JPH04169817A - Optical type displacement meter - Google Patents

Optical type displacement meter

Info

Publication number
JPH04169817A
JPH04169817A JP29527390A JP29527390A JPH04169817A JP H04169817 A JPH04169817 A JP H04169817A JP 29527390 A JP29527390 A JP 29527390A JP 29527390 A JP29527390 A JP 29527390A JP H04169817 A JPH04169817 A JP H04169817A
Authority
JP
Japan
Prior art keywords
wavelength
light
displacement
signal
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29527390A
Other languages
Japanese (ja)
Inventor
Takahide Iida
隆英 飯田
Hiroshi Miyake
三宅 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP29527390A priority Critical patent/JPH04169817A/en
Publication of JPH04169817A publication Critical patent/JPH04169817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To stabilize a wavelength of a laser light emitted from a light source and to improve precision by taking out directly a fluctuation in the wavelength and by controlling an injection current into the light source by a standardization signal on the basis of an intensity signal of the light emitted actually. CONSTITUTION:An interference means 10 for a wavelength fluctuation control has a surface 10' composed of a total reflector element 10'a and a semitransparent mirror element 10'b and a surface 10'' formed of a total reflector and a gap between the surfaces 10' and 10'' is fixed beforehand at a prescribed dimension (d). A fluctuation in the wavelength of a laser light emitted currently from a semiconductor laser 1 is taken out directly by the means 10, and a standardization signal based on an intensity signal of the light emitted actually is obtained by an arithmetic processing of signals from the means 10 and an interference means 13 for displacement detection. The standardization signal thus obtained being used, an injection current is controlled by an injection current control means 20 so that the wavelength of the laser 1 be fixed, and moreover detection of displacement and discrimination of the direction of the displacement are conducted. According to this constitution, a control including all factors of the fluctuation in the wavelength is conducted and stability of the wavelength and an improvement in precision can be attained.

Description

【発明の詳細な説明】 〔概  要〕 本発明は光の干渉現象を利用して被検面の変位を測定す
る光学式変位計に関する。従来測定精度を向上させる目
的で、光源から出射される光の波長の安定化を図り、温
度制御及び出力制御が行われてきたが、その制御方法に
は不確実性が存在していた。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to an optical displacement meter that measures the displacement of a surface to be inspected using a light interference phenomenon. Conventionally, in order to improve measurement accuracy, temperature control and output control have been performed to stabilize the wavelength of light emitted from a light source, but there has been uncertainty in the control method.

本発明においては、従来例に対して波長変動制御用干渉
手段を設け、現在光源より出射されているレーザ光の波
長変動分を直接取り出し、現実に出射されている光の強
度信号に基づく規格化信号により光源への注入電流制御
を行い、光源の出力制御を行う。ゆえに、温度及び温度
以外の波長変動要因を全て含んだ状態での制御が可能と
なり、波長の安定性が向上し測定精度も高まる。
In the present invention, an interference means for wavelength fluctuation control is provided in contrast to the conventional example, and the wavelength fluctuation of the laser light currently emitted from the light source is directly extracted and normalized based on the intensity signal of the light actually emitted. The signal controls the current injected into the light source and controls the output of the light source. Therefore, it becomes possible to perform control that includes all wavelength fluctuation factors other than temperature, which improves wavelength stability and measurement accuracy.

〔産業上の利用分野〕[Industrial application field]

本発明は、光の干渉現象を利用して被検面の変位を測定
する光学式変位計に関し、特にX−Yステージなどの比
較的大きな変位を高分解能で計測する必要のある分野に
利用される。
The present invention relates to an optical displacement meter that measures displacement of a surface to be inspected using light interference phenomena, and is particularly applicable to fields such as X-Y stages where relatively large displacements need to be measured with high resolution. Ru.

〔従来の技術〕[Conventional technology]

光の干渉現象を利用した変位計の測定精度を向上させる
目的で、光源から出射される光の波長の安定化を図り、
第6図に示すような構成のフィゾー型干渉計を変位検出
手段に用いた光学式変位計が知られていた。
In order to improve the measurement accuracy of displacement meters that utilize light interference phenomena, we aim to stabilize the wavelength of the light emitted from the light source.
An optical displacement meter has been known that uses a Fizeau type interferometer having a configuration as shown in FIG. 6 as a displacement detection means.

