JPH04170445A - Porous fine particle - Google Patents
Porous fine particleInfo
- Publication number
- JPH04170445A JPH04170445A JP29708690A JP29708690A JPH04170445A JP H04170445 A JPH04170445 A JP H04170445A JP 29708690 A JP29708690 A JP 29708690A JP 29708690 A JP29708690 A JP 29708690A JP H04170445 A JPH04170445 A JP H04170445A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- porosity
- transition temperature
- glass transition
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010419 fine particle Substances 0.000 title claims description 29
- 239000002245 particle Substances 0.000 claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 16
- 230000009477 glass transition Effects 0.000 claims abstract description 8
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 7
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 8
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract description 3
- 230000001580 bacterial effect Effects 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract description 2
- 239000011538 cleaning material Substances 0.000 abstract description 2
- 239000012798 spherical particle Substances 0.000 abstract description 2
- 229920001643 poly(ether ketone) Polymers 0.000 abstract 2
- 230000002745 absorbent Effects 0.000 abstract 1
- 239000002250 absorbent Substances 0.000 abstract 1
- 238000001132 ultrasonic dispersion Methods 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- -1 filtration media Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は耐熱性、耐薬品性に秀れた、空孔率の高い球状
多孔性微粒子に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to spherical porous fine particles with excellent heat resistance and chemical resistance and high porosity.
本発明の微粒子は、クロマトグラフィーの支持体、吸着
剤、菌体の支持体、触媒の担体、濾過材、及び濾過材の
洗浄材等に適用可能である。The fine particles of the present invention can be applied to chromatography supports, adsorbents, bacterial cell supports, catalyst carriers, filtration media, cleaning materials for filtration media, and the like.
高分子微粒子の製法としては種々の方法が提案されてい
る。乳化重合、懸濁重合法などによってモノマーから合
成する方法、高分子溶液に非溶媒を加えて沈澱や二成分
相分離により微粒子を得る方法などである。Various methods have been proposed for producing fine polymer particles. Methods include synthesis from monomers by emulsion polymerization, suspension polymerization, etc., and methods of obtaining fine particles by adding a nonsolvent to a polymer solution and performing precipitation or two-component phase separation.
これらの方法で得られる微粒子のうち、モノマーから合
成されるタイプは一般に架橋構造を持っている。したが
って耐熱性は高いが耐薬品性が低く、膨潤しやすいとい
う問題点があり、さらに、多孔性の高いものが得に−(
い。Among the fine particles obtained by these methods, the types synthesized from monomers generally have a crosslinked structure. Therefore, although it has high heat resistance, it has low chemical resistance and is prone to swelling.
stomach.
一方、高分子溶液を沈殿させたり相分離させる方法によ
れば多孔性の高い微粒子が得られるものの、溶剤可溶で
あるために耐薬品性が低く、また、耐熱性も充分ではな
かった。On the other hand, although highly porous fine particles can be obtained by precipitating or phase-separating a polymer solution, they are soluble in solvents and therefore have low chemical resistance and insufficient heat resistance.
本発明は架橋構造を持たないにもかかわらず、高い耐熱
性、耐薬品性を持ち、しかも高い空孔率と充分な強度を
持つ球状多孔性微粒子を提供するものである。The present invention provides spherical porous fine particles having high heat resistance and chemical resistance, high porosity, and sufficient strength despite not having a crosslinked structure.
本発明はガラス転移温度か130℃以上の熱可塑性の結
晶性高分子からなる平均粒子径1μm〜40μm1空孔
率60%〜95%の球状多孔性微粒子に関する。The present invention relates to spherical porous fine particles having an average particle size of 1 μm to 40 μm and a porosity of 60% to 95%, made of a thermoplastic crystalline polymer having a glass transition temperature of 130° C. or higher.
本発明に用いられるガラス転移温度が130°C以上の
熱可塑性結晶性高分子としては、好ましくはポリエーテ
ルエーテルケトン(PE[EK) 、ポリエーテルケト
ンPEK等があげられる。PEEには繰り返し単位
で代表的に示されるポリマー類である。Preferred examples of the thermoplastic crystalline polymer having a glass transition temperature of 130°C or higher used in the present invention include polyetheretherketone (PE[EK), polyetherketone PEK, and the like. PEE is a polymer typically represented by repeating units.
で代表的に示されるポリマー類である。These are typical polymers.
本発明の多孔性微1粒子は、粒子径1〜40μmの範囲
で所望の大きさをとりうる。The porous fine particles of the present invention can have a desired size within the particle diameter range of 1 to 40 μm.
