JPH0417031B2 - - Google Patents

Info

Publication number
JPH0417031B2
JPH0417031B2 JP60015223A JP1522385A JPH0417031B2 JP H0417031 B2 JPH0417031 B2 JP H0417031B2 JP 60015223 A JP60015223 A JP 60015223A JP 1522385 A JP1522385 A JP 1522385A JP H0417031 B2 JPH0417031 B2 JP H0417031B2
Authority
JP
Japan
Prior art keywords
motor
torque
current
coefficient
armature current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60015223A
Other languages
Japanese (ja)
Other versions
JPS61177186A (en
Inventor
Yoichi Maeda
Kazuo Shimozu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP60015223A priority Critical patent/JPS61177186A/en
Publication of JPS61177186A publication Critical patent/JPS61177186A/en
Publication of JPH0417031B2 publication Critical patent/JPH0417031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/295Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC of the kind having a thyristor or the like in series with the power supply and the motor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、幅広(例えば4m幅)のフイルム
を狭い幅(例えば30cm幅)のフイルに切断するス
リツタマシーン等に使用して好適な永久磁石界磁
直流モータに係り、特に、前記永久磁石の減磁に
よるトルク減少を自動的に補正するようにした永
久磁石界磁直流モータの自動トルク補正装置に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is suitable for use in a slitting machine that cuts a wide film (for example, 4 m width) into a narrow film (for example, 30 cm width). The present invention relates to a magnet field DC motor, and more particularly to an automatic torque correction device for a permanent magnet field DC motor that automatically corrects a decrease in torque due to demagnetization of the permanent magnet.

〔従来の技術〕[Conventional technology]

上記スリツタマシーンにおいては、巻取機に張
力検出機構を取り付けるのが難しいため、フイル
ムの張力を直接検出することが困難である。この
ため、予め設定した張力を実現するのに必要な電
機子電流を流すことによつて、モータのトルクを
調節して巻取制御を行つている。
In the above-mentioned slitting machine, it is difficult to attach a tension detection mechanism to the winder, so it is difficult to directly detect the tension of the film. For this reason, winding control is performed by adjusting the torque of the motor by flowing an armature current necessary to achieve a preset tension.

一方、巻取機の駆動モータとしては、機械的ス
ペースの関係で永久磁石界磁直流モータが使用さ
れることが多い。
On the other hand, a permanent magnet field direct current motor is often used as a drive motor for the winding machine due to mechanical space constraints.

第2図は、この種のトルク補正装置の従来例を
示すブロツク図である。この図において、1は永
久磁石界磁直流モータ(以下、単にモータとい
う)であり、このモータ1にはサイリスタ変換装
置2から電機子電流Iaが供給され、この電流Iaが
電流検出器3によつて検出される。上記サイリス
タ変換装置2は、交流電源4から供給される交流
を整流して電機子電流Iaを形成するもので、電流
Iaの大きさは、電流制御アンプ5から供給される
信号によつてサイリスタ2aの点弧角を変化させ
ることによつて調節されるようになつている。
FIG. 2 is a block diagram showing a conventional example of this type of torque correction device. In this figure, reference numeral 1 indicates a permanent magnet field DC motor (hereinafter simply referred to as a motor), and this motor 1 is supplied with an armature current Ia from a thyristor converter 2, and this current Ia is detected by a current detector 3. detected. The thyristor conversion device 2 rectifies the alternating current supplied from the alternating current power source 4 to form an armature current Ia, and the current
The magnitude of Ia is adjusted by changing the firing angle of the thyristor 2a using a signal supplied from the current control amplifier 5.

