JPH041713A - Endscope objective optical system for intratube observation - Google Patents

Endscope objective optical system for intratube observation

Info

Publication number
JPH041713A
JPH041713A JP2101726A JP10172690A JPH041713A JP H041713 A JPH041713 A JP H041713A JP 2101726 A JP2101726 A JP 2101726A JP 10172690 A JP10172690 A JP 10172690A JP H041713 A JPH041713 A JP H041713A
Authority
JP
Japan
Prior art keywords
optical system
objective optical
lens system
lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101726A
Other languages
Japanese (ja)
Other versions
JP2929309B2 (en
Inventor
Masahiro Chiba
千葉 政広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2101726A priority Critical patent/JP2929309B2/en
Publication of JPH041713A publication Critical patent/JPH041713A/en
Application granted granted Critical
Publication of JP2929309B2 publication Critical patent/JP2929309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain the bright optical system which focuses from near the center of an image plane to the periphery and is small in F-number by constituting the optical system of a front group divergent lens system, a bright stop and a rear group convergent lens system successively from an object side and constituting the optical system so as to satisfy specific conditions. CONSTITUTION:The optical system at the front end of the endoscope formed by using a solid state image pickup element or image guide is the retrofocus type lens system consisting, successively from the object side, of the front group divergent lens system, the bright stop and the rear group convergent lens system and satisfies the conditions of equations I to IV. In the equations I to IV, f is the combined focal distance of the objective optical system; I is the max. image height; P is the Petzval's sum; fF is the front side focal distance of the objective optical system; LO is the nearest object distance at the time of intratube object observation; f2 is the focal distance of the rear group convergent lens system. The bright optical system which focuses from near the center of the image plane to the periphery when the inside of the tubular object is observed and is small in the F-number is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主として工業用として使用される管内観察用
内視対物光学系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endoscopic objective optical system for observing inside a tube, which is mainly used for industrial purposes.

[従来の技術] 従来、内視鏡光学系の観察対象物の形状は、平面である
ことを想定している。また撮像面も平面である。そのた
め内視鏡対物光学系は、物体平面に対して共役の結像面
がほぼ平面になるように補正されている。つまり軸外の
結像性能を向上させるために非点隔差を小さくし、かつ
像面湾曲がな(なるような光学設計がなされてきた。し
たがって物体側が平面に近い状態、つまり撮像面の中心
付近と周辺に対応する物体平面までの距離がほぼ等しい
状態であれば良好な画像が得られた。
[Prior Art] Conventionally, it has been assumed that the shape of an object to be observed by an endoscope optical system is a plane. Further, the imaging surface is also a flat surface. Therefore, the objective optical system of the endoscope is corrected so that the imaging plane conjugate to the object plane is approximately flat. In other words, in order to improve off-axis imaging performance, optical designs have been made to reduce the astigmatism difference and to have no field curvature. Therefore, the object side is close to a flat surface, that is, near the center of the imaging surface A good image could be obtained if the distances to the object plane corresponding to the periphery were approximately equal.

また、主に工業用内視鏡の分野では、水道管や土管など
の管状物体の内面検査に内視鏡対物光学系が用いられて
いる6管状物体を観察する場合。
In addition, mainly in the field of industrial endoscopy, an endoscope objective optical system is used to inspect the inner surface of tubular objects such as water pipes and clay pipes.6 When observing tubular objects.

−度により多くの情報を得ることや、管内面に対して出
来るだけ垂直に近い状態で観察できることが重要である
ため、対物光学系の広角化が望まれる。
Since it is important to obtain more information with a larger angle and to be able to observe as close to perpendicular to the inner surface of the tube as possible, it is desirable to have a wide-angle objective optical system.

しかし物体面が管状の場合、像面中心付近と周辺に対応
する物体平面までの距離に違いが出る。
However, if the object plane is tubular, there will be a difference in the distance between the center of the image plane and the object plane corresponding to the periphery.

例えば物体平面からスコープの先端までの距離をし、管
の内径をφとし、対物光学系の半画角をωとすると次の
ように表わせる。
For example, if the distance from the object plane to the tip of the scope is φ, the inner diameter of the tube is φ, and the half angle of view of the objective optical system is ω, then it can be expressed as follows.

tanω        tanω ただしEは対物光学系の入射瞳距離である。上の式から
物体距離りは、管の内径φに比例し、対物光学系の半画
角ωのタンジェントに反比例することがわかる。第12
図は画角と物体距ff1Lとの関係を示す略図で、対物
光学系の画角がω1からω2へと広がれば広がるほど像
面周辺での物体距離がLlからL2へと近点寄りになる
。そのために従来の対物光学系では、特に細径の管の観
察の場合、像面中心付近を無限遠点にピントを合わせる
と、被写界深度から近点側がはずれ、像面周辺でピント
が合わないと云う不具合があった。またこの不具合を解
消するための手段として被写界深度をより深くすること
が考えられるが、その場合、Fナンバーが大になるよう
絞らなければならず、光学系が暗(なる。
tanω tanω where E is the entrance pupil distance of the objective optical system. From the above equation, it can be seen that the object distance is proportional to the inner diameter φ of the tube and inversely proportional to the tangent of the half angle of view ω of the objective optical system. 12th
The figure is a schematic diagram showing the relationship between the angle of view and the object distance ff1L. As the angle of view of the objective optical system widens from ω1 to ω2, the object distance around the image plane moves closer to the periapsis from Ll to L2. . For this reason, with conventional objective optical systems, especially when observing small-diameter tubes, when focusing near the center of the image plane to infinity, the near point side deviates from the depth of field, and the focus is adjusted around the image plane. There was a problem that it wasn't there. Another possible solution to this problem would be to deepen the depth of field, but in that case, the lens would have to be stopped down to a large F-number, making the optical system dark.

[発明が解決しようとする課題1 本発明は、固体撮像素子又はイメージガイドを用いた内
視鏡光学系で、管状物体を観察した時像面中心付近から
周辺までピントが合いかっFナンバーの小さい明るい光
学系を提供することを目的とするものである。
[Problem to be Solved by the Invention 1] The present invention is an endoscope optical system using a solid-state image pickup device or an image guide, and when observing a tubular object, the focus is out of focus from the center of the image plane to the periphery. The purpose is to provide a bright optical system.

[課題を解決するための手段] 本発明は、固体撮像素子又はイメージガイドを用いた内
視鏡先端光学系で、物体側より順に前群発散レンズ系と
、明るさ絞りと、後群収斂レンズ系とよりなるレトロフ
ォーカス型レンズ系で、次の条件を満足するものである
[Means for Solving the Problems] The present invention is an endoscope tip optical system using a solid-state image sensor or an image guide, which includes, in order from the object side, a front group diverging lens system, an aperture diaphragm, and a rear group converging lens. This is a retrofocus lens system consisting of a lens system that satisfies the following conditions.

[210,2< P−f (3)   o、8< I/f (410,5≦f2/f≦3 f:対物光学系の合成焦点距離 ■=最大像高 φニスコープの外径 P:対物光学系のペッツバール和 ω:最大像高での半画角 fF:対物光学系の前側焦点距離 Lo:管状物体観察時の内視鏡を管状物体中心においた
ときの最近接物体距離(物体距離は対物レンズの光軸に
沿って測る) r+:i番目の曲率半径 n、:i番目の屈折率 f2:後群収斂レンズ系の合成焦点距離前記の構成のレ
ンズ系で物体平面からスコープ先端までの距離をし、対
物光学系の後側焦点距離をfIl、最終面からガウス像
面までの距離をSkとすると近軸的には次の関係が成立
つ。
[210,2<P−f (3) o,8<I/f (410,5≦f2/f≦3 f: Composite focal length of objective optical system ■=Maximum image height φ Niscope outer diameter P: Objective Petzval sum ω of the optical system: Half angle of view fF at maximum image height: Front focal length Lo of the objective optical system: Closest object distance when the endoscope is placed at the center of the tubular object when observing a tubular object (object distance is (measured along the optical axis of the objective lens) r+: i-th radius of curvature n, : i-th refractive index f2: composite focal length of the rear group convergent lens system In the lens system with the above configuration, the distance from the object plane to the tip of the scope If the rear focal length of the objective optical system is fIl, and the distance from the final surface to the Gaussian image plane is Sk, the following relationship holds in paraxial terms.

(L + frl (Sm−fa)  =f”ここでS
アーf、は無限遠物点の結像位置と近接物点の結像位置
との差を表わすが、本発明では一つの管状物体を観察す
る場合でも画角に応じて物体距離が異なる。ω=0では
、事実上無限遠物点と考えられるので51fmは画角毎
に異なる値を持ち、各画角におけるガウス像面と実像面
とのずれを表わすことになる。このずれ量 (Sk−f
、)が観察する管の内径φと対物光学系の画角ωによっ
て変化することは明らかである。任意の径φ、の管にお
いて、対物レンズの中心(無限遠物点)での合焦位置か
ら周辺部のそれぞれの画角での物体面からスコープの先
端までの距離りに対応する、各像高での最終面からガウ
ス像面までの距離Skをつないだ管内面に共役な像面形
状の概略図を第11図に示しである。ここでfF、f、
 =O,f= 1としている。
(L + frl (Sm-fa) = f” where S
A f represents the difference between the imaging position of an object point at infinity and the imaging position of a nearby object point, and in the present invention, even when observing a single tubular object, the object distance differs depending on the angle of view. When ω=0, it is considered to be an object point at infinity, so 51fm has a different value for each angle of view, and represents the deviation between the Gaussian image plane and the real image plane at each angle of view. This amount of deviation (Sk-f
, ) obviously changes depending on the inner diameter φ of the tube being observed and the angle of view ω of the objective optical system. For a tube of arbitrary diameter φ, each image corresponds to the distance from the in-focus position at the center of the objective lens (object point at infinity) to the object plane at each angle of view at the periphery to the tip of the scope. FIG. 11 shows a schematic diagram of the shape of the image plane conjugate to the inner surface of the tube, which connects the distance Sk from the final surface to the Gaussian image plane. Here fF, f,
=O, f=1.

次に実際の対物光学系の像面ば、平面の物体の像が湾曲
する像面湾曲が発生する。3次収差の領域では像面が球
面になり、その曲率がペツッパール和で次の式で表わさ
れる。
Next, on the image plane of the actual objective optical system, field curvature occurs, in which the image of a flat object is curved. In the region of third-order aberration, the image surface becomes a spherical surface, and its curvature is expressed by the following equation as a Petzpar sum.

このPの値が正のときには、像面ばレンズ系Gこ向かっ
て凹状に湾曲する。又湾曲による対物レンズ中心(無限
遠物点)での、合焦位置から周辺部での合焦点位置まで
のずれ量ΔS、は次のよう1こなる。
When the value of P is positive, the image surface curves concavely toward the lens system G. Furthermore, the amount of deviation ΔS from the in-focus position at the center of the objective lens (object point at infinity) to the in-focus position at the periphery due to curvature is calculated as follows.

I2・P ΔS、=−− 以上のことから、(S、−f、l  とΔSつとが互し
)に打消し合うためには、両者の値が符号が反対で絶対
値がほぼ等しい値である。つまり下記の式(−ΔS8と
fslfs)の比)が1に近くなるように像面湾曲を補
正することによって、観察管の管径ψるこおし)(Sう
−f、)2f2 ここで管状物体観察時の最近接距離は、観察可能な管の
太さつまりスコープの外径ψと、最大画角ωとで規定さ
れ、その時の物体距離り。は次の式%式% この物体距離り。に対応する最終像面からガウス像面ま
での距離をSmoとすると、前記の比つまりΔS8と(
Sino−fBtの比は下記のようになる。
I2・P ΔS,=-- From the above, in order for (S, -f, l and ΔS to cancel each other out), both values must have opposite signs and almost equal absolute values. be. In other words, by correcting the field curvature so that the following equation (ratio of -ΔS8 and fslfs) approaches 1, the diameter of the observation tube ψ is reduced) (S - f, ) 2 f2 where: The closest distance when observing a tubular object is defined by the thickness of the tube that can be observed, that is, the outer diameter of the scope ψ, and the maximum angle of view ω, and is the object distance at that time. is the following formula% formula% This object distance is. Letting Smo be the distance from the final image plane to the Gaussian image plane corresponding to , the above ratio, that is, ΔS8 and (
The Sino-fBt ratio is as follows.

−ΔS、   I”(LO+fF+P (S、、−fll)   2f2 上記の比が1に近い値つまり条件(1)を満足し更に条
件(2)を満足するように像面湾曲を補正すれば、観察
可能限界の細径の管まで画面の中心付近から周辺まで良
好な画像が得られる。
-ΔS, I"(LO+fF+P (S,, -fll) 2f2 If the above ratio is close to 1, that is, if the field curvature is corrected so that condition (1) is satisfied and condition (2) is also satisfied, the observation Good images can be obtained from near the center of the screen to the periphery, even for tubes with the smallest possible diameter.

外径の極めて細いスコープ用の対物光学系は、条件f1
+に示す式の値を0.1以上にしかつ全系の焦点距離f
で規格したペッツバール和P・fを0.2より大にする
ことによって、少なくとも実際に観察する時に一番必要
と考えられる範囲である像高的70%から周辺までの範
囲(中心は真暗なので見えなくともよい)において良好
な画像が得られる。これは観察可能限界の細径の管(ス
コープ外径と同等の径)においては、△Sアの値が(3
つ。−f、)より小さくなるので、像面が撮像面側に倒
れる。
The objective optical system for a scope with an extremely narrow outer diameter meets the condition f1.
The value of the formula shown in + is 0.1 or more, and the focal length of the entire system is f.
By setting the Petzval sum P・f, which is standardized by good images can be obtained. This means that in a tube with a small diameter at the observable limit (equivalent to the outside diameter of the scope), the value of △SA is (3
Two. -f, ), so the image plane tilts toward the imaging plane.

しかし条件(1) 、 (21の下限を越えなければ、
像面の倒れ量があまり大きくない。したがって最大像高
から像高が約70%での結像位置まで結像位置をほぼ平
面とみなすことが出来、その位置に撮像面を合わせるこ
とによって実際に観察するときに一番必要と考えられる
範囲において良好な画像が得られる。
However, condition (1), (if the lower limit of 21 is not exceeded,
The amount of image plane tilt is not very large. Therefore, the imaging position from the maximum image height to the imaging position at approximately 70% of the image height can be considered to be almost a plane, and aligning the imaging plane to that position is considered to be most necessary when actually observing. Good images can be obtained within this range.

しかし条件(2)の範囲を外れると、ペッツパル像面が
ほぼ平面とみなせるようになり、撮像面上での像面の倒
れ量が大になる。そのために最大像高での結像位置から
像高が約70%までの結像位置をほぼ平面とみなすこと
が出来なくなるため、周辺まで良好な画像を得ることが
出来なくなる。
However, when the range of condition (2) is exceeded, the Petzpal image plane can be considered to be substantially flat, and the amount of inclination of the image plane on the imaging plane becomes large. For this reason, it becomes impossible to regard the imaging position from the imaging position at the maximum image height to approximately 70% of the image height as a substantially flat surface, making it impossible to obtain a good image up to the periphery.

また条件t1)の上限を越えると逆に像面が倒れすぎて
太い径の管を周辺まで良好な画像で観察することが出来
ない。
On the other hand, if the upper limit of condition t1) is exceeded, the image plane will be too tilted, making it impossible to observe a large-diameter tube up to its periphery with a good image.

条件(3)の下限を越えると画角が狭くなり、管状物体
を観察するときに一度により多くの情報を得ることや管
内面に対して出来るだけ垂直に近い状態での観察が出来
なくなるので、管内観察用対物光学系としては、使い勝
手が悪くなる。また焦点距離が長くなるために被写界深
度が浅くなるという不具合も生ずる。
If the lower limit of condition (3) is exceeded, the angle of view will become narrower, making it impossible to obtain more information at once when observing a tubular object or to observe it as close to perpendicular to the inner surface of the tube as possible. This makes it difficult to use as an objective optical system for observing inside a tube. Furthermore, since the focal length becomes longer, the depth of field becomes shallower.

本発明の光学系を固体撮像素子を用いた内視鏡先端光学
系とした場合、固体撮像素子の前にモアレを除去するた
めの光学的ローパスフィルターを配置する必要がある。
When the optical system of the present invention is an endoscope tip optical system using a solid-state image sensor, it is necessary to arrange an optical low-pass filter for removing moiré in front of the solid-state image sensor.

そのためには、光学系のバックフォーカスを長くしなけ
ればならない。ここで対物光学系の後群の焦点距離とを
I2、対物光学系全系の後側焦点距離をfll、後群の
結像倍率をβ2とすると次の関係式が成立つ。
To achieve this, the back focus of the optical system must be made longer. Here, if the focal length of the rear group of the objective optical system is I2, the rear focal length of the entire objective optical system is fll, and the imaging magnification of the rear group is β2, the following relational expression holds true.

flI:I2(1−β2) 上記式からI8を大にするためにはI2を大にする必要
があることがわかる。
flI:I2(1-β2) From the above formula, it can be seen that in order to increase I8, it is necessary to increase I2.

条件(4)においてfa/fが下限を越えるとバックフ
ォーカスを充分とることが出来なくなる。又条件(4)
の上限を越えると前群の負のパワーが強くなり、他の条
件を満足させるためには前群の外径が大になってしまい
好ましくない。
In condition (4), if fa/f exceeds the lower limit, sufficient back focus cannot be obtained. Also, condition (4)
If the upper limit of is exceeded, the negative power of the front group becomes strong, and the outer diameter of the front group becomes large in order to satisfy other conditions, which is not preferable.

以上のように、本発明は前述のレンズ構成で条件+1)
〜(4)を満足させることにより、管状物体を観察する
時にFナンバーを小さくしても像面中心付近から周辺ま
でピントの合う対物光学系を得るようにした。
As described above, the present invention has the above-mentioned lens configuration under the condition +1).
By satisfying (4) to (4), an objective optical system that is in focus from near the center of the image plane to the periphery can be obtained even if the F number is small when observing a tubular object.

[実施例] 次に本発明の管内観察用内視鏡対物光学系の各実施例を
示す。
[Examples] Next, examples of the objective optical system for an endoscope for intraluminal observation of the present invention will be shown.

実施例1 f =1.000 、 fF=0.537 、 f、=
−0,074I H=0.85080 、2ω= 12
0”r1=■ d、= 0.2321   n、= 1.88300 
  Vl= 40.78ra”1.5702 d、 = 0.6704 r3=■(絞り) ds” 0.3287 r4=−4,7591 d4= 0.4126 r、=−o、7634 d、= 0.0516 nz=1.51633 シ、= 64.15 ra= ■ d6= 0.7736 n、= 1.52000 シ3=74.00 r、:Oo d、= 0.0516 ra=3.0923 d、= 1.0315 rs=−1,0356 n、= 1.69680 シ4=56.49 d*= o、1547 ns” 1.83350 ν5==21.0O rl。 =−2,3175 d、0== 0.2579 r目 =00 d、、=0.9644    n、=1.54814 
    シ、=45.78r+z  °00 d、、=0.2063    n7”=1.51633
     シ、=64.15r1. =■ (I2・(Lo十tr)・P)/+2・f”)  =0
.373   (ψ = 8■)P−f =0.362
 、  I/f =0.851  、  f2/f= 
1.303実施例2 f  =  1.000  、  fF= 0.610
  、  fa= −〇、116I H=0.8486
1 、2ω= 120’r、= ■ d、=0.2315     n+= 1.88300
     ν+= 40.78ra=1.5682 d、= 0.6687 rs=oo(絞り) d、= 0.2418 r、 = −2,2522 d4= ()、3601   n、= 1.51633
  172= 64.15r@= −0,6923 d、= 0.0514 r6:cIO d、 = 0.7716   na = 1.5200
0   173= 74.00r7=oO d7= 0.0514 ra=11.4513 da” 0.8745   n4= 1.69680 
   y−= 56.49re” −0,9894 ds” 0.1543    ns= 1.8335[
11)s= 21.0Or、。 = −1,8066 d、。= 0.3601 r++  =3.5020 d++=0.4205    n5=1.51633 
   シ、=64.15rI2 :0O d1*= 0.9619    n、= 1.5481
4     vt= 45.78r13 =■ d+*=0.2058     n、= 1.5163
3      v、= 64.15r14  : 00 (1”・(Lo+fy) 4)/ 12・f2)  =
 0.402  (+ = 8 mm)P−f  =0
.382 、 1/f =0.849 、  f2/f
=1.378実施例3 f = 1.000 、 f、=0.231 、 f、
=−0,076I  H=0.85521  、 2 
 ω =1406r1; ■ dl= 0.2333     nt= 1.8830
Ovl=40.18r、=1.3210 d怠= 0.2286 r3=cX:+(絞り) d、= 0.0401 r4=−1,8840 d4= 0.4147 n2= 1.51633 シ、=64.15 r5=−Q、48D1 d5= 0.0518 rs= ■ d、= 0.7776 r7=■ d、=口、0518 ra=8.o120 d、= 0.1555 ri+=1.5851 ns” 1.52000 fi4= 1.68893 シ、=74.00 ν、=31.08 d、= 0.9331 ns= 1.77250 ν、=49.66 r+o  =−1,8143 d、。= 0.0985 r目=Oa dl、=0.7776 r122″l d1□=0.2074 ns” 1.54814 シg=45.78 n、= 1.51633     v、= 64.15
!−+i= ■ (I” (Lo+fr) ・P)/ f2・f”l  
= 0.297  (ψ=81III)P−f  =0
.482  、 1/f  =0.855  、  f
t/f=1.077実施例4 f = 1.000 、 f、=0.827 、 f、
=−0,035I H=0.95321 、2ω=14
0゜r =■ d1= 0.2600   n1= 1.51633 
  v+= 64.15rz=1.5337 d2= 0.6970 r3=oo(絞り) d、= 0.0420 f4=−2,4797 d、 = 0.4622   jl、= 1.5163
3   v、 = 64.15rs =−0,7052 ds=0.0578 ra= ■ d、 = 0J667  11.= 1.52000 
  v、= 74.00rr=■ d、= 0.0578 ra=8.6149 d、=o、1155    n、=1.72825  
   v、=28.46r9=1.3287 d−= 1−0399    n5= 1.72916
    375= 54.68r1o =−1,216
6(非球面) dl。=0.08 rll  ” ■ d、、=0.8667    n6=1.54814 
    シ、=45.78r+z  =″l d、z= 0.2311    ny= 1.5163
3     シフ= 64.15r、、  :CIO 非球面係数 P =0.8541  、   E =0.86247
  x 10−’F = 0.12932 x 10−
’   G = 0.31100 x 10−”H= 
0.10222 X 10−’ (I”・(t、+tr)・P)/[2・f”)  =0
.538   (φ = 8■嘗)!”f =0.51
9 、 I/f =0.953 、 fg/f=1.2
83ただしrll rR9−・−はレンズ各面の曲率半
径、d、、 d、、−・・は各レンズの肉厚およびレン
ズ間隔、n+、 nz、・・・は各レンズの屈折率、シ
1.シ2.・・・は各レンズのアツベ数である。
Example 1 f = 1.000, fF = 0.537, f, =
-0,074I H=0.85080, 2ω=12
0”r1=■ d, = 0.2321 n, = 1.88300
Vl= 40.78ra"1.5702 d, = 0.6704 r3=■(aperture) ds" 0.3287 r4=-4,7591 d4= 0.4126 r, =-o, 7634 d, = 0.0516 nz=1.51633 shi, = 64.15 ra= ■ d6= 0.7736 n, = 1.52000 shi3=74.00 r, :Oo d,= 0.0516 ra=3.0923 d,= 1 .0315 rs=-1,0356 n, = 1.69680 si4=56.49 d*= o, 1547 ns" 1.83350 ν5==21.0O rl. =-2,3175 d, 0== 0 .2579 rth =00 d,, =0.9644 n, =1.54814
shi,=45.78r+z °00 d,,=0.2063 n7”=1.51633
shi,=64.15r1. =■ (I2・(Lo1tr)・P)/+2・f”) =0
.. 373 (ψ = 8■)P-f =0.362
, I/f =0.851, f2/f=
1.303 Example 2 f = 1.000, fF = 0.610
, fa=-〇, 116I H=0.8486
1, 2ω = 120'r, = ■ d, = 0.2315 n+ = 1.88300
ν + = 40.78ra = 1.5682 d, = 0.6687 rs = oo (aperture) d, = 0.2418 r, = -2,2522 d4 = (), 3601 n, = 1.51633
172 = 64.15r@= -0,6923 d, = 0.0514 r6:cIO d, = 0.7716 na = 1.5200
0 173= 74.00r7=oO d7= 0.0514 ra=11.4513 da" 0.8745 n4= 1.69680
y-= 56.49re"-0,9894 ds" 0.1543 ns= 1.8335[
11) s=21.0Or,. = −1,8066 d,. = 0.3601 r++ =3.5020 d++=0.4205 n5=1.51633
si, = 64.15rI2 :0O d1*= 0.9619 n, = 1.5481
4 vt = 45.78r13 =■ d+*=0.2058 n, = 1.5163
3 v, = 64.15r14: 00 (1”・(Lo+fy) 4)/12・f2) =
0.402 (+ = 8 mm) P-f = 0
.. 382, 1/f =0.849, f2/f
=1.378 Example 3 f = 1.000, f, =0.231, f,
=-0,076I H=0.85521, 2
ω = 1406r1; ■ dl = 0.2333 nt = 1.8830
Ovl = 40.18r, = 1.3210 d laziness = 0.2286 r3 = c .15 r5=-Q, 48D1 d5=0.0518 rs=■ d,=0.7776 r7=■ d,=mouth, 0518 ra=8. o120 d, = 0.1555 ri+=1.5851 ns” 1.52000 fi4= 1.68893 si, =74.00 ν, =31.08 d, = 0.9331 ns= 1.77250 ν, =49. 66 r+o =-1,8143 d, .= 0.0985 rth=Oa dl, = 0.7776 r122″l d1□=0.2074 ns” 1.54814 sig=45.78 n, = 1.51633 v, = 64.15
! −+i= ■ (I” (Lo+fr) ・P)/ f2・f”l
= 0.297 (ψ=81III)P-f =0
.. 482, 1/f = 0.855, f
t/f=1.077 Example 4 f=1.000, f,=0.827, f,
=-0,035I H=0.95321, 2ω=14
0゜r=■ d1= 0.2600 n1= 1.51633
v+= 64.15rz=1.5337 d2= 0.6970 r3=oo (aperture) d, = 0.0420 f4=-2,4797 d, = 0.4622 jl, = 1.5163
3 v, = 64.15rs = -0,7052 ds = 0.0578 ra = ■ d, = 0J667 11. = 1.52000
v, = 74.00rr = ■ d, = 0.0578 ra = 8.6149 d, = o, 1155 n, = 1.72825
v, =28.46r9=1.3287 d-=1-0399 n5=1.72916
375=54.68r1o=-1,216
6 (aspherical surface) dl. =0.08 rll” ■ d,,=0.8667 n6=1.54814
d, z= 0.2311 ny= 1.5163
3 Schiff = 64.15r, :CIO Aspheric coefficient P = 0.8541, E = 0.86247
x 10-'F = 0.12932 x 10-
'G = 0.31100 x 10-''H=
0.10222
.. 538 (φ = 8■嘗)! ”f=0.51
9, I/f=0.953, fg/f=1.2
83 However, rll rR9-...- is the radius of curvature of each lens surface, d,, d,,... is the thickness and lens spacing of each lens, n+, nz,... is the refractive index of each lens, and .. C2. ... is the Atsube number of each lens.

実施例1は第1図に示す構成で、物体側より順に像側に
凹面を有する負レンズと、絞りと、像側に凸面を有する
正レンズと、固体撮像素子(CCD)に近赤外領域の光
が入射するのを防ぐための色温度補正フィルターF1と
、軸外の倍率の色収差を補正するためにアツベ数の大き
い材料よりなる正レンズとアツベ数の小さい材料よりな
る負のメニスカスレンズとを貼合わせた全体として正の
屈折力を有する接合色消レンズと、モアレおよび擬色の
発生を防止するために高周波成分をカットする光学的ロ
ーパスフィルターF2と、CCDカバーガラスCとを配
置したものである。この実施例1は、画角が約120°
の広角な対物光学系である。
Embodiment 1 has the configuration shown in FIG. 1, which includes, in order from the object side, a negative lens with a concave surface on the image side, an aperture, a positive lens with a convex surface on the image side, and a near-infrared region on the solid-state image sensor (CCD). a color temperature correction filter F1 to prevent light from entering, a positive lens made of a material with a large Abbe number, and a negative meniscus lens made of a material with a small Abbe number, in order to correct off-axis chromatic aberration of magnification. A cemented achromatic lens that has a positive refractive power as a whole, an optical low-pass filter F2 that cuts high frequency components to prevent moiré and false color, and a CCD cover glass C are arranged. It is. In Example 1, the angle of view is approximately 120°.
This is a wide-angle objective optical system.

この実施例は、明るさ絞りより後群の収斂レンズ系にお
ける色温度補正フィルターF3が吸収フィルターである
とき軸外での入射光の入射角が大きいと(約40°以上
であると)、軸上光線との光路差が太き(なり軸上に比
べて周辺での赤側の波長の光の分光透過率がおちる。そ
の影響で画面周辺で多少青みがかるなどの問題が生ずる
。またCCD受光素子の前にR,G、B等のモザイクカ
ラーフィルターが設けられている同時式CCDにおいて
は、受光素子への入射角度が大きいと色むらを起こしや
すいと云う欠点がある。そのためCCDに入射する各像
高での主光線がCCDに対しほぼ垂直に入射するように
しなければならない、つまり対物光学系としては、瞳位
置がほぼ無限遠になるテレセントリック光学系が望まれ
る。
In this embodiment, when the color temperature correction filter F3 in the convergent lens system in the rear group than the aperture stop is an absorption filter, if the incident angle of off-axis incident light is large (approximately 40 degrees or more), The optical path difference with the upper light beam is large (the spectral transmittance of light with wavelengths on the red side at the periphery is lower than on the axis. This causes problems such as a slight bluish tinge at the periphery of the screen. Also, CCD light reception Simultaneous CCDs in which mosaic color filters such as R, G, and B are provided in front of the element have the disadvantage that color unevenness is likely to occur if the incident angle to the light receiving element is large. The principal ray at each image height must be incident on the CCD almost perpendicularly, that is, the objective optical system is preferably a telecentric optical system in which the pupil position is approximately at infinity.

上記問題点を解決するために、この実施例1は、像高工
に対するフィルターF1より後方のレンズの合成焦点距
離fl+を下記のように設定し、f□を長くしてフィル
ターF1への入射角を小さくしている。
In order to solve the above problem, in this first embodiment, the composite focal length fl+ of the lens behind the filter F1 with respect to the image height is set as shown below, and f□ is lengthened to adjust the incident angle to the filter F1. is made smaller.

I/ f * l< tan40@= 0184また後
群収斂レンズ系の焦点路111f、を短くすることより
前群発散レンズ系の後方で光線を充分に曲げることが出
来、凹レンズの屈折力を小さくし得るようにした。つま
り前群発散レンズ系の焦点距離をf、とすると、1ft
l>riとなり、1f11を長く出来かつ凹レンズの凹
面に対して光線が高いところで交わるので、凹面の曲率
半径r 21を大きく出来、これによってペッツバール
和Pをプラス方向へもっていっている。
I/ f * l< tan40@= 0184 Also, by shortening the focal path 111f of the rear group converging lens system, the light rays can be sufficiently bent behind the front group diverging lens system, and the refractive power of the concave lens can be reduced. I tried to get it. In other words, if the focal length of the front group diverging lens system is f, then 1ft
Since l>ri, 1f11 can be made long and the ray intersects at a high point with the concave surface of the concave lens, so the radius of curvature r21 of the concave surface can be made large, thereby pushing the Petzval sum P in the positive direction.

又接合レンズの正レンズと負レンズの屈折率差を小さく
し、夫々のレンズの屈折率を大きくすることによっても
ペッツバール和をプラス側へもって行くことが出来、全
体的にペッツバール和を大きくしている。
Also, by reducing the refractive index difference between the positive and negative lenses of the cemented lens and increasing the refractive index of each lens, it is possible to bring the Petzval sum to the positive side, increasing the overall Petzval sum. There is.

この光学系を用いて管状物体面を観察した時の非点収差
を第5図に示しである。この時のスコープの外径は、条
件としては厳しい細径スコープの外径81−で行なった
FIG. 5 shows astigmatism when observing a tubular object surface using this optical system. At this time, the outer diameter of the scope was set to 81-, which is a narrow scope with strict conditions.

比較のために同一画角でペッツバール和かほぼ零である
第9図に示す特開昭62−173415号の実施例7の
非点収差図を第10図に示す。
For comparison, FIG. 10 shows an astigmatism diagram of Example 7 of JP-A-62-173415 shown in FIG. 9, in which the Petzval sum is approximately zero at the same angle of view.

第5図と第10図とを比較すれば明らかであるようにこ
の実施例1は特に球欠方向の非点収差において像面の倒
れが従来例に対し約173に改善されている。
As is clear from a comparison between FIG. 5 and FIG. 10, in Example 1, the inclination of the image plane is improved to about 173 points, especially in astigmatism in the direction of spherical breakout, compared to the conventional example.

実施例2は、第2図に示す構成で、光学的ローパスフィ
ルターF2の直前に物体側に凸面を向けた正のフィール
ドレンズを配置したものである。これは、実施例1の説
明でも述べたように、受光素子の前にR,G、B等のモ
ザイクカラーフィルターが設けられている同時式COD
において受光素子への入射角度が大きいと色むらを起こ
しやすい欠点がある。そのためCCDに対して各像高で
の主光線を垂直に入射させる必要がある。かつ内視鏡の
先端部は、出来るだけ細くすることが望まれているが、
最終レンズをCCDから離せば離す程最終レンズの外径
が大になる。そのために光学的ローパスフィルターF2
の前面に物体側に凸面を向けた正のフィールドレンズを
設けることによって、このフィールドレンズよりも前側
のレンズの径を小にすることが出来、かつCCDに対し
て垂直に入射するようにして色むらのない画像が得られ
るようにした。
Embodiment 2 has the configuration shown in FIG. 2, in which a positive field lens with a convex surface facing the object side is placed immediately before the optical low-pass filter F2. As mentioned in the explanation of Example 1, this is a simultaneous COD in which mosaic color filters such as R, G, and B are provided in front of the light receiving element.
When the angle of incidence on the light-receiving element is large, color unevenness tends to occur. Therefore, it is necessary to make the chief ray at each image height perpendicularly incident on the CCD. Moreover, it is desired that the tip of the endoscope be made as thin as possible.
The further the final lens is separated from the CCD, the larger the outer diameter of the final lens becomes. For that purpose, an optical low-pass filter F2
By providing a positive field lens with a convex surface facing the object side in front of the CCD, the diameter of the lens in front of this field lens can be made smaller, and the color is incident perpendicularly to the CCD. This makes it possible to obtain even images.

実施例3は、第3図に示す構成で、画角を更に広角にし
1401にしてより広い範囲の観察を可能にした対物光
学系である。
Embodiment 3 is an objective optical system having the configuration shown in FIG. 3 and having a wider angle of view 1401 to enable observation of a wider range.

実施例4は第5図に示す構成で、画角が140°である
。この実施例は、接合レンズ中の正レンズの像側の面が
非球面で、この非球面レンズを用いることによりコマ収
差等の軸外収差を補正している。この実施例では最終レ
ンズ面に非球面を用いているが、前群に非球面を用いて
も同様の効果が得られる。更に前群、後群の両方に非球
面を用いればより効果的である。
Example 4 has the configuration shown in FIG. 5, and has an angle of view of 140°. In this embodiment, the image side surface of the positive lens in the cemented lens is an aspherical surface, and by using this aspherical lens, off-axis aberrations such as coma aberration are corrected. In this embodiment, an aspherical surface is used for the final lens surface, but the same effect can be obtained by using an aspherical surface for the front group. Furthermore, it is more effective to use aspheric surfaces for both the front group and the rear group.

上記非球面の形状は、光軸方向をX軸、光軸と垂直方向
をy軸とした時、次の式で表わされる6ただしrは光軸
近傍の曲率半径、E、F、G。
The shape of the above aspherical surface is expressed by the following formula, where the optical axis direction is the X axis and the direction perpendicular to the optical axis is the y axis.6where r is the radius of curvature near the optical axis, E, F, G.

Hl・・・は非球面係数である。Hl... is an aspheric coefficient.

[発明の効果] 本発明の管内観察用内視鏡光学系は、以上述べてきたよ
うに管状物体内を観察したときに像面中心付近から周辺
までピントが合いかつFナンバーの小さい明るい光学系
である。
[Effects of the Invention] As described above, the endoscopic optical system for observing inside a tube according to the present invention is a bright optical system that is in focus from near the center of the image plane to the periphery and has a small F number when observing the inside of a tubular object. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明対物光学系の実施例1乃至実
施例4の断面口、第5図乃至第8図は実施例1乃至実施
例4の非点収差曲線図、第9図は従来の内視鏡対物光学
系の断面図、第1O図は上記従来例の非点収差曲線図、
第11図は管内面に共役な像面形状の概略図、第12図
は画角と物体距離の関係を示す図である。 出願人 オリンパス光学工業株式会社 代理人   向    寛  ニ 第2 第5図 第6 第9wJ 第10図 手続補正書 平成3年7月9日
1 to 4 are cross-sectional views of Examples 1 to 4 of the objective optical system of the present invention, FIGS. 5 to 8 are astigmatism curve diagrams of Examples 1 to 4, and FIG. 9 is a cross-sectional view of a conventional endoscope objective optical system, FIG. 1O is an astigmatism curve diagram of the conventional example,
FIG. 11 is a schematic diagram of the image surface shape conjugate to the inner surface of the tube, and FIG. 12 is a diagram showing the relationship between the angle of view and the object distance. Applicant Olympus Optical Industry Co., Ltd. Agent Hiroshi Mukai Figure 2 Figure 5 Figure 6 Figure 9wJ Figure 10 Procedural Amendment July 9, 1991