球状の粒子lコ1コは、0.1〜2μmから選ばれるほ
ぼ同じ大きさの空隙を多数有しており、粒子表面は粒子
を形成するポリマーか薄い鱗片状または糸状をなして外
へ向って突出した形状をとっている。この様子を図面に
示した。Each spherical particle has many voids of approximately the same size selected from 0.1 to 2 μm, and the particle surface is formed by the polymer forming the particle, forming thin scales or threads that extend outward. It has a prominent shape. This situation is shown in the drawing.
第1図はこの発明の粒子の構造の一例を示す電子顕微鏡
写真(倍率4000倍)である。FIG. 1 is an electron micrograph (magnification: 4000 times) showing an example of the structure of the particles of the present invention.
本願の微粒子はひじように高い空孔率を有する。The fine particles of the present application have extremely high porosity.
しかも、空孔率か高いにもかかわらず大きな強度(圧縮
)を持っている。また、高い耐薬品性を示すか、こりは
恐らく個個の微粒子の高い結晶性に由来しているものと
思われる。Moreover, it has great strength (compression) despite its high porosity. In addition, it shows high chemical resistance, and the stiffness is probably due to the high crystallinity of the individual fine particles.
空孔率は60%未満では吸着剤、担体、濾過材としての
性能か不充分であり、一方、95%を越えると微粒子の
強度か弱くなり実用的でない。If the porosity is less than 60%, the performance as an adsorbent, carrier, or filtering medium is insufficient, while if it exceeds 95%, the strength of the fine particles becomes weak and is not practical.
ここで微粒子の空孔率Pr(%)とは
微粒子を微粒子の含水時の重量W+(g)、乾燥後の重
量W。(g)、および原料の結晶性高分子の比重をρと
するとき、
ρ
で表わされる値を云う。Here, the porosity Pr (%) of the fine particles is the weight W+(g) of the fine particles when wet, and the weight W after drying. (g), and the specific gravity of the raw material crystalline polymer is ρ, the value expressed by ρ.
含水時の重量は、まず乾燥微粒予約1gを100−のエ
タノール中に加えて細孔内に充分エタノールを湿潤させ
、濾紙でこし、残った微粒子をかわかす事なく水中に分
散させてから、濾紙で10回繰り返してこし、充分に水
に濡れた微粒子を得、それを乾いた濾紙上に拡げ余分な
水分をとってから重量を測定すれば良い。乾燥は水分を
とばすために、100°Cて24時間の真空乾燥をすれ
ば充分である。To determine the weight when hydrated, first add 1 g of dry fine particles to 100-g of ethanol, wet the ethanol sufficiently into the pores, strain through a filter paper, disperse the remaining fine particles in water without evaporating, and then pour through a filter paper. Repeat straining 10 times to obtain fine particles that are sufficiently wet with water, spread them on dry filter paper, remove excess water, and then measure the weight. For drying, vacuum drying at 100°C for 24 hours is sufficient to remove moisture.
本発明の多孔性微粒子は、例えばガラス転移温度が13
0℃以上の熱可塑性結晶性高分子を、加熱したスルホラ
ン中に溶解してから冷却し、得られたゲル状物を水中で
超音波分散させる事により得られる。For example, the porous fine particles of the present invention have a glass transition temperature of 13
It is obtained by dissolving a thermoplastic crystalline polymer at a temperature of 0° C. or higher in heated sulfolane, cooling it, and ultrasonically dispersing the resulting gel in water.
乾燥物を得るためには、濾紙でこしてから減圧あるいは
加熱乾燥すれば食い。凝集を防ぐためには、凍結してか
ら減圧乾燥が好ましい。To obtain a dried product, strain it through a filter paper and dry it under reduced pressure or heat. In order to prevent agglomeration, it is preferable to freeze and then dry under reduced pressure.
他の方法としては、ポリマーを溶解した加熱スルホラン
溶液をノズルから空気中に噴霧し、水中あるいは適当な
溶媒中に捕集することによって得られる。Another method is to spray a heated sulfolane solution in which the polymer is dissolved into the air from a nozzle and collect it in water or a suitable solvent.
得られる微粒子の空孔率は、スルホラン溶液の中のポリ
マー濃度によりコントロールでき、空孔率の高いものは
溶液の濃度を下げる事により得られる。The porosity of the resulting fine particles can be controlled by the polymer concentration in the sulfolane solution, and particles with high porosity can be obtained by lowering the concentration of the solution.