一方、図中6は、張力設定器7によつて設定さ
れたフイルムの張力を実現するのに必要な電機子
電流を演算するための演算装置であり、予め定め
られたプログラムに従つて所定の演算を行うプロ
グラマブルコントローラによつて構成されてい
る。さらに説明すると、この演算装置6は、上記
張力とフイルムの巻取径とを乗算してトルク設定
値Tqaを出力する乗算部6aと、トルク設定値
Tqaに慣性補償値と機械損失補償値とを加算して
得たトルク指令Tqcから、式 Ic=Tqc/Kφ ……(1) ただし φ;界磁磁束(Wb) K;モータによつて定まる定数 によつて電流設定指令Icを演算する加算部6bと
からなつている。そして、電流設定指令Icが電流
補正用ボリユーム8によつて手動で補正されて、
電流指令Iacが形成され、電流制御アンプ5によ
つて、電機子電流Iaが電流指令Iacと一致するよ
うに、サイリスタ2aの点弧角が調整されて、電
機子電流Iaのフイードバツク制御が行われる。
On the other hand, numeral 6 in the figure is a calculation device for calculating the armature current necessary to achieve the film tension set by the tension setting device 7. It is composed of a programmable controller that performs calculations. To explain further, this arithmetic device 6 includes a multiplier 6a that multiplies the tension and the winding diameter of the film to output a torque setting value Tqa, and a torque setting value Tqa.
From the torque command Tqc obtained by adding the inertia compensation value and mechanical loss compensation value to Tqa, the formula Ic = Tqc / Kφ ... (1) where φ: Field magnetic flux (Wb) K: Constant determined by the motor and an addition section 6b that calculates the current setting command Ic. Then, the current setting command Ic is manually corrected by the current correction volume 8,
A current command Iac is formed, and the firing angle of the thyristor 2a is adjusted by the current control amplifier 5 so that the armature current Ia matches the current command Iac, and feedback control of the armature current Ia is performed. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した従来の装置にあつては、永
久磁石界磁、すなわち(1)式のφが、過大な電機子
電流Iaや自然減磁によつて弱まるため、モータ1
の発生トルクが減少してしまうという問題があつ
た。このため、定期的にトルク測定を行い、ボリ
ユーム8を手動で調節して電流指令Iacを増加さ
せて補償していた。
By the way, in the conventional device described above, the permanent magnet field, that is, φ in equation (1), weakens due to excessive armature current Ia and natural demagnetization.
There was a problem that the generated torque decreased. For this reason, torque was measured periodically and the volume 8 was manually adjusted to increase the current command Iac to compensate.

しかしながら、このトルク測定を行うには、機
械を休止した上、トルクメータやダイナモメータ
など多くの測定器と労力をかけなければならなか
つた。
However, in order to measure this torque, it was necessary to stop the machine and use many measuring instruments such as torque meters and dynamometers, as well as labor.

この発明は上記の事情に鑑みてなされたもの
で、トルク補正を自動的に行うことにより、トル
ク測定等煩雑な作業を不要にすることを目的とす
る。
This invention has been made in view of the above circumstances, and aims to eliminate the need for complicated operations such as torque measurement by automatically performing torque correction.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明は、(1)
式の値Kφ(=Tqc/Ic)の初期値a0(例えば、工
場出荷時の値)を記憶しておき、前記Kφが値ao
(ao/a0)に低下したときに、(1)式の電流設定指
令Icを自動的にa0/ao倍するように構成したこと
を特徴とする。
In order to solve the above problems, this invention (1)
The initial value a 0 (for example, the value at factory shipment) of the value Kφ (=Tqc/Ic) of the formula is memorized, and the above Kφ is set to the value a o
The present invention is characterized in that the current setting command Ic in equation ( 1 ) is automatically multiplied by a 0 / a 0 when the current setting command Ic decreases to (a 0 /a 0 ).

〔作用〕[Effect]