同図に示すように、半導体レーザ1から出射されたレー
ザ光はレンズ8で平行光とされハーフミラ−11を透過
し、その一部が参照面13で反射され、他の一部が参照
面13を透過して被検面14で反射される。このように
して、参照面13と被検面14で反射された各々のレー
ザ光は、ハーフミラ−11で90°屈折され、同一の径
路をたどって干渉し、その干渉信号が光検出素子15で
検出され信号処理回路17へ送られ光強度信号IC1I
dが得られる。該光強度信号■。、Iaは干渉信号の強
弱に応じ、被検面14がλ/2(λは半導体レーザの発
振波長)だけ変位する毎に1周期変化することから(第
3図参照)、例えば信号処理回路17で出力信号の周期
数をカウントし、このカウント数nをλ/2に乗するこ
と等の処理を行うことにより、被検面14の変位ΔXを
測定することができる。また、変位方向の判別をする場
合には、例えば参照面13に段差13’pを設けること
で、互いに90°の位相差を持つ2つの光束Lc。
As shown in the figure, the laser beam emitted from the semiconductor laser 1 is converted into parallel light by the lens 8 and transmitted through the half mirror 11, a part of which is reflected by the reference surface 13, and the other part is reflected by the reference surface 13. and is reflected by the surface to be inspected 14. In this way, each laser beam reflected by the reference surface 13 and the test surface 14 is refracted by 90 degrees by the half mirror 11, follows the same path and interferes, and the interference signal is detected by the photodetector element 15. The light intensity signal IC1I is detected and sent to the signal processing circuit 17.
d is obtained. The light intensity signal■. , Ia change by one cycle each time the surface to be measured 14 is displaced by λ/2 (λ is the oscillation wavelength of the semiconductor laser) (see FIG. 3), depending on the strength of the interference signal. For example, the signal processing circuit 17 By performing processing such as counting the number of periods of the output signal and multiplying this count number n by λ/2, the displacement ΔX of the surface to be measured 14 can be measured. Further, when determining the displacement direction, for example, by providing a step 13'p on the reference surface 13, two light beams Lc having a phase difference of 90 degrees are generated.

L、を作成し、これらをそれぞれ光検出素子15c、1
’5dで受光し、信号処理回路17で光強度信号IC,
Iaとして得る。すると、第4図に示すように2つの光
強度信号■。、Idは互いに90゜の位相差を持ち、し
かも変位ΔXの方向に応して信号の遅れ、進みの関係が
決定されるので、この関係から方向判別ができる。そし
て、変位量の結果は表示器21で表示される。
L, and these are respectively photodetecting elements 15c and 1.
'5d, the signal processing circuit 17 receives the light intensity signal IC,
Obtained as Ia. Then, as shown in Fig. 4, two light intensity signals ■. , Id have a phase difference of 90° from each other, and since the relationship between signal delay and advance is determined according to the direction of the displacement ΔX, the direction can be determined from this relationship. Then, the result of the displacement amount is displayed on the display 21.

このように、被検面14の変位ΔXを測定するためには
レーザ光の波長λが基準となる。ところが、半導体レー
ザ1に温度変化が生じると、それに伴って発振波長λも
変化する(第5図参照)。
In this way, in order to measure the displacement ΔX of the test surface 14, the wavelength λ of the laser beam is used as a reference. However, when a temperature change occurs in the semiconductor laser 1, the oscillation wavelength λ also changes accordingly (see FIG. 5).

該発振波長が変化すると、その変化分が測定誤差となっ
てしまう。そこで、半導体レーザ1の温度が常に一定と
なるようにフィードバック制御を行うことで発振波長の
安定化を図っている。即ち、半導体レーザ1の温度をサ
ーミスタ等の温度検出素子2で検出し、この検出信号に
基づき演算回路3aで温度の変動分を算出し、その温度
変動分を補償するため駆動回路3bを作動させ温度アク
チュエータであるペルチェ素子4に流れる電流を操作し
て冷却あるいは加熱を行い、温度検出素子2及びペルチ
ェ素子4を備える半導体レーザ装置5内の半導体レーザ
1のパッケージの温度を一定に制御しようとするのであ
る。
When the oscillation wavelength changes, the amount of change results in a measurement error. Therefore, the oscillation wavelength is stabilized by performing feedback control so that the temperature of the semiconductor laser 1 is always constant. That is, the temperature of the semiconductor laser 1 is detected by a temperature detection element 2 such as a thermistor, and based on this detection signal, a calculation circuit 3a calculates a temperature variation, and a drive circuit 3b is activated to compensate for the temperature variation. Cooling or heating is performed by manipulating the current flowing through the Peltier element 4, which is a temperature actuator, and the temperature of the package of the semiconductor laser 1 in the semiconductor laser device 5 including the temperature detection element 2 and the Peltier element 4 is controlled to be constant. It is.