また、微粒子の大きさは冷却速度あるいは噴霧時の液滴
の大きさによりコントロールでき、1〜40μmのもの
を作ることかてきる。Further, the size of the fine particles can be controlled by the cooling rate or the size of droplets during spraying, and particles with a size of 1 to 40 μm can be produced.
実施例
ICI社製のPEEKのガラス転移温度をパーキンエル
マー社製示差熱分析計(DSC)により測定したところ
、143℃であった。Example The glass transition temperature of PEEK manufactured by ICI was measured using a differential thermal analyzer (DSC) manufactured by PerkinElmer, and was found to be 143°C.
このPEEK 7gを加熱したスルホラン(東京化成製
)93g中に入れ、287°C窒素シール下で8時間撹
拌し、かっ色の透明溶液を得た。7 g of this PEEK was placed in 93 g of heated sulfolane (manufactured by Tokyo Kasei) and stirred for 8 hours at 287° C. under a nitrogen blanket to obtain a brown transparent solution.
これを容器ごと空気中で放冷し、灰色のゲル状物を得た
。このゲル状物を容器からとり出し、11の水中に入れ
、超音波を1時間かけたところ、白濁した液が得られた
。The whole container was left to cool in the air to obtain a gray gel-like substance. When this gel-like material was taken out from the container, placed in water No. 11, and subjected to ultrasonic waves for 1 hour, a cloudy liquid was obtained.
これを濾紙でこしてから残量を再び11の水中に加え、
超音波を1時間かけた。これをAI!板上に数滴落とし
、乾燥させて電子顕微鏡(SEM)で観察したところ、
粒径的16μmの微粒子が生成していた。この微粒子の
構造を第2図(4000倍)に示した。一方、この分散
液を再び濾紙でこし、得た残金を90°Cて真空乾燥し
た。得られた微粒子の重量は、約6.5g、空孔率は9
1%であった。Strain this through filter paper and add the remaining amount to the water in step 11 again.
Ultrasound was applied for 1 hour. AI this! When I dropped a few drops on a plate, let it dry, and observed it with an electron microscope (SEM), I found that
Fine particles with a particle diameter of 16 μm were generated. The structure of this fine particle is shown in Figure 2 (4000x magnification). On the other hand, this dispersion was filtered again through a filter paper, and the resulting residue was vacuum-dried at 90°C. The weight of the obtained fine particles was approximately 6.5 g, and the porosity was 9.
It was 1%.
参考例
実施例て得られた微粒子1gをエタノール50g中に分
散させ、吸引びんに取付けたG4のガラスフィルター(
65φ)上へ注ぎ、吸引してガラスフィルター上に微粒
子の層を形成させた。層上に純水11を注ぎ、吸引して
微粒子層を水洗した。Reference Example 1 g of the fine particles obtained in Example was dispersed in 50 g of ethanol, and a G4 glass filter (
65φ) and suctioned to form a layer of fine particles on the glass filter. Pure water 11 was poured onto the layer and suctioned to wash the fine particle layer with water.
さらに球径1,09μmのポリスチレンラテックス球の
水分散液を注ぎ、吸引濾過したところ、ラテックスの微
粒子層透過率は2%以下であった。Furthermore, when an aqueous dispersion of polystyrene latex spheres having a sphere diameter of 1,09 μm was poured and filtered by suction, the permeability of the latex through the fine particle layer was 2% or less.
一方、微粒子層を形成させないガラスフィルターを用い
た以外は上記と同じ方法を繰返し、球径1.09μmの
ポリスチレンラテックスの吸引濾過を行ったところ、ラ
テックスは100%透過した。On the other hand, when polystyrene latex with a spherical diameter of 1.09 μm was suction-filtered by repeating the same method as above except for using a glass filter that does not form a fine particle layer, 100% of the latex passed through.
第1図は、この発明の粒子の構造の例を示す電子顕微鏡
写真である。
第2図は、この発明の実施例により得られた粒子の構造
を示す電子顕微鏡写真である。
特許出願人 旭化成工業株式会社FIG. 1 is an electron micrograph showing an example of the structure of the particles of the present invention. FIG. 2 is an electron micrograph showing the structure of particles obtained according to an example of the present invention. Patent applicant Asahi Kasei Industries, Ltd.
