JPH04171101A - Continuous variable pre-load type spindle unit - Google Patents

Continuous variable pre-load type spindle unit

Info

Publication number
JPH04171101A
JPH04171101A JP29617790A JP29617790A JPH04171101A JP H04171101 A JPH04171101 A JP H04171101A JP 29617790 A JP29617790 A JP 29617790A JP 29617790 A JP29617790 A JP 29617790A JP H04171101 A JPH04171101 A JP H04171101A
Authority
JP
Japan
Prior art keywords
piezoelectric element
preload
spindle
load
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29617790A
Other languages
Japanese (ja)
Inventor
Kei Kimata
木全 圭
Kenji Hibi
建治 日比
Kenji Fujii
健次 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP29617790A priority Critical patent/JPH04171101A/en
Publication of JPH04171101A publication Critical patent/JPH04171101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To accurately regulate the quantity of pre-load in a spindle unit for a machine tool or the like by insertedly providing an axially movable bearing case for supporting a spindle inside an outer sleeve and an axially expansible piezoelectric element between the outer sleeve and the bearing case, and changing voltage applied to the piezoelectric element according to the change of the number of revolutions of the main spindle. CONSTITUTION:In establishing heavy pre-load in a low speed rotational domain, high voltage is applied to a piezoelectric element 11 to elongate it to the maximum, and oil is thereby drawn from a left hydraulic chamber 23, and supplied to a right hydraulic chamber 24 for its pressurization. A middle ring 10 is thereby moved left to make a regulating member 16 abut on the end face 1a of an outer sleeve 1 for fixing the member 16, and a functioning member 9 abut on stepped parts 20,22 for giving pre-load P1 to bearings 4-7. A voltage applying device 13 computes the quantity of pre-load on informations given by a revolution detector 14 and a temperature detector 15 as the number of revolutions of the spindle 2 increases to obtain the movement quantity of a bearing case 8, and the dimensions of the piezoelectric element 11 are therefore determined for the control of the applied voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、工作機械のスピンドルなどに用いられて、
軸受に対する予圧を連続的に変化させる連続予圧可変式
のスピンドルユニットに間するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is used for spindles of machine tools, etc.
It is used in a continuously variable preload type spindle unit that continuously changes the preload on the bearing.

〔従来の技術及びその課題〕[Conventional technology and its problems]

−aに、工作機械においては、スピンドルに予圧をかけ
て運転されており、その場合、スピンドルの低速と高速
の両方向の回転域で十分な剛性や精度を得るために、回
転数の変化に応じて予圧量を変化させる予圧方法がとら
れている。
-a. Machine tools are operated with a preload applied to the spindle, and in this case, in order to obtain sufficient rigidity and precision in both the low and high speed rotational ranges of the spindle, it is necessary to respond to changes in the rotational speed. A preload method is used in which the amount of preload is changed based on the amount of preload.

従来、回転数に応じてスピンドルの軸受に与える予圧を
可変にした予圧可変式のスピンドルユニットとして、実
開平1−155102号公報や、本出願人が出願した特
願平1−101039号で提案されたものがある。
Conventionally, a variable preload type spindle unit that changes the preload applied to the spindle bearing according to the rotation speed has been proposed in Japanese Utility Model Application No. 1-155102 and Japanese Patent Application No. 1-101039 filed by the present applicant. There is something.

しかし、これらの提案構造のものは、スピンドル内を押
圧子や軸受箱を、ストッパ等に当接するまで移動させる
ことによって軸受に対する予圧量を切り換えているため
に、回転中の予圧切換えのとき切り換えの前後で予圧が
変化し、このため、主軸の支持状態や回転精度も筒、激
に変動しやすく、また、切削中にびびり現象が生じたり
、工具の位置が変動することにより加工精度が不安定と
なる恐れがあった。
However, with these proposed structures, the amount of preload on the bearing is changed by moving the pusher or bearing box inside the spindle until it comes into contact with a stopper, etc., so when changing the preload during rotation, the amount of preload applied to the bearing is changed. The preload changes from front to back, and as a result, the support status and rotational accuracy of the spindle tend to fluctuate dramatically, and machining accuracy becomes unstable due to chatter occurring during cutting and tool position fluctuations. There was a fear that this would happen.