また、半導体レーザ1は温度一定とされていても、温度
以外の要因により出力が変動されることがあり、該半導
体レーザlの出力強度が変動すると発振波長も変化する
から、その変化分により測定誤差が出てくる。そこで、
半導体レーザ1の出力が常に一定となるように、半導体
レーザ1に組み込まれているフォトダイオード等から成
る光検出素子6によりレーザ光の光強度を検出し、その
検出信号に基づき負帰還回路7により、半導体レーザ1
への注入電流のフィードバック制御を行い、半導体レー
ザ1の出力を常に一定としようとするものである。
Furthermore, even if the temperature of the semiconductor laser 1 is constant, the output may fluctuate due to factors other than temperature, and if the output intensity of the semiconductor laser 1 fluctuates, the oscillation wavelength also changes, so the measurement is performed based on that change. Errors will occur. Therefore,
In order to keep the output of the semiconductor laser 1 constant, the light intensity of the laser beam is detected by a photodetector element 6 consisting of a photodiode or the like built into the semiconductor laser 1, and based on the detection signal, a negative feedback circuit 7 detects the intensity of the laser beam. , semiconductor laser 1
This is to perform feedback control of the current injected into the semiconductor laser 1 to keep the output of the semiconductor laser 1 constant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の光学式変位計では、発振波長を一定に保つた
めに半導体レーザIのパッケージの温度制御及び半導体
レーザ1の波長制御を実施しているが、温度制御の場合
、パッケージ温度一定即ちレーザ光の波長一定の前捉の
もとに行われるのであるが、レーザの温度そのものでは
ないから、波長一定とするには不確実さが残る。また、
半導体レーザ1の温度制御にはタイムラグが生じ、その
上温度制御により温度一定とされても、半導体レーザ1
の出力の変動を補償するためのフィードバック制御とし
て注入電流を操作すると、その操作でレーザ光の発振波
長が変化してしまい、負帰還回路7によるフィードバッ
ク制御それ自体も波長変動要因となり、発振波長が安定
化せず測定精度も向上しないという問題点があった。
In the conventional optical displacement meter described above, temperature control of the package of semiconductor laser I and wavelength control of semiconductor laser 1 are performed in order to keep the oscillation wavelength constant. This is done based on the pre-acquisition of a constant wavelength, but since it is not the temperature of the laser itself, there remains uncertainty in keeping the wavelength constant. Also,
There is a time lag in temperature control of the semiconductor laser 1, and even if the temperature is kept constant by temperature control, the semiconductor laser 1
When the injection current is manipulated as feedback control to compensate for fluctuations in the output of There were problems in that it did not stabilize and the measurement accuracy did not improve.

本発明は、上記従来の問題点に鑑み、光源の温度変化だ
けでなく温度変化以外の要因に起因するレーザ光の発振
波長変動の影響を除去することによって、発振波長の安
定化及び測定精度の向上を実現することができる光学式
変位計を提供することを目的とする。
In view of the above-mentioned conventional problems, the present invention stabilizes the oscillation wavelength and improves measurement accuracy by eliminating the influence of fluctuations in the oscillation wavelength of laser light caused not only by temperature changes in the light source but also by factors other than temperature changes. The purpose of the present invention is to provide an optical displacement meter that can realize improvements.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光学式変位計は、可干渉性及び単一波長を有す
る光源と、該光源の波長変動を直接測定するための波長
変動制御用干渉手段と、該波長変動制御用干渉手段と、
参照面と被検面からの反射干渉光を得るだめの変位検出
用干渉手段とから、光強度信号を検出し、該検出した光
強度信号の規格化及び該光強度信号に基づき上記被検面
の変位を算出する演算処理手段と、該演算処理手段で規
格化された光強度信号に基づき、上記光源への注入電流
を制御する注入電流制御手段とを備えて構成される。
The optical displacement meter of the present invention includes a light source having coherent properties and a single wavelength, an interference means for controlling wavelength fluctuations for directly measuring wavelength fluctuations of the light source, and an interference means for controlling wavelength fluctuations.
A light intensity signal is detected from the reference surface and a displacement detection interference means for obtaining reflected interference light from the test surface, the detected light intensity signal is normalized, and the test surface is detected based on the detected light intensity signal. and an injection current control means that controls the current injected into the light source based on the light intensity signal normalized by the calculation processing means.

〔作   用〕[For production]

本発明では、波長変動制御用干渉手段により、現在光源
より出射されているレーザ光の波長変動分が直接取り出
され、また波長変動制御用干渉手段と変位検出用干渉手
段とから、現実に出射されている光の強度信号に基づく
規格化信号が演算処理手段によって算出されて、該規格
化信号を用いて注入電流制御手段により半導体レーザの
波長を一定とするよう注入電流の制御が行われる。また
、該規格化信号を用いて変位の検出及び変位方向の判別
がなされる。
In the present invention, the wavelength variation control interference means directly extracts the wavelength variation of the laser light currently emitted from the light source, and the wavelength variation control interference means and the displacement detection interference means directly extract the wavelength variation of the laser light currently emitted from the light source. A normalized signal based on the intensity signal of the light is calculated by the arithmetic processing means, and the injection current is controlled by the injection current control means using the normalized signal so as to keep the wavelength of the semiconductor laser constant. Furthermore, the normalized signal is used to detect displacement and determine the direction of displacement.