Claims (1)
性高分子からなる平均粒子径1μm〜40μm、空孔率
60%〜95%の球状の多孔性微粒子(1) Spherical porous fine particles with an average particle diameter of 1 μm to 40 μm and a porosity of 60% to 95%, made of a thermoplastic crystalline polymer with a glass transition temperature of 130°C or higher
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29708690A JP3086478B2 (en) | 1990-11-05 | 1990-11-05 | Porous fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29708690A JP3086478B2 (en) | 1990-11-05 | 1990-11-05 | Porous fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04170445A true JPH04170445A (en) | 1992-06-18 |
JP3086478B2 JP3086478B2 (en) | 2000-09-11 |
Family
ID=17842021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29708690A Expired - Fee Related JP3086478B2 (en) | 1990-11-05 | 1990-11-05 | Porous fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3086478B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036522A1 (en) * | 1999-11-16 | 2001-05-25 | Asahi Kasei Kabushiki Kaisha | Porous beads and process for producing the same |
CN109432494A (en) * | 2018-11-20 | 2019-03-08 | 中国科学院长春应用化学研究所 | A kind of surface has the PEEK microballoon and its preparation method and application of special topology |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102615889B1 (en) * | 2019-09-11 | 2023-12-20 | (주)엘엑스하우시스 | Thermoplasticity polymer particles and method for preparing the same |
-
1990
- 1990-11-05 JP JP29708690A patent/JP3086478B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036522A1 (en) * | 1999-11-16 | 2001-05-25 | Asahi Kasei Kabushiki Kaisha | Porous beads and process for producing the same |
EP1247831A1 (en) * | 1999-11-16 | 2002-10-09 | Asahi Kasei Kabushiki Kaisha | Porous beads and process for producing the same |
EP1247831A4 (en) * | 1999-11-16 | 2003-01-08 | Asahi Chemical Ind | Porous beads and process for producing the same |
US6689465B1 (en) | 1999-11-16 | 2004-02-10 | Asahi Kasei Kabushiki Kaisha | Porous beads and process for producing the same |
CN109432494A (en) * | 2018-11-20 | 2019-03-08 | 中国科学院长春应用化学研究所 | A kind of surface has the PEEK microballoon and its preparation method and application of special topology |
Also Published As
Publication number | Publication date |
---|---|
JP3086478B2 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104477878B (en) | Graphene-based hierarchical porous carbon material as well as preparation method and application thereof | |
US20170247493A1 (en) | Chemically stable hollow sperical cof and synthesis thereof | |
JPH01502166A (en) | Microporous asymmetric polyfluorocarbon membrane | |
US5525710A (en) | Highly porous chitosan bodies | |
EP1247831B1 (en) | Porous beads and process for producing the same | |
JP2019018175A (en) | Composite, manufacturing method of composite, adsorbent and purifying method of liquid | |
CN110327792B (en) | Tree-structure mixed matrix membrane constructed by bi-component nano additive and preparation method and application thereof | |
US5767167A (en) | Open cell polymeric foam filtering media | |
Sen et al. | Novel polysulfone–spray-dried silica composite membrane for water purification: Preparation, characterization and performance evaluation | |
JPH04170445A (en) | Porous fine particle | |
KR100557264B1 (en) | Hollow fiber membrane and process for producing the same | |
Hatori et al. | Preparation of macroporous carbons from phase‐inversion membranes | |
CN111732754B (en) | Three-dimensional scaffold with multistage holes, three-dimensional functional scaffold and preparation method thereof | |
CN107383734B (en) | Preparation method of CNTs modified PAN phase-change material microcapsule composite film | |
JP2837694B2 (en) | Porous separation membrane | |
CN115445455A (en) | Preparation method of ultra-thin mixed matrix asymmetric membrane with MOFs (metal-organic frameworks) in gradient distribution | |
US6706088B2 (en) | Method for controlling membrane permeability by microwave and method for producing organic separation membrane | |
JP7104656B2 (en) | How to make halloysite powder and halloysite powder | |
Carbajo et al. | Characterization of latex particle arrays by gas adsorption | |
Mähr et al. | Synthesis and characterization of porous polymer membranes produced by interparticle crosslinking | |
Takawa et al. | Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties | |
Fujii et al. | Morphological structures of the membranes prepared from polymer solutions | |
JPH02647A (en) | Production of porous membrane | |
JP7384278B2 (en) | Cellulose-based ion exchange membrane and method for producing the same, device for purifying exosomes, and method for purifying exosomes | |
CN112090297B (en) | Composite membrane based on ultra-small MOF, preparation method and application of composite membrane in dye separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |