これを所定の温
度(好ましくは450°C以上で反応させて黒鉛層間化
合物を合成すると、従来の金属塩化物系GICの長所で
あった高い導電性に加えて、従来の金属塩化物系GIC
にはなかった高湿度雰囲気下での高い安定性が得られ、
しかも原料コストが安く製造も容易なため、優れた導電
材料としてその応用が期待できる。すなわち、かかる黒
鉛層間化合物を導電材料として分散させたペーストは、
カーボンブラック等の他の導電材料を適宜併用するなど
して、高温多湿環境下でも特性が変化しにくい低抵抗の
抵抗体や良導電性の導電体を安価に形成することができ
るので、実用的価値は極めて高い。
In this way, pbcg and other metal halides are mixed with graphite at a predetermined charging ratio (preferably a molar ratio of PbCα2 equal to or higher than that of other metal chlorides), and this is mixed at a predetermined temperature (preferably 450 molar ratios). When graphite intercalation compounds are synthesized by reacting at temperatures above °C, in addition to the high conductivity that was the advantage of conventional metal chloride-based GICs,
It offers high stability in high humidity atmospheres, which was not possible with
Furthermore, since the raw material cost is low and manufacturing is easy, it can be expected to be used as an excellent conductive material. In other words, a paste in which such a graphite intercalation compound is dispersed as a conductive material is
By appropriately using other conductive materials such as carbon black, it is possible to form low-resistance resistors and conductors with good conductivity that do not change easily even in high-temperature and humid environments at low cost, making it practical. The value is extremely high.

[発明の効果] 以上説明したように、本発明によれば、導電材料として
、金属塩化物系でありながら耐湿安定性に優れた黒鉛層
間化合物を分散させであるので、導電性および耐環境性
が良好な抵抗体や導電体を形成するうえで好適な実用的
価値の高い導電性ペーストを提供することができる。
[Effects of the Invention] As explained above, according to the present invention, a graphite intercalation compound which is a metal chloride type but has excellent moisture resistance stability is dispersed as a conductive material, so that it has good conductivity and environmental resistance. It is possible to provide a conductive paste with high practical value and suitable for forming a resistor or conductor with good resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

図はすべて本発明の実施例に係り、第1図は原料黒鉛の
耐湿安定性を示す特性図、第2図は合成温度が300℃
の各サンプルの耐湿安定性を示す特性図、第3図は合成
温度が450℃の各サンプルの耐湿安定性を示す特性図
、第4図は合成温度が540℃の各サンプルの耐湿安定
性を示す特性図、第5図は各サンプルのGIC中に含ま
れるPb / F e (モル比)とそれらの耐湿25
0時間後の評価結果を示す図、第6図は各サンプルの合
成条件をPbCf1.−FeCQ、系の状態図上にプロ
ットした図である。 手続補正書(自発) 平成 2年12月7日
All the figures relate to examples of the present invention. Figure 1 is a characteristic diagram showing the humidity stability of raw graphite, and Figure 2 is a synthesis temperature of 300°C.
Figure 3 is a characteristic diagram showing the humidity stability of each sample at a synthesis temperature of 450°C. Figure 4 is a characteristic diagram showing the humidity stability of each sample at a synthesis temperature of 540°C. The characteristic diagram shown in Figure 5 shows the Pb/Fe (molar ratio) contained in the GIC of each sample and their moisture resistance.
FIG. 6 is a diagram showing the evaluation results after 0 hours, and the synthesis conditions for each sample are PbCf1. -FeCQ, is a diagram plotted on the phase diagram of the system. Procedural amendment (voluntary) December 7, 1990

Claims (1)

【特許請求の範囲】[Claims] 有機バインダ中に導電材料を分散せしめた導電性ペース
トにおいて、上記導電材料として少なくとも、黒鉛の層
間にPbCl_2を介在させてなる黒鉛層間化合物を用
いたことを特徴とする導電性ペースト。
A conductive paste comprising a conductive material dispersed in an organic binder, characterized in that the conductive material is at least a graphite intercalation compound in which PbCl_2 is interposed between layers of graphite.
JP2295515A 1990-11-02 1990-11-02 Conductive paste Pending JPH04171605A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2295515A JPH04171605A (en) 1990-11-02 1990-11-02 Conductive paste
DE19914136017 DE4136017A1 (en) 1990-11-02 1991-10-31 Conductive paste using graphite interlaminar cpd. with improved moisture resistance - uses lead chloride combined with more reactive metal chloride as additive, used for mfg. thick film resistors and conductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295515A JPH04171605A (en) 1990-11-02 1990-11-02 Conductive paste

Publications (1)

Publication Number Publication Date
JPH04171605A true JPH04171605A (en) 1992-06-18

Family

ID=17821621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295515A Pending JPH04171605A (en) 1990-11-02 1990-11-02 Conductive paste

Country Status (2)

Country Link
JP (1) JPH04171605A (en)
DE (1) DE4136017A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164603A (en) * 1983-03-09 1984-09-17 Nobuatsu Watanabe Three-component type interlaminar graphite compound consisting of graphite, metallic fluoride and fluorine, its manufacture and electrically conductive material made therefrom
JPS6241706A (en) * 1985-08-17 1987-02-23 Nippon Steel Corp Production of graphite intercalation compound

Also Published As

Publication number Publication date
DE4136017A1 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
Gopalakrishnan et al. Vanadium phosphate (V2 (PO4) 3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2 (PO4) 3)
Whinfrey et al. Preparation and X-ray diffraction data1 for some rare earth stannates
Shannon et al. Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure
Payne et al. Encapsulation of the platinum and neighboring metals within cluster iodides of rare-earth elements
JPH0564970B2 (en)
EP1457772A2 (en) Gas sensor comprising a resistance dependent organic-inorganic intercalated hybrid material and manufacturing method of said sensor
JPS6050381B2 (en) Electrically conductive poly(phenylene) composition
EP0311298B1 (en) Preparing an intercalation compound
EP0380725A1 (en) Chemical synthesis of conducting polypyrrole using uniform oxidant/dopant reagents
KR19990062561A (en) ITO fine powder and preparation method thereof
Kistenmacher et al. Crystal and molecular structure of an unusual salt formed from the radical cation of tetrathiafulvalene (TTF) and the trichloromercurate anion (HgCl3),(TTF)(HgCl3)
JPH04171605A (en) Conductive paste
US20060162381A1 (en) Method of manufacturing tin oxide-based ceramic resistors & resistors obtained thereby
US5346650A (en) Graphite interlaminar compound and method for producing the same
JPS581522B2 (en) Thermistor composition
Ambrosius et al. Formation of isomeric dimolybdenum (II) compounds using the potentially ambidentate ligands [R2PC (S) NR']-(R/R'= Ph/Ph, Ph/Me) and [Me2NC (S) NPh]-
JPS6049136B2 (en) Manufacturing method of white conductive composite powder
Drew et al. The reactions of tetrahydrothiophene (tht) with tribromosulphidoniobium (V) and trichlorosulphidoniobium (V) and the crystal structures of three of the products Nb 2 Cl 4 S 3· 4tht, Nb 2 Br 4 S 3· 4tht, and NbBr 3 S· 2tht
JPH0563412B2 (en)
JPH02230684A (en) Planar heat generator
JPS6337443B2 (en)
JPH0372012B2 (en)
JP4320398B2 (en) Composite oxide, method for producing composite oxide, temperature sensor material for resistance thermometer, and resistance thermometer
JPS60115102A (en) Copper powder filling organic conductive material
JPH02153812A (en) Graphite interlaminar compound into which two kinds or more of metal halides are simultaneously inserted and production thereof