ゆえに、温度及び温度以外の波長変動要因を全て含んだ
状態での制御が可能となるから、波長の安定性をより向
上させることができる。
Therefore, it is possible to perform control that includes all wavelength fluctuation factors, including temperature and other wavelength fluctuation factors, so that wavelength stability can be further improved.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、上記従来例と同一部材
には同一符号を付して図面を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, in which the same members as those in the conventional example are given the same reference numerals.

第1図は、本発明の一実施例の構成図であり、フィゾー
型干渉計を用いて構成している。
FIG. 1 is a block diagram of an embodiment of the present invention, which is constructed using a Fizeau type interferometer.

同図において、1は可干渉性、単一波長且つ位相の揃っ
たコヒーレントな光を出射する半導体レーザであり、サ
ーミスタ等の温度検出素子2により温度が測定され、そ
の検出信号に基づき演算回路3aで温度変動分が算出さ
れて、その温度の変動分を補償するよう駆動回路3bが
作動されることにより、温度アクチュエータであるペル
チェ素子4に流れる電流が調整され、冷却又は加熱操作
が施され、半導体レーザ1のパッケージ温度が一定に制
御される。上記半導体レーザl、温度検出素子2.ペル
チェ素子4は半導体レーザ装置5内に設けられる。この
構成2作用は従来例と同様である。
In the figure, 1 is a semiconductor laser that emits coherent light with a single wavelength and a uniform phase.The temperature is measured by a temperature detection element 2 such as a thermistor, and based on the detection signal, an arithmetic circuit 3a The temperature fluctuation is calculated, and the drive circuit 3b is operated to compensate for the temperature fluctuation, thereby adjusting the current flowing through the Peltier element 4, which is a temperature actuator, and performing a cooling or heating operation. The package temperature of the semiconductor laser 1 is controlled to be constant. The semiconductor laser 1, the temperature detection element 2. Peltier element 4 is provided within semiconductor laser device 5 . The operation of this configuration 2 is similar to that of the conventional example.

8は入射される光を平行光として出射するレンズ、9は
入射する光を一部透過し残りを90°屈折させる第1の
ハーフミラ−110はフィゾー型干渉計の参照面と被検
面の間隔を固定した構成の波長変動制御用干渉手段であ
り、全反射鏡部10′aと半透過鏡部10′bから成る
第1の面10′と、全反射鏡に形成された第2の面IO
“とを有し、該第1の面10′と第2の面lO″との間
隔は予め所定の寸法dに固定される。
8 is a lens that emits the incident light as parallel light; 9 is a first half mirror that partially transmits the incident light and refracts the rest by 90 degrees; 110 is the distance between the reference surface and the test surface of the Fizeau interferometer; It is an interference means for wavelength fluctuation control having a fixed configuration, and has a first surface 10' consisting of a total reflection mirror section 10'a and a semi-transmission mirror section 10'b, and a second surface formed on the total reflection mirror. IO
The distance between the first surface 10' and the second surface lO'' is fixed to a predetermined dimension d in advance.

12は第1のハーフミラ−9から透過してきた光を透過
し後述の変位検出用干渉手段13で反射され同一径路を
たどる反射光を90°屈折させ干渉させる第2のハーフ
ミラ−113は透過し再入射される光の一部に90°の
位相差を与えるための段差13′pが設けられて厚さの
異なる部分13’ c及び13′dが形成された半透過
鏡である参照面13′と、全反射鏡とされた被検面13
#とを有する変位検出用干渉手段であり、フィゾー型干
渉計の変位検出部と同様な構成である。
12 is a second half mirror 113 that transmits the light transmitted from the first half mirror 9, is reflected by a displacement detection interference means 13 (described later), and refracts the reflected light 90 degrees and interferes with the reflected light that follows the same path. A reference surface 13' is a semi-transmissive mirror that is provided with a step 13'p to give a 90° phase difference to a part of the incident light and has portions 13'c and 13'd of different thickness formed therein. and the test surface 13, which is a total reflection mirror.
This is a displacement detection interference means having # and has a similar configuration to the displacement detection section of a Fizeau type interferometer.