上記構成によれば、初期値a0に対しての発生ト
ルクTqoは、Kφ=a0かつ電機子電流Ia=Icから、 Tqo=KφIa=a0Ic ……(2) となる。また、減磁後の値aoに対する発生トルク
Tqは、Kφ=aoかつ電機子電流 Ia=(a0/ao)Icから、 Tq=KφIa=ao(a0/ao)Ic =a0Ic=Tqo ……(3) となる。すなわち、トルクTqは常に一定に保た
れる。
According to the above configuration, the generated torque Tqo with respect to the initial value a 0 becomes Tqo=KφIa=a 0 Ic (2) since Kφ=a 0 and armature current Ia=Ic. Also, the generated torque for the value a o after demagnetization
Since Kφ=a o and armature current Ia=(a 0 /a o )Ic, Tq=KφIa=a o (a 0 /a o )Ic =a 0 Ic=Tqo ……(3) . That is, torque Tq is always kept constant.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明
する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本実施例によるトルク補正装置の構
成を示すブロツク図である。この図において、1
1はモータ1の電機子電圧Eを検出する電圧検出
器であり、抵抗器から構成されている。12は回
転検出器でモータ1の回転数を検出するものであ
る。ここで、電機子抵抗を無視すれば、電機子電
圧Eと回転数Nとは、 N=Ka(E/Kφ) ……(4) ただし;Kaは定数 なる関係にあるから、 Kφ=Ka・E/N ……(5) となり、(5)式から(1)式のKφを求めることができ
る。この値Kφは、上述したように減磁作用によ
つて次第に低下するが、その初期値をa0,減磁し
た値をaoとすると、実機の値aoは(5)式によつて、 ao=Kφ=Ka・E/N ……(6) となる。演算部13は、上記(6)式によつて値ao
求めるもので、この値aoとメモリ16に記憶され
た初期値a0との比a0/aoが割算部14によつて計
算される。そして、乗算部15によつて電流設定
指令Icと比a0/aoの乗算が行われ、 Iac=(a0/ao)Ic ……(7) なる電流指令Iacが電流制御アンプ5へ供給さ
れる。
FIG. 1 is a block diagram showing the configuration of a torque correction device according to this embodiment. In this figure, 1
A voltage detector 1 detects an armature voltage E of the motor 1, and is composed of a resistor. A rotation detector 12 detects the rotation speed of the motor 1. Here, if the armature resistance is ignored, the armature voltage E and rotation speed N are N=Ka(E/Kφ)...(4) However; since Ka is a constant, Kφ=Ka・E/N...(5) Therefore, Kφ in equation (1) can be obtained from equation (5). As mentioned above, this value Kφ gradually decreases due to the demagnetization effect, but if its initial value is a 0 and the demagnetized value is a o , then the actual value a o is determined by equation (5). , ao = Kφ = Ka・E/N ...(6). The arithmetic unit 13 calculates the value a o using the above equation (6), and the ratio a 0 /a o between this value a o and the initial value a 0 stored in the memory 16 is sent to the dividing unit 14. It is calculated accordingly. Then, the multiplier 15 multiplies the current setting command Ic by the ratio a 0 /a o , and the current command Iac as follows is sent to the current control amplifier 5 as Iac = (a 0 /a o ) Ic ... (7) Supplied.

このような構成によれば、すでに〔作用〕の欄
で述べたように、電機子電流Iaが(a0/ao)Icと
なり、このときのモータ1の発明トルクTqは、 Tq=KφIa =ao・(a0/ao)Ic =a0Ic=Tqo(一定) ……(8) となる。
According to such a configuration, as already mentioned in the [Operation] section, the armature current Ia becomes (a 0 /a o )Ic, and the invention torque Tq of the motor 1 at this time is Tq = KφIa = a o・(a 0 /a o ) Ic = a 0 Ic = Tqo (constant) ...(8).

こうして、本実施例によればモータ1の電機子
電流Iaが自動的に調節され、モータ1の発生トル
クTqが常に一定に保たれることとなる。
In this way, according to this embodiment, the armature current Ia of the motor 1 is automatically adjusted, and the torque Tq generated by the motor 1 is always kept constant.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、永久磁石が
減磁してもモータの出力トルクが常に一定となる
ようにしたから、モータのトルクを測定して電機
子電流指令の補正を行うといつた煩雑な作業を行
わなくて済む利点が得られる。
As explained above, this invention ensures that the motor's output torque remains constant even when the permanent magnet is demagnetized, so it is possible to measure the motor torque and correct the armature current command. This has the advantage of not requiring complicated work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロツ
ク図、第2図は従来のトルク補正装置の構成を示
すブロツク図である。 1……モータ、2……サイリスタ変換装置、3
……電流検出器、5……電流制御アンプ、11…
…電圧検出器、12……回転検出器(上記3,1
1,12は検出手段)、13……演算部(演算手
段)、14……割算部、15……乗算部(上記1
4,15は補正手段)、16……メモリ(記憶手
段)。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a conventional torque correction device. 1... Motor, 2... Thyristor conversion device, 3
...Current detector, 5...Current control amplifier, 11...
...Voltage detector, 12... Rotation detector (3, 1 above)
1 and 12 are detection means), 13... calculation section (calculation means), 14... division section, 15... multiplication section (above 1
4 and 15 are correction means), 16...memory (storage means).

Claims (1)

【特許請求の範囲】 1 永久磁石を界磁とする直流モータ1のトルク
補正装置において、 前記直流モータ1の電機子電圧E、電機子電流
Iaおよび回転数Nを検出する検出手段3,11,
12と、 前記検出手段3,11,12の出力によつて前
記直流モータ1の出力トルクTqと電機子電流Ia
とを関係づける係数anを式{an=(Ka・E)/
N}(Kaは係数)に基づいて演算する演算手段1
3と、 前記係数anの初期値a0を記憶する記憶手段
16と、 この初期値a0と任意時点における前記係数
anとの比a0/anによつて電機子電流指令Iacの
補正を行う補正手段14,15と を具備することを特徴とする永久磁石界磁直流モ
ータの自動トルク補正装置。
[Claims] 1. In a torque correction device for a DC motor 1 using a permanent magnet as a field, the armature voltage E and the armature current of the DC motor 1 are
Detection means 3, 11 for detecting Ia and rotation speed N,
12, and the output torque Tq of the DC motor 1 and the armature current Ia are determined by the outputs of the detection means 3, 11, and 12.
The coefficient an that relates to is expressed as {an=(Ka・E)/
Calculating means 1 that calculates based on N} (Ka is a coefficient)
3, a storage means 16 for storing an initial value a0 of the coefficient an, and a storage means 16 for storing an initial value a0 of the coefficient an and the coefficient at an arbitrary point in time.
An automatic torque correction device for a permanent magnet field DC motor, comprising correction means 14 and 15 for correcting the armature current command Iac according to the ratio a0/an of the armature current command Iac.
JP60015223A 1985-01-29 1985-01-29 Automatic torque correction device for permanent magnet field dc motor Granted JPS61177186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015223A JPS61177186A (en) 1985-01-29 1985-01-29 Automatic torque correction device for permanent magnet field dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015223A JPS61177186A (en) 1985-01-29 1985-01-29 Automatic torque correction device for permanent magnet field dc motor

Publications (2)

Publication Number Publication Date
JPS61177186A JPS61177186A (en) 1986-08-08
JPH0417031B2 true JPH0417031B2 (en) 1992-03-25

Family

ID=11882865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015223A Granted JPS61177186A (en) 1985-01-29 1985-01-29 Automatic torque correction device for permanent magnet field dc motor

Country Status (1)

Country Link
JP (1) JPS61177186A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144781A (en) * 1986-12-06 1988-06-16 Yaskawa Electric Mfg Co Ltd Torque control system for motor
JPH01231675A (en) * 1988-03-11 1989-09-14 Mitsubishi Electric Corp Torque detector

Also Published As

Publication number Publication date
JPS61177186A (en) 1986-08-08

Similar Documents

Publication Publication Date Title
JP3183759B2 (en) Load measuring device
EP0645879B1 (en) Vector and apparatus control method for controlling a rotor speed of an induction motor
US6396236B1 (en) Method of minimizing errors in rotor angle estimate in synchronous machine
US20080116833A1 (en) Motor control apparatus
JPS6129302B2 (en)
KR940025152A (en) Control method of induction motor
JPH0417031B2 (en)
JP3140022B2 (en) Motor constant power control device
JPH0547077A (en) Current supply circuit for magnetic tape and current supply control method
JPH06121570A (en) Ac motor control system
JP2004173422A (en) Controller for induction motor
JPS633556B2 (en)
JP2707680B2 (en) Speed calculation device and speed control device for induction motor
JPH0526900Y2 (en)
JPH0369820B2 (en)
JPS6365578B2 (en)
JPH09182500A (en) Sensorless vector control inverter of motor winding resistance correcting type
JP2000122733A (en) Current controller equipped with error correcting function by temperature
JPS60191953A (en) Controller for multiple winding unit
JPH05181503A (en) Stablized feedback control method
JPS5921293A (en) Torque controller for induction motor
JPH01174286A (en) Vector control device for squirrel-cage induction motor
JP2000184779A (en) Method for controlling dc electric motor for winder
JPS61112585A (en) Torque controller of permanent magnet motor
JPH06189576A (en) Control device for induction motor