そこで、この発明の目的は、上記の問題点を解決し、予
圧量を連続的に変化させることができ、しかも、正確に
予圧量を設定値に調整することができる予圧可変式スピ
ンドルユニットを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a variable preload spindle unit that can continuously change the amount of preload and accurately adjust the amount of preload to a set value. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するため、この発明は、主軸が挿通ず
る外筒の内部に、主軸を支持する軸受を軸方向に押圧す
る軸受箱を移動可能に設け、その軸受箱と外筒の間に、
上記軸方向に伸縮する圧電素子を組み込み、その圧電素
子に、主軸回転数の変化に応じて印加電圧を変化させる
電圧印加装置を接続した構造としたものである。
In order to solve the above problems, the present invention movably provides a bearing box that presses the bearing supporting the main shaft in the axial direction inside the outer cylinder through which the main shaft is inserted, and between the bearing box and the outer cylinder. ,
It has a structure in which the piezoelectric element that expands and contracts in the axial direction is incorporated, and a voltage application device that changes the applied voltage according to changes in the rotational speed of the main shaft is connected to the piezoelectric element.

また、上記の構造において、圧電素子と外筒の間に、軸
方向に摺動可能な移動部材を設け、この移動部材と外筒
との間に、圧力制御手段を介して高圧流体が導入排出さ
れる圧力室を設けた構造とすることもできる。
In the above structure, a moving member that can slide in the axial direction is provided between the piezoelectric element and the outer cylinder, and high-pressure fluid is introduced and discharged between the moving member and the outer cylinder via the pressure control means. It is also possible to have a structure in which a pressure chamber is provided.

〔作用〕[Effect]

上記の構造においては、主軸の低速回転時は、圧電素子
に高電圧を印加し、大きく伸長させて軸受箱を押圧し、
軸受に重子圧を与える。反対に、主軸の回転数が高くな
ると、圧電素子に加える電圧を小さくし、圧電素子を収
縮させて軸受に対する予圧量を減少させる。
In the above structure, when the main shaft rotates at low speed, a high voltage is applied to the piezoelectric element to cause it to expand greatly and press the bearing box.
Apply weight pressure to the bearing. Conversely, when the rotational speed of the main shaft increases, the voltage applied to the piezoelectric element is reduced, causing the piezoelectric element to contract and reducing the amount of preload on the bearing.

このような、圧電素子の伸縮調整を、回転数の変化に応
し連続して行なうことにより、予圧量の切り換えを連続
して円滑に行なうことができる。
By continuously adjusting the expansion and contraction of the piezoelectric element in response to changes in the rotational speed, the preload amount can be continuously and smoothly switched.

この場合、圧電素子の伸縮量は、印加する電圧に比例し
て高精度に決まるので、印加電圧を調整することにより
、予圧量を設定の値に正確に一致させることができる。
In this case, since the amount of expansion and contraction of the piezoelectric element is determined with high precision in proportion to the applied voltage, the amount of preload can be made to match the set value accurately by adjusting the applied voltage.

〔実施例] 以下、この発明の実施例を添付図面に基づいて説明する
[Example] Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図に示すように、外筒1内を挿通する主軸2は、そ
の両端部が、それぞれ間座3を介して並列に配置された
軸受4.5及び6.7により回転自在に支持されている
。この一対の軸受4.5及び6.7は、アンギュラ玉軸
受が用いられ、装着した状態で互いに背面組合せの状態
で配!される。
As shown in FIG. 1, the main shaft 2 inserted through the outer cylinder 1 is rotatably supported at both ends by bearings 4.5 and 6.7 arranged in parallel with a spacer 3 interposed therebetween. ing. The pair of bearings 4.5 and 6.7 are angular contact ball bearings, and are arranged back-to-back when installed! be done.

上記の一端側の軸受4.5は、外筒1内に直接組込まれ
ており、この軸受側の主軸端部が、使用状態においてワ
ークの取付は側になる。
The bearing 4.5 on the one end side is directly assembled into the outer cylinder 1, and the main shaft end on the bearing side becomes the side on which the workpiece is attached in the use state.

一方、他端側の軸受6.7は、内輪が主軸2の外径面に
固定され、外輪は、外筒1の間に挿入された軸受箱8の
内側に組込まれている。
On the other hand, the bearing 6.7 at the other end has an inner ring fixed to the outer diameter surface of the main shaft 2, and an outer ring installed inside a bearing box 8 inserted between the outer cylinder 1.

この構造では、軸受箱8が軸方向へ移動すると、間座3
が軸受6の外輪を押し、各軸受4.5.6.7に予圧が
与えられる。
In this structure, when the bearing box 8 moves in the axial direction, the spacer 3
presses on the outer ring of bearing 6 and a preload is applied to each bearing 4.5.6.7.

上記軸受箱8の一端側には、作動部材9と中間リング1
0が配置されており、その両者は、外筒1の内部におい
て軸受箱8と外筒1に対してそれぞれ軸方向に独立して
移動できるように挿入されている。
On one end side of the bearing box 8, an operating member 9 and an intermediate ring 1 are provided.
0, and both of them are inserted into the bearing box 8 and the outer cylinder 1 inside the outer cylinder 1 so that they can move independently in the axial direction.

また、作動部材9と軸受箱8の対向面間には、円周方向
に所定の間隔をおいて複数の圧電素子11が組み込まれ
ている。この圧電素子11は、伸縮方向がスピンドルの
軸方向に一致するように配置されており、最も収縮した
状態で、作動部材9と軸受箱8の間にすき間12が形成
されるように設定されている。
Furthermore, a plurality of piezoelectric elements 11 are installed between the opposing surfaces of the actuating member 9 and the bearing box 8 at predetermined intervals in the circumferential direction. This piezoelectric element 11 is arranged so that its expansion and contraction direction coincides with the axial direction of the spindle, and is set so that a gap 12 is formed between the actuating member 9 and the bearing box 8 in the most contracted state. There is.

また、各圧電素子11には、印加電圧を変化させること
ができる電圧印加装置13が接続されている。この電圧
印加装置13は、主軸2の回転数を検出する回転検出器
14と、軸受温度を検出する温度検出器15から信号が
入力されるようになっており、その入力される信号に基
づいて予圧量を与えるための圧電素子11の伸縮量を算
出し、この求めた伸縮量に対応した電圧を、圧電素子1
1に印加するように設定されている。
Further, each piezoelectric element 11 is connected to a voltage application device 13 that can change the applied voltage. This voltage application device 13 receives signals from a rotation detector 14 that detects the rotation speed of the main shaft 2 and a temperature detector 15 that detects the bearing temperature, and based on the input signals, The amount of expansion and contraction of the piezoelectric element 11 to give the amount of preload is calculated, and the voltage corresponding to the calculated amount of expansion and contraction is applied to the piezoelectric element 1.
1.

また、上記電圧印加装置13には、後述する油圧制御装
置26から、その制御装置が予圧の設定状態を示す信号
が入力されるようになっている。
Further, the voltage application device 13 is configured to receive a signal from a hydraulic control device 26, which will be described later, to indicate the preload setting state of the control device.

一方、外筒1の奥側の端面1aには、中間リング10と
作動部材Sの内径側に挿入される調整部材16が組込ま
れている。この調整部材16は、位置決め用のフランジ
部17と、中間リング10及び作動部材9の内径側に挿
入されるリング部18とから成っており、フランジ部1
7には、外筒1から突出した位夏決めピン19が係合し
ている。
On the other hand, an adjustment member 16 that is inserted into the inner diameter side of the intermediate ring 10 and the actuating member S is incorporated in the inner end surface 1a of the outer cylinder 1. This adjustment member 16 is composed of a flange portion 17 for positioning, and a ring portion 18 inserted into the inner diameter side of the intermediate ring 10 and the actuating member 9.
7 is engaged with a summer fixing pin 19 that protrudes from the outer cylinder 1.

また、リング部18には、作動部材Sの動きを制限する
段部22と、中間リング10の動きを制限する段部21
が設けられ、作動部材9には、段部20に対応する段部
22が設けられている。上記の形状において、作動部材
9の段部22とリング部18の段部20との間のすき間
δ1は、中間リング10と段部21との間のすき間δ2
より太き((δ1〉δ2)設定されている。
The ring portion 18 also includes a stepped portion 22 that limits the movement of the actuating member S, and a stepped portion 21 that limits the movement of the intermediate ring 10.
The operating member 9 is provided with a stepped portion 22 corresponding to the stepped portion 20 . In the above shape, the gap δ1 between the step portion 22 of the actuating member 9 and the step portion 20 of the ring portion 18 is equal to the gap δ2 between the intermediate ring 10 and the step portion 21.
It is set to be thicker ((δ1>δ2)).

また、上記のように調整部材16や中間リング10、作
動部材9を組み込んだ状態で、調整部材16と中間リン
グ10の間、及び中間リング10と作動部材9の間に、
それぞれ油圧室23.24が形成されるようになってお
り、この各油圧室23.24に、それぞれtm開閉弁2
5を介して油圧制御装置26が接続している。
In addition, when the adjusting member 16, the intermediate ring 10, and the actuating member 9 are assembled as described above, between the adjusting member 16 and the intermediate ring 10, and between the intermediate ring 10 and the actuating member 9,
Hydraulic chambers 23 and 24 are formed in each hydraulic chamber 23 and 24, and a tm on-off valve 2 is installed in each hydraulic chamber 23 and 24, respectively.
A hydraulic control device 26 is connected via 5.

この油圧制御装置26は、電圧印加装置13と同様に、
回転検出器14から主軸2の回転数を示する信号が入力
されるようになっており、この信号に基づいて、各油圧
室23.24に対する作動油の導入・排出を切り換える
機能がもたされている。また、この作動油の導入・排出
の切り換えが行なわれると、上述したようにその切り換
えごとに信号が電圧印加装置13に出力され、圧電素子
11を連動して作動させるようになっている。
This hydraulic control device 26, like the voltage application device 13,
A signal indicating the rotation speed of the main shaft 2 is input from the rotation detector 14, and a function is provided to switch the introduction and discharge of hydraulic oil to each hydraulic chamber 23, 24 based on this signal. ing. Furthermore, when switching between introducing and discharging the hydraulic oil is performed, a signal is outputted to the voltage application device 13 each time the switching is performed, as described above, and the piezoelectric element 11 is operated in conjunction.

また、外筒1の内周面には、螺旋溝27が形成され、こ
の螺旋溝27に、切換弁を介して油圧制御装置26が接
続しており、油圧制御装置26により螺旋溝27に油圧
が加えられると、軸受箱8が収縮して軸方向の移動が容
易に行なえるようにしている。
Further, a spiral groove 27 is formed on the inner peripheral surface of the outer cylinder 1, and a hydraulic control device 26 is connected to this spiral groove 27 via a switching valve. When this is applied, the bearing box 8 contracts to facilitate axial movement.

このような螺旋溝27は、軸受箱8の外周に設けてもよ
い、また、螺旋溝に限らず、軸受箱8と外筒1の間に、
軸受箱の動きを容易にするものであればよく、例えば、
軸受箱8と外筒1の嵌合面間にボールスライドを組込む
方法もある。
Such a spiral groove 27 may be provided on the outer periphery of the bearing box 8, and is not limited to a spiral groove.
Any material may be used as long as it facilitates the movement of the bearing box, for example,
There is also a method of incorporating a ball slide between the fitting surfaces of the bearing box 8 and the outer cylinder 1.

この実施例のスピンドルユニットは、上記のような構造
であり、次にその作用を説明する。
The spindle unit of this embodiment has the structure as described above, and its operation will be explained next.

二の実施例においては、軸受に対する予圧■の大きさは
、軸受箱8の移動量により設定されるが、その軸受箱8
の移動量調節は、調整部材16と作動部材9及び中間+
)ング10の間に存在するすき間の大きさによって決定
され、軸受箱8の移動は、各油圧室23.24に高圧油
を導入・排出することによって発生する圧力と、圧電素
子11の伸縮とによって行なわれる。
In the second embodiment, the magnitude of the preload (■) on the bearing is set by the amount of movement of the bearing box 8.
The amount of movement can be adjusted by adjusting the adjustment member 16, the actuating member 9 and the intermediate +
) The movement of the bearing box 8 is determined by the size of the gap that exists between the rings 10, and the movement of the bearing box 8 is determined by the pressure generated by introducing and discharging high pressure oil into each hydraulic chamber 23, 24, and the expansion and contraction of the piezoelectric element 11. It is carried out by

先ず、低速回転域で重子圧を設定する場合は、圧電素子
11に高電圧を印加して圧電素子を最大に伸長させた状
態で、第2図に示すように左側の油圧室23から油を抜
き、右側の油圧室24に油を供給して圧力をかける。こ
れにより、中間リング10が左側に移動し、調整部材1
6が外筒の端面1aに押し当って固定されると共に、作
動部材9が段部20と段部22が当接する位置まで移動
する。このため、軸受には、第4図に示すように、δ1
に相当した分だけ予圧P、がかかり、重子圧状態になる
First, when setting the weight pressure in the low speed rotation range, apply a high voltage to the piezoelectric element 11 and extend the piezoelectric element to the maximum, and then drain oil from the left hydraulic chamber 23 as shown in Fig. 2. Then, supply oil to the right hydraulic chamber 24 and apply pressure. As a result, the intermediate ring 10 moves to the left, and the adjustment member 1
6 is pressed against the end surface 1a of the outer cylinder and is fixed, and the actuating member 9 moves to a position where the stepped portions 20 and 22 abut. Therefore, as shown in Fig. 4, the bearing has δ1
A preload P corresponding to , is applied, resulting in a heavy weight state.

この状態で、主軸2の回転を上げていくと、増大する遠
心力や発熱による軸受の膨張により、第4図に破線で示
すように予圧量が徐々に上昇するが、この上昇分を、圧
縮素子11の寸法を収縮させることによって吸収するよ
うに制御する。
In this state, when the rotation of the main shaft 2 is increased, the preload amount gradually increases as shown by the broken line in Fig. 4 due to the expansion of the bearing due to increasing centrifugal force and heat generation. Absorption is controlled by shrinking the dimensions of the element 11.

この制御は、電圧印加装置13において、主軸の回転数
や軸受温度の情報から予圧量の上昇を算出し、その算出
値から上昇を生じさせないための軸受箱8の移動量を求
めた後、この移動量を軸受箱8に与えるための圧電素子
11の伸縮量を求め、そして、得られた伸縮量に対応す
る電圧を、圧電素子11に印加する方法で行なわれる。
This control is performed by using the voltage application device 13 to calculate the increase in the amount of preload from the information on the rotational speed of the main shaft and the bearing temperature, and determining the amount of movement of the bearing box 8 to prevent the increase from occurring from the calculated value. This is carried out by determining the amount of expansion and contraction of the piezoelectric element 11 in order to apply the amount of movement to the bearing box 8, and then applying a voltage to the piezoelectric element 11 corresponding to the obtained amount of expansion and contraction.

上記の圧電素子11に対する印加電圧の制御を、主軸の
回転の変化に応じて連続して行なうことにより、予圧の
上昇分を圧電素子11の伸縮で吸収することができ、第
4図に実線で示すように、常に一定の予圧状態を得るこ
とができる。
By continuously controlling the voltage applied to the piezoelectric element 11 according to changes in the rotation of the main shaft, the increase in preload can be absorbed by the expansion and contraction of the piezoelectric element 11, as shown by the solid line in FIG. As shown, a constant preload condition can always be obtained.

主軸2の回転数が上がり、予圧上昇が圧電素子の最大収
縮量に近くなると、スピンドルを中子圧設定状態に切り
換えると共に、圧電素子11に高電圧を印加して圧電素
子を最大に伸長させた状態にする、この場合は、第3図
に示すように、右側の油圧室24から油を抜き、左側の
油圧室23に油を供給して、中間リング10段部21に
当接するまで移動させる。これにより、軸受には、δ2
に相当した量の予圧がかかることになり、切り換えた回
転数の時点での予圧が最初の予圧P1と一致するように
設定される。
When the rotational speed of the main shaft 2 increased and the preload increase approached the maximum contraction amount of the piezoelectric element, the spindle was switched to the core pressure setting state, and a high voltage was applied to the piezoelectric element 11 to expand the piezoelectric element to the maximum. In this case, as shown in FIG. 3, oil is drained from the right hydraulic chamber 24, oil is supplied to the left hydraulic chamber 23, and the intermediate ring 10 is moved until it comes into contact with the stepped portion 21. . As a result, the bearing has δ2
A preload corresponding to P1 is applied, and the preload at the time of the switched rotational speed is set to match the initial preload P1.

この予圧切り換え後、主軸の回転上昇に伴なって生じる
予圧の上昇は、上述したと同様に、圧電素子11に印加
する電圧をコントロールすることにより吸収でき、予圧
を一定に保持することができる。
After this preload switching, the increase in preload that occurs as the rotation of the main shaft increases can be absorbed by controlling the voltage applied to the piezoelectric element 11, as described above, and the preload can be maintained constant.

一方、さらに主軸2の回転が上がり、圧電素子の収1I
lIl界近くになると、軽予圧状態に設定を切換えると
共に、圧電素子11に高電圧を印加して圧電素子を最大
に伸長させた状態にする。この場合は、両油圧室23.
24から油を抜き、油圧力をゼロにする。これにより、
中間リング10と作動部材9が左側に移動し、軸受箱8
が第1図の状態に戻って、各軸受には軽予圧が付加され
た状態になる。
On the other hand, the rotation of the main shaft 2 further increases, and the piezoelectric element converges to 1I.
When the II field approaches, the setting is switched to a light preload state, and a high voltage is applied to the piezoelectric element 11 to make the piezoelectric element maximally expanded. In this case, both hydraulic chambers 23.
Drain the oil from 24 and reduce the hydraulic pressure to zero. This results in
The intermediate ring 10 and the actuating member 9 move to the left, and the bearing box 8
returns to the state shown in FIG. 1, and a light preload is applied to each bearing.

この切り換え後の予圧上昇は、上述と同様に圧電素子1
1の収縮量を変化させることにより防止することができ
る。
The preload increase after this switching is caused by the piezoelectric element 1 as described above.
This can be prevented by changing the amount of shrinkage.

以上のように、中間リング10及び作動部材9の移動に
よる予圧設定状態の切換えと、回転上昇に伴なう予圧増
大を圧電素子11の電圧コントロールにより吸収するこ
とにより、第4図に実線で示すように、回転数の変化に
関係なく、常に予圧を一定に維持することができ、安定
した定位置予圧が行なえる。
As described above, by switching the preload setting state by moving the intermediate ring 10 and the actuating member 9, and absorbing the increase in preload due to the increase in rotation by controlling the voltage of the piezoelectric element 11, as shown by the solid line in FIG. As such, the preload can always be maintained constant regardless of changes in the rotational speed, and stable preload can be performed at a fixed position.

また、各段階の予圧切換えに際しては、螺旋溝27に油
を供給し、軸受箱8を収縮させて移動を円滑に行なうこ
とができる。
Further, when changing the preload at each stage, oil is supplied to the spiral groove 27 to contract the bearing box 8, thereby allowing smooth movement.

一方、主軸2の回転数をN3から減少させる場合は、各
油圧室23.24に対する油の供給排出を上記とは逆の
方法で行なうようにすればよい。
On the other hand, when the rotational speed of the main shaft 2 is decreased from N3, oil may be supplied to and discharged from each hydraulic chamber 23, 24 in a manner opposite to that described above.

なお、上記の例では、回転上昇による予圧増大分だけ圧
電素子11を収縮させたが、圧電素子11を予圧の増大
分以上に収縮させるようにすれば、第5図に示すように
、高速回転になるに従って次第に軽予圧になる制御を行
なうことができる。
In the above example, the piezoelectric element 11 was contracted by the increase in preload due to the increase in rotation, but if the piezoelectric element 11 is contracted by more than the increase in preload, as shown in FIG. It is possible to control the preload to become gradually lighter as the preload increases.

また、圧電素子11に、軸受に対して重子圧から軽予圧
までの予圧を与えることができる十分な伸縮量をもたせ
れば、圧電素子の伸縮だけで軸受に任意の予圧量を加え
ることができ、連続した予圧可変制御を行なうことがで
きる。この場合は、調整部材16や中間リング10を省
くことができ、スピンドルの構造を簡略化することがで
きる。
Furthermore, if the piezoelectric element 11 has a sufficient amount of expansion and contraction to apply a preload from heavy weight pressure to light preload to the bearing, it is possible to apply an arbitrary amount of preload to the bearing simply by expanding and contracting the piezoelectric element. , continuous preload variable control can be performed. In this case, the adjustment member 16 and the intermediate ring 10 can be omitted, and the structure of the spindle can be simplified.

また、上記実施例では、軸受6.7を軸受箱8の内部に
組み込んだが、このように軸受箱内に組み込まず、軸受
箱の両面で軸受の外輪を押圧するようにしてもよい。
Further, in the above embodiment, the bearings 6, 7 are installed inside the bearing box 8, but they may not be installed inside the bearing box in this way, but the outer ring of the bearing may be pressed by both sides of the bearing box.

さらに、上記例では、軸受箱8と中間リング10を用い
、調整部材16に対する2個のすき間δ1、δ:により
3段階の予圧切り換えを行なうようにしたが、中間リン
グの数と調整部材の段部の数を増やせば、予圧の切り替
え数を増やすことが可能である。
Furthermore, in the above example, the bearing box 8 and the intermediate ring 10 are used, and the preload is switched in three stages by the two gaps δ1 and δ: with respect to the adjustment member 16, but the number of intermediate rings and the stage of the adjustment member are By increasing the number of sections, it is possible to increase the number of preload changes.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、外筒と軸受箱の間に圧電素
子を組み込む、その圧電素子を主軸の回転数の変化に応
じて伸縮させるようにしたので、低速から高速までの全
回転域にわたって予圧量を連続して変化させることがで
き、スムーズな予圧の切り換えを行なうことができる。
As described above, this invention incorporates a piezoelectric element between the outer cylinder and the bearing box, and expands and contracts the piezoelectric element in response to changes in the rotational speed of the main shaft. The amount of preload can be continuously changed over the period of time, and smooth preload switching can be performed.

また、圧電素子の伸縮により予圧量を設定するため、予
圧を設定値に正確に合わせることができ、安定したスピ
ンドル剛性と回転精度の向上が図れる効果がある。
Furthermore, since the amount of preload is set by the expansion and contraction of the piezoelectric element, the preload can be accurately adjusted to the set value, resulting in stable spindle rigidity and improved rotation accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す断面図、第2図及び第
3図はそれぞれ同上の作動状態を示す断面図、第4図及
び第5図はそれぞれ予圧の切り換え過程を示すグラフで
ある。 1・・・・・・外筒、       2・・・・・・主
軸、4.5.6.7・・・・・・軸受、8・・・・・・
軸受箱、9・・・・・・作動部材、     10・・
・・・・中間リング、11・・・・・・圧電素子、  
  13・・・・・・電圧印加装置、16・・・・・・
調整部材、   23.24・・・・・・油圧室、26
・・・・・・油圧制御装置。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIGS. 2 and 3 are sectional views showing the same operating state, and FIGS. 4 and 5 are graphs showing the preload switching process, respectively. . 1...Outer cylinder, 2...Main shaft, 4.5.6.7...Bearing, 8...
Bearing box, 9... Operating member, 10...
...Middle ring, 11...Piezoelectric element,
13... Voltage application device, 16...
Adjustment member, 23.24... Hydraulic chamber, 26
・・・・・・Hydraulic control device.

Claims (2)

【特許請求の範囲】[Claims] (1)主軸が挿通する外筒の内部に、主軸を支持する軸
受を軸方向に押圧する軸受箱を移動可能に設け、その軸
受箱と外筒の間に、上記軸方向に伸縮する圧電素子を組
み込み、その圧電素子に、主軸回転数の変化に応じて印
加電圧を変化させる電圧印加装置を接続した連続予圧可
変式スピンドルユニット。
(1) A bearing box that presses the bearing supporting the main shaft in the axial direction is movably provided inside the outer cylinder through which the main shaft is inserted, and a piezoelectric element that expands and contracts in the axial direction is placed between the bearing box and the outer cylinder. A continuously variable preload spindle unit that incorporates a piezoelectric element and connects a voltage application device that changes the applied voltage according to changes in the spindle rotation speed.
(2)圧電素子と外筒の間に、軸方向に摺動可能な移動
部材を設け、この移動部材と外筒との間に、圧力制御手
段を介して高圧流体が導入排出される圧力室を設けた請
求項(1)に記載の連続予圧可変式スピンドルユニット
(2) A moving member that can slide in the axial direction is provided between the piezoelectric element and the outer cylinder, and a pressure chamber into which high-pressure fluid is introduced and discharged via a pressure control means between the moving member and the outer cylinder The continuously variable preload spindle unit according to claim 1, further comprising:
JP29617790A 1990-10-31 1990-10-31 Continuous variable pre-load type spindle unit Pending JPH04171101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29617790A JPH04171101A (en) 1990-10-31 1990-10-31 Continuous variable pre-load type spindle unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29617790A JPH04171101A (en) 1990-10-31 1990-10-31 Continuous variable pre-load type spindle unit

Publications (1)

Publication Number Publication Date
JPH04171101A true JPH04171101A (en) 1992-06-18

Family

ID=17830163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29617790A Pending JPH04171101A (en) 1990-10-31 1990-10-31 Continuous variable pre-load type spindle unit

Country Status (1)

Country Link
JP (1) JPH04171101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003579A1 (en) * 2003-06-26 2005-01-13 Honeywell International Inc. Piezodynamic preload adjustment system
WO2012174762A1 (en) * 2011-06-20 2012-12-27 西安交通大学 Non-uniform-distribution pretightening-force-controllable high-speed main shaft based on piezoelectric actuator and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003579A1 (en) * 2003-06-26 2005-01-13 Honeywell International Inc. Piezodynamic preload adjustment system
WO2012174762A1 (en) * 2011-06-20 2012-12-27 西安交通大学 Non-uniform-distribution pretightening-force-controllable high-speed main shaft based on piezoelectric actuator and control method thereof

Similar Documents

Publication Publication Date Title
Chen et al. Bearing load analysis and control of a motorized high speed spindle
US6398680B1 (en) Continuously variable transmission
JPH04171101A (en) Continuous variable pre-load type spindle unit
JP2509747Y2 (en) Variable preload spindle unit
JP2602325B2 (en) Variable preload spindle unit
JPH0825106A (en) Pre-load adjusting device for bearing
JP2001162409A (en) Main shaft unit
JPH0822481B2 (en) Preload switching type spindle unit
JPS61168405A (en) Tailstock
JP2528236B2 (en) Variable preload spindle unit
JP2679249B2 (en) Variable preload bearing device
JPH0751904A (en) Pre-load adjusting device for spindle bearing
JPH0724604A (en) Variable pre-load type spindle unit and its control method
JP2507037Y2 (en) Continuous preload variable spindle unit
JPH0346258Y2 (en)
JP2004036747A (en) Spindle and preload control method
JPS6165958A (en) Ball screw system
CA2179477A1 (en) Preload adjustment apparatus and method
JP2538406Y2 (en) Bearing support device
JP2004036748A (en) Spindle device and preload control method
JPH0724603A (en) Variable pre-load type bearing unit
JP2002160142A (en) Numerical control device for machine tool
EP1162391B1 (en) Continuously variable transmission
JP2008002480A (en) Variable pre-load type spindle unit
JP2004034223A (en) Main spindle unit and method for controlling preload