16は16a、16b、16c、16dの4つの素子よ
り成る光検出素子であり、素子16aは第1のハーフミ
ラ−9で90°屈折されて参照面10′aで全反射され
た光束り、を受光し、素子16bは第1のハーフミラ−
9で90°屈折され、参照面10′ bと被検面10″
で反射されて同一径路を進み、波面合成された光束り、
を受光し、16cは参照面13′Cと被検面13″で反
射されて同一径路を進み、波面合成され第2のハーフミ
ラ−12で90°屈折される光束Lcを受光し、16d
は参照面13′dと被検面13#で反射されて同一径路
を進み波面合成され第2のハーフミラ−12で90°屈
折される光束L4を受光し、各々の素子16a、16b
、16c、16dで検出された各々の検出信号は後述の
演算処理手段18に出力される。ここで光束L□は何ら
干渉も受けないからレーザ光から出射される光束そのま
まであり、また光束LC(!:Ldは段差13′Pが設
けられ厚さの異なる参照面の部位13’ c、13’d
を各々通過させられるので、90°の位相差を有してい
る。
Reference numeral 16 denotes a photodetecting element consisting of four elements 16a, 16b, 16c, and 16d, and the element 16a detects a light beam that is refracted by 90 degrees by the first half mirror 9 and totally reflected by the reference surface 10'a. The element 16b receives the light, and the element 16b becomes the first half mirror.
9, the reference surface 10'b and the test surface 10''
A beam of light that is reflected from the
16c receives the light beam Lc that is reflected by the reference surface 13'C and the test surface 13'', travels along the same path, is wavefront-combined, and is refracted by 90 degrees by the second half mirror 12, and 16d
receives a light beam L4 that is reflected by the reference surface 13'd and the test surface 13#, travels along the same path, is wavefront-combined, and is refracted by 90 degrees by the second half mirror 12, and
, 16c, and 16d are output to an arithmetic processing means 18, which will be described later. Here, the luminous flux L□ does not receive any interference, so it remains the same as the luminous flux emitted from the laser beam, and the luminous flux LC (!: Ld is provided with a step 13'P and a portion 13'c of the reference surface with different thickness. 13'd
They have a phase difference of 90°.

18は光検出素子16で検出された信号が入力される演
算処理手段で、該検出信号から対応する光強度信号り、
Ib、I。、Idを算出する信号処理回路18aと該光
強度信号の規格化即ち1./1.。
18 is an arithmetic processing means to which the signal detected by the photodetecting element 16 is input, and from the detected signal, a corresponding light intensity signal is obtained.
Ib, I. , the signal processing circuit 18a that calculates Id and the normalization of the light intensity signal, that is, 1. /1. .

Ie/ 1.、I、/ ■、の割算と、また該規格化信
号の1つである1、/I□から波長変動制御用干渉計1
0の参照面10′と被検面10″との固定された間隔d
から、現在出射されているレーザ光の波長変動を算出す
ると共に規格化信号Ie/L、I+/Lから変位検出及
び方向判別を行う信号演算回路18bを備えている。
Ie/1. ,I,/■, and from 1,/I□, which is one of the normalized signals, interferometer 1 for wavelength fluctuation control
Fixed distance d between the reference surface 10' and the test surface 10'' at 0
A signal calculation circuit 18b is provided which calculates the wavelength fluctuation of the currently emitted laser beam and also performs displacement detection and direction determination from the normalized signals Ie/L and I+/L.

20は上記演算処理手段18で算出される規格化信号1
h/I−から求められる半導体レーザ1の波長変動分に
基づき、半導体レーザ1への注入電流を制御することに
より、レーザ光の波長を安定させるための注入電流制御
回路である。
20 is the normalized signal 1 calculated by the arithmetic processing means 18;
This is an injection current control circuit for stabilizing the wavelength of laser light by controlling the injection current to the semiconductor laser 1 based on the wavelength fluctuation of the semiconductor laser 1 determined from h/I-.

21は上記演算処理手段18で算出される、被検面13
″の変位量及びその方向を表示するための表示器である
21 is the test surface 13 calculated by the arithmetic processing means 18;
This is an indicator for displaying the amount of displacement and its direction.

次に、本発明の上記構成に基づく作用を説明する。Next, the operation based on the above configuration of the present invention will be explained.

半導体レーザ1から出射されたレーザ光は、レンズ8で
平行光とされ、第1のハーフミラ−9により一部は90
°屈折され波長変動制御用干渉手段10に導かれる。参
照面10′と被検面10″で反射される光束り、とり、
は各々光検出素子の素子16a、16bで受光され、そ
の検出信号は信号処理回路18aで処理され光強度信号
11゜■、が得られる。ここで、光強度信号11は光束
L1は何の干渉も受けないから、現在光源から出射され
ている光の強度そのものである。第1のハーフミラ−9
を通過した光は、第2のハーフミラ−12を通過し変位
検出用干渉手段13に導かれる。参照面13′と被検面
13″で反射されて第2のハーフミラ−12により90
’ff折され同一径路を進み、波面合成される光束Lc
、Laは各々光検出素子の素子16c、16dで受光さ
れ、その検出信号は信号処理回路18aで処理され、光
強度信号■。、Iaが得られる。光束Lc、Laは上記
のように90’の位相差を有するから、光強度信号■。
The laser beam emitted from the semiconductor laser 1 is converted into parallel light by a lens 8, and a part of it is converted into a parallel beam by a first half mirror 9.
The light is refracted and guided to the interference means 10 for wavelength fluctuation control. The light flux reflected by the reference surface 10' and the test surface 10'',
are received by the photodetecting elements 16a and 16b, respectively, and the detection signals are processed by the signal processing circuit 18a to obtain a light intensity signal of 11°. Here, the light intensity signal 11 is the intensity of the light currently emitted from the light source, since the light beam L1 is not subjected to any interference. First half mirror 9
The light that has passed through passes through the second half mirror 12 and is guided to the displacement detection interference means 13. It is reflected by the reference surface 13' and the test surface 13'' and is reflected by the second half mirror 12 at 90
'ff Light flux Lc that is bent, proceeds along the same path, and undergoes wavefront synthesis
, La are received by the photodetecting elements 16c and 16d, and the detection signals are processed by the signal processing circuit 18a, resulting in a light intensity signal (2). , Ia are obtained. Since the luminous fluxes Lc and La have a phase difference of 90' as described above, the light intensity signal (2) is obtained.

とI、は90°の位相差を有する。このようにして得ら
れた上記4つの光強度信号1.乃至I、から信号演算回
路18bで規格化された信号Ib/ T、、IC/ I
、、Ia/ T、の算出及び該規格化信号に基づき現在
半導体レーザ1が出射しているレーザ光の波長の変動分
算出、被検面13″の変位ΔX及び変位方向の判別がな
され、変位△X及び変位方向は表示器21で表示される
and I have a phase difference of 90°. The above four light intensity signals obtained in this way 1. From I to I, the signal Ib/T, , IC/I is standardized by the signal calculation circuit 18b.
, , Ia/T, and based on the normalized signal, the variation in the wavelength of the laser light currently emitted by the semiconductor laser 1 is calculated, the displacement ΔX and the displacement direction of the test surface 13'' are determined, and the displacement ΔX and the displacement direction are displayed on the display 21.

本発明では、従来例の光学式変位計に対して波長変動制
御用干渉手段10を設け、半導体レーザ1の波長変動を
直接モニタし、該直接モニタした波長変動分に応じて半
導体レーザ1への注入電流を制御することにより、出射
されるレーザ光の波長を一定とするのである。
In the present invention, a wavelength variation control interference means 10 is provided in the conventional optical displacement meter, and the wavelength variation of the semiconductor laser 1 is directly monitored, and the wavelength variation of the semiconductor laser 1 is controlled according to the directly monitored wavelength variation. By controlling the injection current, the wavelength of the emitted laser light is made constant.

半導体レーザ1から出射されるレーザ光の波長が一定で
あれば、規格化された信号1b/1.は一定となる。ま
た、温度−その他の要因によりレーザ光の波長が変化す
ると、規格化された信号I。
If the wavelength of the laser light emitted from the semiconductor laser 1 is constant, the standardized signal 1b/1. becomes constant. Also, when the wavelength of the laser light changes due to temperature and other factors, the standardized signal I.

/ 1.も変化する。そこで、規格化された信号T。/ 1. also changes. Therefore, the standardized signal T.

/1.が一定となるように半導体レーザ1への注入電流
を、注入電流制御手段20により制御してやれば、レー
ザ光の波長は安定することになる。
/1. If the injection current to the semiconductor laser 1 is controlled by the injection current control means 20 so that the wavelength is constant, the wavelength of the laser light will be stabilized.

ここで、波長安定化の精度を上げるためには、間隔dを
dの変化によるIb/I−の傾きが最大となる位置に設
定する出よい。つまり第2図に示すように、傾きが最小
となる点Mと傾きが最大となる点Nとを比較すると、同
じ波長変動@Ilに対してIb/1.の変化がN点で大
きい。故にN点において波長変動に対する感度が高く、
この点を選べばよい。
Here, in order to improve the accuracy of wavelength stabilization, it is advisable to set the interval d to a position where the slope of Ib/I- due to a change in d is maximum. In other words, as shown in FIG. 2, if we compare the point M where the slope is minimum and the point N where the slope is maximum, we find that for the same wavelength fluctuation @Il, Ib/1. The change in is large at point N. Therefore, the sensitivity to wavelength fluctuation is high at the N point,
You can choose this point.

本発明において、光強度信号Ibを■1で規格化するの
は、半導体レーザ1の注入電流を変化さセると、レーザ
より出射される光強度信号■、が変化する。従って、光
強度信号1bの成分である光強度信号1.が変化するこ
とにより、光強度信号Ihも変動することになり、光強
度信号1hだけでは波長変動にのみ係わる影響を取り出
せないからである。
In the present invention, the optical intensity signal Ib is normalized by (1) because when the current injected into the semiconductor laser 1 is changed, the optical intensity signal (2) emitted from the laser changes. Therefore, the light intensity signal 1. which is a component of the light intensity signal 1b. This is because the optical intensity signal Ih also changes due to the change in the optical intensity signal Ih, and it is not possible to extract the influence only related to the wavelength fluctuation using the optical intensity signal 1h alone.

同様にして変位検出用干渉手段13からの光強度信号■
。、Id4:)1.で規格化し、規格化信号IC/M、
及びId/1.を用いて変位算出及び変位方向の判別を
演算処理手段18で行う。当該変位方向の判別及び変位
方向の判別は従来例と同様であるので、説明を省略する
Similarly, the light intensity signal from the displacement detection interference means 13 is
. , Id4:)1. and the standardized signal IC/M,
and Id/1. The arithmetic processing means 18 calculates the displacement and determines the direction of displacement using the . Since the determination of the displacement direction and the determination of the displacement direction are the same as in the conventional example, the description thereof will be omitted.

一方、温度検出素子2.演算回路3a、駆動回路3b及
びペルチェ素子4の構成1作用は従来例と同様であり説
明を省略する。これらで構成される温度制御手段により
半導体レーザ1のパッケージ温度の温度制御を行う。
On the other hand, temperature detection element 2. The operation of configuration 1 of the arithmetic circuit 3a, drive circuit 3b, and Peltier element 4 is the same as that of the conventional example, and a description thereof will be omitted. The package temperature of the semiconductor laser 1 is controlled by the temperature control means constituted by these components.

本実施例は上記のように構成して、測長の基準となるレ
ーザ光の波長安定化のために、一方で温度制御手段によ
り、半導体レーザ1のパッケージの温度を一定とする大
まかな”制御を行い、他方で波長変動制御用干渉手段1
0により現在光源より出射されているレーザ光の波長の
変動分を直接モニタして、現実に出射されている光の強
度信号に基づく規格化された即ち変動に対する補正が盛
り込まれた信号を用い、注入電流制御手段20により半
導体レーザ1の波長を一定とする“細かな”制御を行う
ようにしたから、温度及び温度以外の波長変動要因を全
て含んだ状態での制御が可能となる。従って波長の安定
性をより向上させることができる。
The present embodiment is configured as described above, and in order to stabilize the wavelength of the laser beam that serves as a reference for length measurement, on the other hand, a temperature control means is used to roughly control the temperature of the package of the semiconductor laser 1 to be constant. and on the other hand, interference means 1 for wavelength fluctuation control.
0 directly monitors the variation in the wavelength of the laser light currently emitted from the light source, and uses a signal that is standardized based on the intensity signal of the actually emitted light, that is, includes correction for the variation, Since the injection current control means 20 performs "fine" control to keep the wavelength of the semiconductor laser 1 constant, it is possible to perform control that includes temperature and all wavelength fluctuation factors other than temperature. Therefore, wavelength stability can be further improved.

なお、本発明では可干渉性を有する光源として、半導体
レーザ以外の各種レーザ光源を採用することも可能であ
る。また、上記実施例で用いた光学系は基本的な構成で
あって、更にその他の光学系を追加、交換することも可
能である。
In addition, in the present invention, it is also possible to employ various laser light sources other than semiconductor lasers as the light source having coherence. Further, the optical system used in the above embodiment has a basic configuration, and it is also possible to add or replace other optical systems.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光源から出射される光の波長変動を現
実に出射されている光から直接取得し、現実に出射され
ている光から得られた光強度信号に基づく規格化信号に
より光源の波長の制御を行うから、波長変動要因を全て
含んだ状態での制御が可能となり、波長の安定性をより
一層向上させることができる。また温度制御に加え、上
記波長変動要因をも考慮された規格化信号による注入電
流制御もなされるから、制御のタイムラグを減らす事が
できる。従って、変位測定時の測定精度アップを図るこ
とができる。
According to the present invention, the wavelength fluctuation of the light emitted from the light source is directly obtained from the actually emitted light, and the light source is determined by a normalized signal based on the light intensity signal obtained from the actually emitted light. Since the wavelength is controlled, it is possible to perform control that includes all wavelength fluctuation factors, and the stability of the wavelength can be further improved. Furthermore, in addition to temperature control, injection current control is performed using a normalized signal that also takes into account the wavelength fluctuation factors, so that control time lag can be reduced. Therefore, it is possible to improve measurement accuracy when measuring displacement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、 第2図は本発明の波長変動制御用干渉手段の感度を説明
する図、 第3図は被検面を変位させたときの光検出器の出力信号
を示す図、 第4図は被検面を変位させたときの光検出器の位相差が
与えられた2つの出力信号を示す図、第5図は半導体レ
ーザの温度−発振波長特性の一例を示す図、 第6図は従来の光学式変位計の構成図である。 ■・・・半導体レーザ、 10・・・波長変動制御用干渉手段、 13・・・変位検出用干渉手段、 18・・・演算処理手段、 20・・・注入電流制御手段。
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram explaining the sensitivity of the interference means for wavelength fluctuation control of the present invention, and Fig. 3 is a photodetector when the surface to be detected is displaced. Figure 4 shows the two output signals given the phase difference of the photodetector when the test surface is displaced. Figure 5 shows the temperature-oscillation wavelength characteristics of the semiconductor laser. FIG. 6 is a diagram showing an example of the configuration of a conventional optical displacement meter. ■... Semiconductor laser, 10... Interfering means for wavelength fluctuation control, 13... Interfering means for displacement detection, 18... Arithmetic processing means, 20... Injection current controlling means.

Claims (1)

【特許請求の範囲】 可干渉性及び単一波長を有する光源と、 該光源の波長変動を直接測定するための波長変動制御用
干渉手段と、 該波長変動制御用干渉手段と、参照面と被検面からの反
射干渉光を得るための変位検出用干渉手段とから、光強
度信号を検出し、該検出した光強度信号の規格化及び該
光強度信号に基づき上記被検面の変位を算出する演算処
理手段と、 該演算処理手段で規格化された光強度信号に基づき、上
記光源への注入電流を制御する注入電流制御手段とを備
えて、 上記光源より出射される光の波長変動制御を行うことを
特徴とする光学式変位計。
[Scope of Claims] A light source having coherence and a single wavelength, an interference means for controlling wavelength fluctuation for directly measuring wavelength fluctuation of the light source, the interference means for controlling wavelength fluctuation, and a reference surface and an object. Detecting a light intensity signal from a displacement detection interference means for obtaining reflected interference light from the test surface, normalizing the detected light intensity signal, and calculating the displacement of the test surface based on the light intensity signal. and injection current control means for controlling the current injected into the light source based on the light intensity signal standardized by the calculation processing means, the wavelength variation control of the light emitted from the light source is provided. An optical displacement meter that is characterized by the ability to:
JP29527390A 1990-11-02 1990-11-02 Optical type displacement meter Pending JPH04169817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29527390A JPH04169817A (en) 1990-11-02 1990-11-02 Optical type displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29527390A JPH04169817A (en) 1990-11-02 1990-11-02 Optical type displacement meter

Publications (1)

Publication Number Publication Date
JPH04169817A true JPH04169817A (en) 1992-06-17

Family

ID=17818463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29527390A Pending JPH04169817A (en) 1990-11-02 1990-11-02 Optical type displacement meter

Country Status (1)

Country Link
JP (1) JPH04169817A (en)

Similar Documents

Publication Publication Date Title
US8477316B2 (en) Interferometer system and method for its operation
EP0646767B1 (en) Interferometric distance measuring apparatus
US8520218B2 (en) Measuring method of refractive index and measuring apparatus of refractive index
JP5511163B2 (en) Distance measuring method and apparatus by light wave interference
JPH0749207A (en) Absolute interference measuring method and laser interferometer suitable for method thereof
JPH02140604A (en) Method and apparatus for measuring thickness of thin insulating film
US4984898A (en) Laser interferometer for interferometric length measurements including an automatic-compensating circuit
US9810521B2 (en) Displacement detection apparatus
US20180045500A1 (en) Method of air refractive index correction for absolute long distance measurement
CN106940220B (en) A kind of laser wavelength real-time measurement device of Simple low-cost
JPH021501A (en) Laser interference length measuring machine and positioning method using the same machine
US4655597A (en) Micro-displacement measuring apparatus using a semiconductor laser
US7183543B1 (en) Compensating for a measured variation in length of a flight tube of a mass spectrometer
US4806778A (en) Micro-displacement measuring apparatus using a semiconductor laser
JPH04326005A (en) Straightness measuring apparatus
US7423760B2 (en) Method and apparatus for monitoring an interferometer
JP2017198613A (en) Refractive index measurement method, refractive index measurement device, and optical element manufacturing method
JPH04169817A (en) Optical type displacement meter
US11353315B2 (en) Laser interference device
JPH0454407A (en) Optical displacement gauge
JP3516875B2 (en) Interferometer
CN115615563A (en) Laser beam pointing angle fluctuation measuring device and measuring method
JPH05264687A (en) Optical magnetic field sensor
JPS5840123B2 (en) Object position measuring device
JPS62118243A (en) Surface defect inspecting instrument