Claims (1)

【特許請求の範囲】 物体側より順に前群発散レンズ系と、明るさ絞りと、後
群収斂レンズ系とよりなり、次の条件を満足することを
特徴とする管内観察用内視鏡光学系。 (1)▲数式、化学式、表等があります▼ (2)0.2<P・f (3)0.8<I/f (4)0.5≦f_2/f≦3 ただしfは対物光学系の合成焦点距離、Iは最大像高、
Pは対物光学系のペッツバール和、f_Fは対物光学系
の前側焦点距離、L_Oは管物体観察時の最近接物体距
離、f_2は後群収斂レンズ系の焦点距離である。
[Claims] An endoscope optical system for intraductal observation, which comprises, in order from the object side, a front group diverging lens system, an aperture diaphragm, and a rear group converging lens system, and satisfies the following conditions. . (1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (2) 0.2<P・f (3) 0.8<I/f (4) 0.5≦f_2/f≦3 where f is objective optical The combined focal length of the system, I is the maximum image height,
P is the Petzval sum of the objective optical system, f_F is the front focal length of the objective optical system, L_O is the closest object distance when observing a tube object, and f_2 is the focal length of the rear group converging lens system.
JP2101726A 1990-04-19 1990-04-19 Endoscope objective optical system for in-tube observation Expired - Fee Related JP2929309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101726A JP2929309B2 (en) 1990-04-19 1990-04-19 Endoscope objective optical system for in-tube observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101726A JP2929309B2 (en) 1990-04-19 1990-04-19 Endoscope objective optical system for in-tube observation

Publications (2)

Publication Number Publication Date
JPH041713A true JPH041713A (en) 1992-01-07
JP2929309B2 JP2929309B2 (en) 1999-08-03

Family

ID=14308293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101726A Expired - Fee Related JP2929309B2 (en) 1990-04-19 1990-04-19 Endoscope objective optical system for in-tube observation

Country Status (1)

Country Link
JP (1) JP2929309B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667090A (en) * 1992-08-14 1994-03-11 Olympus Optical Co Ltd Objective optical system for endoscope
JP2004258611A (en) * 2003-02-04 2004-09-16 Pentax Corp Endoscopic objective system
JP2009014947A (en) * 2007-07-04 2009-01-22 Olympus Imaging Corp Image-forming optical system and imaging apparatus using the same
JP2011518341A (en) * 2008-02-29 2011-06-23 グローバル バイオニック オプティクス リミテッド Single lens extended depth of field imaging system
JP5893801B2 (en) * 2013-10-30 2016-03-23 オリンパス株式会社 Imaging device
JP2016151629A (en) * 2015-02-17 2016-08-22 富士フイルム株式会社 Endoscope objective lens and endoscope
JP2017090802A (en) * 2015-11-09 2017-05-25 株式会社タムロン Optical system and image capturing device
US11703663B2 (en) 2011-09-02 2023-07-18 Largan Precision Co., Ltd. Photographing optical lens assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667090A (en) * 1992-08-14 1994-03-11 Olympus Optical Co Ltd Objective optical system for endoscope
JP2004258611A (en) * 2003-02-04 2004-09-16 Pentax Corp Endoscopic objective system
JP4566539B2 (en) * 2003-02-04 2010-10-20 Hoya株式会社 Endoscope objective lens system
JP2009014947A (en) * 2007-07-04 2009-01-22 Olympus Imaging Corp Image-forming optical system and imaging apparatus using the same
JP2011518341A (en) * 2008-02-29 2011-06-23 グローバル バイオニック オプティクス リミテッド Single lens extended depth of field imaging system
US11703663B2 (en) 2011-09-02 2023-07-18 Largan Precision Co., Ltd. Photographing optical lens assembly
JP5893801B2 (en) * 2013-10-30 2016-03-23 オリンパス株式会社 Imaging device
US10437039B2 (en) 2013-10-30 2019-10-08 Olympus Corporation Image-acquisition apparatus
JP2016151629A (en) * 2015-02-17 2016-08-22 富士フイルム株式会社 Endoscope objective lens and endoscope
JP2017090802A (en) * 2015-11-09 2017-05-25 株式会社タムロン Optical system and image capturing device

Also Published As

Publication number Publication date
JP2929309B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3765500B2 (en) Endoscope objective lens
US5296971A (en) Objective lens system for endoscopes
JP3547103B2 (en) Wide-angle imaging lens
WO2007063891A1 (en) Fish-eye lens and imaging device
JPH0980305A (en) Endoscope objective lens
JPS5880611A (en) Objective lens for endoscope
JPH0754373B2 (en) Objective lens for endoscope
JP3725276B2 (en) Imaging lens
JPH05323186A (en) Endoscope
JPH041713A (en) Endscope objective optical system for intratube observation
JP3758801B2 (en) Endoscope objective lens system
JPH1184234A (en) Photographing lens
JPH05341185A (en) Objective optical system for endoscope
JPH02137812A (en) Photographic lens
JPH1048514A (en) Objective lens of endoscope
JP2002287019A (en) Chromatic aberration of magnification variable optical system
JP2001174701A (en) Wide angle photographic lens system
JPH04163509A (en) Endoscope object optical system
JP2995491B2 (en) Endoscope objective optical system
JP2639963B2 (en) Endoscope objective lens
JPH063588A (en) Wide-angle lens
JP2899980B2 (en) Objective optical system for endoscope
JP3037967B2 (en) Magnifying projection lens
JPH09197298A (en) Endoscope eyepiece system
JP2002328300A (en) Front diaphragm image pickup optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees