JPH04169738A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH04169738A
JPH04169738A JP2295968A JP29596890A JPH04169738A JP H04169738 A JPH04169738 A JP H04169738A JP 2295968 A JP2295968 A JP 2295968A JP 29596890 A JP29596890 A JP 29596890A JP H04169738 A JPH04169738 A JP H04169738A
Authority
JP
Japan
Prior art keywords
air
blow
temperature
heat exchanger
flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295968A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshihashi
淳 吉橋
Yofumi Tezuka
手塚 與文
Hirokuni Suzuki
鈴木 洋邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2295968A priority Critical patent/JPH04169738A/en
Priority to AU83828/91A priority patent/AU626499B2/en
Priority to DE69103727T priority patent/DE69103727T2/en
Priority to EP91309006A priority patent/EP0483977B1/en
Publication of JPH04169738A publication Critical patent/JPH04169738A/en
Priority to HK94295A priority patent/HK94295A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans

Abstract

PURPOSE:To obtain an air conditioning apparatus capable of uniformizing the temperature distribution of an entire room in the vicinity of a floor surface by providing air direction adjusting means which is provided correspondingly to each blow-off outlet and can individually adjust the direction of blow-off air. CONSTITUTION:Once a power supply is turned on, a designated operation mode is inputted and stable time Ta in response to the operation mode is read out from a map, and as the stable time Ta is elapsed, data of blow-off temperatures t1, t2 are inputted from first and second blow-off temperature detection sensors 19, 24. Then, a blow-off set temperature difference DELTAt in response to the operation mode is read out from the stored map and the temperature difference DELTAt and a difference between the blow-off temperature t1 and the blow-off temperature are compared. If thereupon t1-t2 is smaller than t, then an air blow rate difference DELTAQ is read out from the map. Hereby, the revolutions of a first fan motor 12 and a second fan motor 14 are controlled to adjust air flow rates Q1, Q2, and a first flag 18 is adjusted downward to adjust a second flag 23 frontally thereof. Thus, temperature distribution near the door surface of an entire room can be made uniform.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空気調和装置に関するもので、特に、室内の床
面付近の温度分布にばらつきが生じるのを防止した空気
調和装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner, and more particularly to an air conditioner that prevents variations in temperature distribution near the indoor floor surface.

[従来の技術] 従来のこの種の空気調和装置における吹出口の構造とし
て、特開昭63−196041号公報に掲載の技術を挙
げることができる。第9図は従来の空気調和装置の室内
機の側断面図、第10図は同じく室内機の吹出口の詳細
を示す斜視図、第11図は室内機の分解斜視図である。
[Prior Art] As a conventional structure of an air outlet in this type of air conditioner, a technique disclosed in Japanese Patent Application Laid-Open No. 196041/1983 can be mentioned. FIG. 9 is a side sectional view of an indoor unit of a conventional air conditioner, FIG. 10 is a perspective view showing details of the air outlet of the indoor unit, and FIG. 11 is an exploded perspective view of the indoor unit.

図において、(41)は室内機のケーシング、(42)
はケーシング(41)に設けられた吸込口、(43)は
ケーシング(41)内に設置された熱交換器、(44)
は吹出口、(45)は前記吸込口(42)からケーシン
グ(41)内に導入された室内空気を熱交換器(43)
を通過させた後に、前記吹出口(44)から室内に吹き
出させるクロスフローファンである。また、(46)は
吹出口(44)内において両端を回動可能に支持され、
長平方向に5つの通過部(47)が形成された補助フラ
ップ、(48)は補助フラップ(47)の室内側におい
て同軸上で回動可能に支持された主フラップである。
In the figure, (41) is the casing of the indoor unit, (42)
is a suction port provided in the casing (41), (43) is a heat exchanger installed in the casing (41), (44)
is an air outlet, and (45) is the indoor air introduced into the casing (41) from the suction port (42) to a heat exchanger (43).
This is a cross-flow fan that blows air into the room from the air outlet (44) after passing through the air. Further, (46) is rotatably supported at both ends within the air outlet (44),
The auxiliary flap (48) is a main flap that is rotatably supported on the same axis on the indoor side of the auxiliary flap (47).

次に、上記のように構成された従来の空気調和装置の動
作を説明する。
Next, the operation of the conventional air conditioner configured as described above will be explained.

暖房時において、予め、主フラップ(48)を45度程
度に、補助フラップ(46)をほぼ垂直に角度調整して
電源を投入すると、室内空気は前記クロスフローファン
(45)の回転に伴って吸込口(42)よりケーシング
(41)内に導入され、熱交換器(43)にて高温にな
り、吹出口(44)から室内に吹き出される。このとき
一部の吹出風Xは主フラップ(48)に沿って流れ、他
の一部の吹出風Yは補助フラップ(46)にて下方に角
度を変更され、更に、補助フラップ(46)の通過部(
47)を通過した吹出風Zは前記吹出風Xと同様に主フ
ラップ(48)に沿って流れる。したがって、2枚のフ
ラップ(46,48)により、吹出風は室内機の直下と
遠方との2方向に分けられ、室内の床面付近の温度分布
をより均一化するようになっている。
During heating, if the main flap (48) is adjusted in advance to approximately 45 degrees and the auxiliary flap (46) is adjusted to approximately vertical angle and the power is turned on, the room air will flow as the cross flow fan (45) rotates. It is introduced into the casing (41) through the suction port (42), reaches a high temperature in the heat exchanger (43), and is blown out into the room through the blowout port (44). At this time, part of the blowing air X flows along the main flap (48), and the other part of the blowing air Y is changed in angle downward by the auxiliary flap (46). Passing section (
47), the blown air Z flows along the main flap (48) similarly to the blown air X. Therefore, the two flaps (46, 48) divide the blown air into two directions: directly below the indoor unit and far away, thereby making the temperature distribution near the indoor floor more uniform.

[発明が解決しようとする課題] 従来の空気調和装置における吹出口の構造は、上記のよ
うに構成されているから、室内機の直下での床面付近の
温度分布は均一化することができるが、遠方への吹出風
は舞い上がってしまい、室内機直下に比較して遠方の温
度が低下気味となってしまう。したがって、部屋全体で
の床面付近の温度分布はけっして満足できるものではな
かった。
[Problem to be solved by the invention] Since the structure of the air outlet in a conventional air conditioner is configured as described above, the temperature distribution near the floor directly below the indoor unit can be made uniform. However, the wind blown to a distant place rises up, and the temperature in the distant area tends to be lower than that directly below the indoor unit. Therefore, the temperature distribution near the floor surface throughout the room was never satisfactory.

また、遠方では足元に届くべき温風が舞い上がって居住
者の頭部付近に到達するため、快適性も今一つであった
In addition, comfort was not good in faraway areas, as warm air that should have reached the occupants' feet rose up and reached the occupants' heads.

そこで、本発明は部屋全体の床面付近の温度分布を均一
化することができるとともに、頭寒足熱の理想的な暖房
を実現することができる空気調和装置の提供を課題とす
るものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air conditioner that can equalize the temperature distribution near the floor surface of the entire room and can realize ideal heating for keeping the head cold and feet warm.

[課題を解決するための手段] 本発明にかかる空気調和装置は、直列接続された複数の
熱交換器と、前記各熱交換器にそれぞれ対応して設けら
れた複数の吹出口と、前記各熱交換器を通過した空調空
気を前記各吹出口を介し吹出風として室内に吹き出させ
る送風手段と、前記各吹出口にそれぞれ対応して設けら
れ、吹出風の風向きを個別に調整可能な風向調整手段と
を具備するものである。
[Means for Solving the Problems] An air conditioner according to the present invention includes a plurality of heat exchangers connected in series, a plurality of air outlets provided corresponding to each of the heat exchangers, and each of the heat exchangers. A blowing means for blowing out the conditioned air that has passed through the heat exchanger into the room as blow-off air through each of the blow-off ports, and a wind direction adjustment device that is provided corresponding to each of the blow-off ports and can individually adjust the direction of the blow-out air. and means.

[作用] 本発明においては、空気調和装置の暖房時において圧縮
機で圧縮された冷媒は、各熱交換器内を循環してそれぞ
れの温度を上昇させる。このとき圧縮機に近い側の熱交
換器はど冷媒の熱で高温に保たれることがら各熱交換器
は温度が相違し、その結果、送風手段にてそれぞれの吹
出口から吹き出される吹出風の温度も相違する。
[Function] In the present invention, during heating of the air conditioner, the refrigerant compressed by the compressor circulates within each heat exchanger to increase the temperature of each. At this time, the heat exchanger near the compressor is kept at a high temperature by the heat of the refrigerant, so each heat exchanger has a different temperature, and as a result, the air is blown out from each outlet by the blower. The wind temperature also differs.

したがって、風向調整手段にて各吹出風の向きを調整し
、例えば高温の吹出風を足元に送るとともに、低温の吹
出風を頭部に送って前記高温吹出風の舞い上がりを防止
し、頭寒足熱を実現することが可能となる。
Therefore, the direction of each outlet air is adjusted by the wind direction adjustment means, and, for example, high-temperature outlet air is sent to the feet, and low-temperature outlet air is sent to the head to prevent the high-temperature outlet air from rising, thereby achieving a cold head and foot heat. It becomes possible to do so.

[実施例コ 以下、本発明の詳細な説明する。[Example code] The present invention will be explained in detail below.

第2図は本実施例の空気調和装置の回路図である。FIG. 2 is a circuit diagram of the air conditioner of this embodiment.

第2図において、(1)は冷媒を圧縮する室外機の圧縮
機、(2)は室内に設置された室内機、(3)は前記圧
縮機(1)に接続された室内機2の第1の熱交換器、(
4)は前記第1の熱交換器に対して直列接続された室内
機(2)の第2の熱交換器、(5)は前記第2の熱交換
器(4)に接続された膨脹弁、(6)は前記膨脹弁(5
)に接続された蒸発器である。
In Fig. 2, (1) is the compressor of the outdoor unit that compresses refrigerant, (2) is the indoor unit installed indoors, and (3) is the compressor of the indoor unit 2 connected to the compressor (1). 1 heat exchanger, (
4) is a second heat exchanger of the indoor unit (2) connected in series to the first heat exchanger, and (5) is an expansion valve connected to the second heat exchanger (4). , (6) is the expansion valve (5
) connected to the evaporator.

第1図は空気調和装置の室内機(2)の斜視図である。FIG. 1 is a perspective view of an indoor unit (2) of an air conditioner.

第1図において、(7)は前記第1及び第2の熱交換器
(3,4)を内部に収容する室内機(2)のケーシング
、(8)は室内機(2)の前面に設けられた吸込口、(
9)は前記第1の熱交換器(3)と対応するようにケー
シング(7)の下側に設けられた第1の吹出口、(10
)は同じく前記憶2の熱交換器(4)と対応するように
ケーシング(7)の下側に設けられた第2の吹出口であ
る。
In Fig. 1, (7) is the casing of the indoor unit (2) that houses the first and second heat exchangers (3, 4), and (8) is the casing of the indoor unit (2). air inlet, (
9) is a first air outlet provided on the lower side of the casing (7) so as to correspond to the first heat exchanger (3);
) is a second air outlet provided at the lower side of the casing (7) so as to correspond to the heat exchanger (4) of the front storage 2 as well.

また、(11)はケーシング(7)内において第1の熱
交換器(3)と第1の吹出口(9)との間に設けられた
第1のクロスフローファン、(12)は第1のクロスフ
ローファン(11)を回転駆動する第1のファンモータ
、(13)はケーシング(7)内において第2の熱交換
器(4)と第2の吹出口(10)との間に設けられた第
2のクロスフローファン、(14)は第2のクロスフロ
ーファン(13)を回転駆動する第2のファンモータで
ある。
Further, (11) is a first cross flow fan provided between the first heat exchanger (3) and the first air outlet (9) in the casing (7), and (12) is the first cross flow fan. A first fan motor (13) for rotationally driving a cross-flow fan (11) is provided between the second heat exchanger (4) and the second air outlet (10) in the casing (7). The second cross-flow fan (14) is a second fan motor that rotationally drives the second cross-flow fan (13).

なお、本実施例では上記した第1のクロスフローファン
(11)及び第2のクロスフローファン(13)により
送風手段が構成されている。
Note that in this embodiment, the above-described first cross-flow fan (11) and second cross-flow fan (13) constitute a ventilation means.

第3図は室内機2の吹出口(9,10)の詳細を示す斜
視図である。
FIG. 3 is a perspective view showing details of the air outlet (9, 10) of the indoor unit 2. FIG.

第3図において、(15)は第1の吹出口(9)内に左
右に回動可能に軸着された6枚の第1のルーバー、(1
6)は第1のルーバー(15)を3枚づつ連動杆(17
)を介して独立して回動操作する一対の第1のルーバー
モータ、(18)は第1の吹出口(9)内において前記
第1のルーバー(15)の前側に上下に回動可能に軸着
された第1のフラップ、(19)は第1の吹出口(9)
の吹出温度を検出する第1の吹出温度検出センサである
In FIG. 3, (15) are six first louvers (1
6) connects the first louver (15) with three interlocking rods (17).
), a pair of first louver motors (18) are rotatable up and down in front of the first louver (15) in the first air outlet (9). The first flap (19) is pivoted to the first air outlet (9)
This is a first blowout temperature detection sensor that detects the blowout temperature.

また、(20)は第2の吹出口(10)内に左右に回動
可能に軸着された6枚の第2のルーバー、(21)は第
2のルーバー(20)を3枚づつ連動杆(22)を介し
て独立して回動操作する一対の第2のルーバーモータ、
(23)は第2の吹出口(10)内において前記第2の
ルーバー(20)の前側に上下に回動可能に軸着された
第2のフラップ、(24)は第2の吹出口(10)の吹
出温度を検出する第2の吹出温度検出センサである。
In addition, (20) are six second louvers that are pivotally attached to the second air outlet (10) so as to be rotatable left and right, and (21) are interlocking three second louvers (20) at a time. a pair of second louver motors that are independently rotated via a rod (22);
(23) is a second flap pivotably mounted on the front side of the second louver (20) within the second air outlet (10), and (24) is a second flap that is rotatably mounted up and down in the second air outlet (10). 10) is a second blowout temperature detection sensor that detects the blowout temperature.

なお、本実施例では上記した第1のルーバー(15)及
び第2のルーバー(20)と、第1のフラップ(18)
及び第2のフラップ(23)とにより風向調整手段が構
成されている。
In this embodiment, the first louver (15), the second louver (20), and the first flap (18) described above are used.
and the second flap (23) constitute a wind direction adjusting means.

第4図は本実施例の空気調和装置の電気的構成を示すブ
ロック図である。
FIG. 4 is a block diagram showing the electrical configuration of the air conditioner of this embodiment.

第4図において、(25)は入力側に前記第1の吹出温
度検出センサ(19)及び第2の吹出温度検出センサ(
24)が接続され、出力側に駆動回路(26)〜(29
)を介して前記第1のファンモータ(12)及び第2の
ファンモータ(14)と第1のルーバーモータ(16)
及び第2のルーバーモータ(21)とが接続された空気
調和装置の制御回路、(30)は駆動回路(31)を介
して制御回路(25)の出力側に接続され、前記第1の
フラップ(18)を回動操作する第1のフラップモータ
、(32)は同じく駆動回路(33)を介して制御回路
(25)に接続され、前記第2のフラップ(23)を回
動操作する第2のフラップモータである。
In FIG. 4, (25) is connected to the first outlet temperature detection sensor (19) and the second outlet temperature detection sensor (19) on the input side.
24) is connected, and drive circuits (26) to (29) are connected to the output side.
) through the first fan motor (12) and the second fan motor (14) and the first louver motor (16).
and a second louver motor (21) are connected to the control circuit of the air conditioner, (30) is connected to the output side of the control circuit (25) via the drive circuit (31), and the first flap The first flap motor (18) is connected to the control circuit (25) via the drive circuit (33), and the second flap motor (32) is connected to the control circuit (25) through the drive circuit (33). 2 flap motor.

前記制御回路(25)には、予め、数種の運転モードに
対応して安定時間Ta、吹出設定温度差Δt、風量差Δ
Q、安定時総風量Qsをそれぞれ選出するだめのマツプ
が記憶され、選出された各値に従って前記各モータ(1
2,14,16,21,30,32)を制御するように
なっている。
The control circuit (25) has in advance a stability time Ta, a set blowout temperature difference Δt, and an air volume difference Δ corresponding to several types of operation modes.
A map for selecting the Q and stable total air volume Qs is stored, and each motor (1) is selected according to each selected value.
2, 14, 16, 21, 30, 32).

次に、上記のように構成された本実施例の空気調和装置
の動作を説明する。
Next, the operation of the air conditioner of this embodiment configured as described above will be explained.

本実施例の空気調和装置の暖房時において圧縮機(1)
にて圧縮された冷媒は、まず、第1の熱交換器(3)内
に導入されて熱を付与し、その後、第2の熱交換器(4
)内に導入されて熱を付与する。第5図はそのときのモ
リエル線図を示し、第1の熱交換器(3)側では冷媒が
スーパーヒート及び2相流の領域、即ち、Aで示す高温
域で熱交換が行われるため高温に保たれ、第2の熱交換
器(4)側では冷媒が2相流及びサブクールの領域、即
ち、Bで示す低温域で熱交換が行われるため低温に保た
れる。したがって、第1の熱交換器(3)側の吹出風U
は高温であり、第2の熱交換器(4)側の吹出風Vは低
温となる。
Compressor (1) during heating of the air conditioner of this embodiment
The refrigerant compressed in is first introduced into the first heat exchanger (3) to impart heat, and then transferred to the second heat exchanger (4).
) to impart heat. Figure 5 shows the Mollier diagram at that time. On the first heat exchanger (3) side, the refrigerant undergoes heat exchange in the superheat and two-phase flow region, that is, the high temperature region indicated by A, so the temperature is high. On the second heat exchanger (4) side, the refrigerant is kept at a low temperature because heat exchange is performed in the two-phase flow and subcooling region, that is, in the low temperature region indicated by B. Therefore, the blowing air U on the first heat exchanger (3) side
is high temperature, and the blown air V on the second heat exchanger (4) side is low temperature.

第6図は空気調和装置の電源投入時に前記制御回路(2
5)が実行する処理を示すフローチャートである。
FIG. 6 shows the control circuit (2) when the air conditioner is powered on.
5) is a flowchart illustrating the processing executed by step 5).

次に、このフローチャートに従って空気調和装置の動作
を説明する。なお、このフローチャート 。
Next, the operation of the air conditioner will be explained according to this flowchart. In addition, this flowchart.

に示すプロクラムは、他の図示しないメインプログラム
の実行中にコールされる。
The program shown in is called during the execution of another main program (not shown).

制御回路(25)はステップS1で空気調和装置の電源
が投入されると、ステップS2で居住者にて指定された
運転モードを入ノjし、ステップS3でその運転モード
に応じた安定時間Taを上記したマツプから読出す。次
いで、ステップS4で電源投入時からその安定時間Ta
が経過したか否かを判定し、安定時間Taが経過すると
、ステップS5て前記第1の吹出温度検出センサ(19
)及び第2の吹出温度検出センサ(24)からそれぞれ
吹出温度tl、t2のデータを入力する。
When the power of the air conditioner is turned on in step S1, the control circuit (25) enters the operating mode specified by the resident in step S2, and sets the stability time Ta corresponding to the operating mode in step S3. is read from the above map. Next, in step S4, the stabilization time Ta from the time the power is turned on is determined.
It is determined whether the stabilization time Ta has elapsed or not, and when the stabilization time Ta has elapsed, the first blowout temperature detection sensor (19
) and the second blowout temperature detection sensor (24), respectively.

上記した安定時間Taとしては冷媒により熱交換器(3
,4)の温度が上昇して平衡状態となるのに十分な時間
が見込まれ、温度が平衡状態となって吹出温度tl、t
2が安定した後に、後述する風向制御が行われるように
なっている。
As the above-mentioned stabilization time Ta, the heat exchanger (3
, 4) is expected to rise and reach an equilibrium state, and the temperature will reach an equilibrium state and the blowout temperatures tl, t
2 becomes stable, the wind direction control described later is performed.

次いで、ステップS6で前記運転モードに応じた吹出設
定温度差Δtを予め記憶されたマツプから読取る。そし
て、ステップS7でこの吹出設定温度差Δtと、上記し
た吹出温度t1から吹出温度t2を差し引いた値とを比
較し、tl−t2がΔtより小さいとき(実際の温度差
が小さいとき)には、ステップS8で上記したマツプか
ら風量差ΔQを読取ってステップS9に移行する。
Next, in step S6, the blowout setting temperature difference Δt corresponding to the operation mode is read from a pre-stored map. Then, in step S7, this blowout set temperature difference Δt is compared with the value obtained by subtracting the blowout temperature t2 from the blowout temperature t1 described above, and when tl−t2 is smaller than Δt (when the actual temperature difference is small), In step S8, the air volume difference ΔQ is read from the map described above, and the process proceeds to step S9.

そして、ステップS9で前記第1のファンモータ(12
)及び第2のファンモータ(14)の回転数を制御し、
第1の吹出風Uの風量Q1が第2 ゛の吹出風Vの風量
Q2よりΔQだけ大きくなるように画風量Ql、Q2を
調整する。また、第3図及び7図に示すように、第1の
フラップモータ(30)を駆動制御して第1のフラップ
(18)を下向きに調整するとともに、第2のフラップ
モータ(32)を駆動制御して第2のフラップ(23)
を正面向きに調整する。更に、第1のルーバーモータ(
16)及び第2のルーバーモータ(21)を駆動制御し
て両ルーバー(15,2°0)を互いに内側に向けて吹
出風U、Vを交差させるとともに、第1のルーバー(1
5)を3枚づつ互いに拡大させて第1の吹出風Uの送風
範囲を広げる。
Then, in step S9, the first fan motor (12
) and the rotation speed of the second fan motor (14),
The air volumes Ql and Q2 are adjusted so that the air volume Q1 of the first blown air U is larger than the air volume Q2 of the second blown air V by ΔQ. Further, as shown in FIGS. 3 and 7, the first flap motor (30) is driven and controlled to adjust the first flap (18) downward, and the second flap motor (32) is driven. Control the second flap (23)
Adjust it so that it faces forward. Furthermore, the first louver motor (
16) and the second louver motor (21) to direct both the louvers (15, 2°0) inwardly so that the blowing winds U and V intersect, and the first louver (1
5) are enlarged three by three to expand the range of the first blowout air U.

その後、ステップS10でtl−t2かΔtと等しくな
ると処理を終了し、等しくないときには前記ステップS
7に戻って再びtl−t2とΔtとを比較する。
Thereafter, in step S10, when tl-t2 becomes equal to Δt, the process ends, and when they are not equal, the step S
Returning to step 7, tl-t2 and Δt are compared again.

また、前記ステップS7でtl−t2がΔtより大きい
とき(実際の温度差が大きいとき)にはステップS11
に移行し、前記第1のファンモータ(12)及び第2の
ファンモータ(14)の回転数を制御して第1の吹出風
Uの風量Q1と第2の吹出風Vの風量Q2とを均等に調
整する。同時に、第1のフラップモータ(30)及び第
2のフラップモータ(32)を駆動制御して両フラップ
(18,23)を下向きにするとともに、第1のルーバ
ーモータ(16)及び第2のルーバーモータ(21)を
駆動制御して両ルーバー(15,20)を同一方向に向
ける。
Further, when tl-t2 is larger than Δt in step S7 (when the actual temperature difference is large), step S11
Then, the rotational speed of the first fan motor (12) and the second fan motor (14) is controlled to adjust the air volume Q1 of the first blown air U and the air volume Q2 of the second blown air V. Adjust evenly. At the same time, the first flap motor (30) and the second flap motor (32) are driven and controlled to direct both flaps (18, 23) downward, and the first louver motor (16) and the second louver motor The motor (21) is driven and controlled to direct both louvers (15, 20) in the same direction.

そして、ステップSIOでtl−t2がΔtと等しくな
ると処理を終了し、等しくないときにはステップS7に
戻って再びtl−t2とΔtとを比較する。
When tl-t2 becomes equal to Δt in step SIO, the process ends, and when they are not equal, the process returns to step S7 and tl-t2 and Δt are compared again.

一方、前記ステップS7てtl−t2がΔtと等しいと
きには、ステップS12でマツプから安定時総風量Qs
を読取ってステップ813に移行する。そして、ステッ
プ813で前記第1のファンモータ(12)及び第2の
ファンモータ(14)の回転数を制御し、第1の吹出風
Uの風量Q1と第2の吹出風Vの風量Q2とが共にΔQ
の半分となるように画風量Ql、Q2を調整する。また
、第3図及び第7図に示すように、第1のフラップモー
タ(30)を駆動制御して第1のフラップ(18)を下
向きに調整するとともに、第2のフラップモータ(32
)を駆動制御して第2のフラップ(23)を正面向きに
調整する。更に、第1のルーバーモータ(16)及び第
2のルーバーモータ(21)を駆動制御して両ルーバー
(15゜20)を互いに内側に向けて吹出風U、Vを交
差させるとともに、第1のルーバー(15)を3枚づつ
互いに縮小させて第1の吹出風Uの送風範囲を狭めて処
理を終了する。
On the other hand, when tl-t2 is equal to Δt in step S7, the total air volume Qs at stable time is determined from the map in step S12.
is read and the process moves to step 813. Then, in step 813, the rotation speeds of the first fan motor (12) and the second fan motor (14) are controlled, and the air volume Q1 of the first blown air U and the air volume Q2 of the second blown air V are adjusted. are both ΔQ
The image style volumes Ql and Q2 are adjusted so that they become half of the above. Further, as shown in FIGS. 3 and 7, the first flap motor (30) is drive-controlled to adjust the first flap (18) downward, and the second flap motor (32
) to adjust the second flap (23) to face the front. Furthermore, the first louver motor (16) and the second louver motor (21) are driven and controlled so that both louvers (15° 20) are directed inward to each other so that the blowing winds U and V intersect. The louvers (15) are reduced in size three by three to narrow the range of the first blown air U, and the process ends.

したがって、ステップS7で実際の温度差t1−t2が
Δtより小さいときには、ステップS9で第1の吹出風
Uの風量Q1が第2の吹出風Vの風量Q2より増大され
ることから第1の吹出温度t1が徐々に高められてtl
−t2自体も増大してΔtに近づく。また、実際の温度
差tl−t2がΔtより大きいときには、ステップS1
1で第1の吹出風Uの風量Q1が第2の吹出風Vの風量
Q2と等しくなるまで減少されることから第1の吹出温
度t1が徐々に低められてtl−t2自体も減少してΔ
tに近づく。
Therefore, when the actual temperature difference t1-t2 is smaller than Δt in step S7, the air volume Q1 of the first blown air U is increased than the air volume Q2 of the second blown air V in step S9. The temperature t1 is gradually increased to tl
-t2 itself also increases and approaches Δt. Further, when the actual temperature difference tl-t2 is larger than Δt, step S1
1, the air volume Q1 of the first air outlet U is reduced until it becomes equal to the air volume Q2 of the second air outlet V, so the first air outlet temperature t1 is gradually lowered and tl-t2 itself is also reduced. Δ
approach t.

その結果、第1の吹出温度t1と第2の吹出温度t2と
の差は常に所定の風量差dt付近に保たれる。そして、
第8図に示すように、ステップ813において高温の第
1の吹出風Uは第1のフラップ18にて下方、即ち、室
内Rの床面付近に吹き出されるとともに、低温の第2の
吹出風Vは第2のフラップ(23)にて正面、即ち、居
住者の頭部付近に吹き出され、しかも、低温の2の吹出
風Vによって第1の吹出風Uの舞い上がりが防止される
ため、室内Rの床面付近の温度分布か均一化される。
As a result, the difference between the first blowout temperature t1 and the second blowout temperature t2 is always maintained near the predetermined air volume difference dt. and,
As shown in FIG. 8, in step 813, the high temperature first blown air U is blown downward by the first flap 18, that is, near the floor surface of the room R, and the low temperature second blown air is blown out. The second flap (23) blows out the air to the front, that is, near the occupant's head, and the low-temperature air V prevents the first air U from rising, so that the air inside the room is The temperature distribution near the floor surface of R will be made uniform.

このように、上記実施例の空気調和装置は、直列接続さ
れた第1及び第2の熱交換器(3,4)と、前記側熱交
換器(3,4)にそれぞれ対応して設けられた第1及び
第2の吹出口(9,10)と、前記側熱交換器(3,4
)を通過した空調空気をそれぞれの吹出口(9,10)
を介して第1及び第2の吹出風として室内に吹き出させ
る第1及び第2のクロスフローファン(11,14) 
と、前記両次出口(9,10)にそれぞれ対応して設け
られ、第1及び第2の吹出風の風向きを個別に調整可能
な第1及び第2のルーバー(15,20)と第1及び第
2のフラップ(18,23)とを具備した。
In this way, the air conditioner of the above embodiment is provided with the first and second heat exchangers (3, 4) connected in series corresponding to the side heat exchangers (3, 4), respectively. the first and second air outlets (9, 10), and the side heat exchanger (3, 4).
) The conditioned air that has passed through the respective outlets (9, 10)
first and second cross-flow fans (11, 14) that blow air into the room as first and second blowing air through the
and first and second louvers (15, 20) that are provided corresponding to the two secondary outlets (9, 10) and that can individually adjust the wind direction of the first and second blowing air; and second flaps (18, 23).

したがって、上記実施例は第1の熱交換器(3)による
高温の吹出風と第2の熱交換器(4)による低温の吹出
風とのそれぞれの風向きを、第1及び第2のルーバー(
15,20)とフラップ(18,23)とによって個別
に調整することが可能となる。その結果、高温の第1の
吹出風Uを床面付近に吹き出すとともに、低温の第2の
吹出風Vを居住者の頭部付近に吹き出して頭寒足熱を実
現することができるとともに、低温の第2の吹出風Vに
よって高温の第1の吹出風Uの舞い上がりが防止して床
面付近の温度分布を均一化することができる。
Therefore, in the above embodiment, the respective wind directions of the high-temperature air blown by the first heat exchanger (3) and the low-temperature blown air from the second heat exchanger (4) are controlled by the first and second louvers (
15, 20) and flaps (18, 23) allow for individual adjustment. As a result, it is possible to blow out the high-temperature first blow-out air U near the floor surface, and blow out the low-temperature second blow-off air V near the head of the occupant, thereby realizing a cold head and feet heat. The blown air V prevents the high temperature first blown air U from rising, thereby making it possible to equalize the temperature distribution near the floor surface.

ところで、上記実施例の熱交換器は、第1及び第2の2
台の熱交換器(3,4)として構成されているが、本発
明を実施する場合には、これに限定されるものではなく
、3台や4台の熱交換器を備えてもよい。しかし、最低
2種類の温度の異なる吹出風があれば上記した頭寒足熱
を実現でき、交換器を2台として実施した場合には3台
や4台に比較して製造コストの低減という効果が得られ
る。
By the way, the heat exchanger of the above embodiment has two
Although the present invention is configured as one heat exchanger (3, 4), the present invention is not limited to this, and three or four heat exchangers may be provided. However, if there are at least two types of blowing air with different temperatures, the above-mentioned cold head and foot heat can be achieved, and if two exchangers are used, the manufacturing cost will be reduced compared to three or four exchangers. .

また、上記実施例の風向調整手段は、風向きを左右方向
に調整する第1及び第2のルーバー(15,20)と、
風向きを上下方向に調整する第1及び第2のフラップ(
18,23)として構成されているが、本発明を実施す
る場合には、これに限定されるものではなく、吹出風の
風向きを任意に調整可能であれば風向きを斜め方向に調
整するの風向きを調整するルーバーとして構成してもよ
い。
Further, the wind direction adjustment means of the above embodiment includes first and second louvers (15, 20) that adjust the wind direction in the left and right directions;
The first and second flaps (
18, 23), but when carrying out the present invention, the present invention is not limited to this, and if the direction of the blowing air can be arbitrarily adjusted, the direction of the wind may be adjusted diagonally. It may also be configured as a louver for adjusting.

更に、上記実施例の風向調整手段は、制御回路(25)
により制御されたモータ(16,21゜30.32)で
自動的に風向きが調整されるルーバー(15,20)と
フラップ(18,23)として構成されているか、本発
明を実施する場合には、これに限定されるものではなく
、これらのルーバー(15,20)やフラップ(18,
23)を手動操作するように構成してもよい。
Furthermore, the wind direction adjustment means of the above embodiment includes a control circuit (25).
It is configured as louvers (15, 20) and flaps (18, 23) whose wind direction is automatically adjusted by a motor (16, 21° 30, 32) controlled by, or when implementing the present invention, , but not limited to these louvers (15, 20) and flaps (18,
23) may be configured to be manually operated.

[発明の効果] 以上のように、本発明の空気調和装置は、直列接続され
た複数の熱交換器と、前記各熱交換器にそれぞれ対応し
て設けられた複数の吹出口と、前記各熱交換器を通過し
た空調空気を前記各吹出口を介し吹出風として室内に吹
き出させる送風手段と、前記各吹出口にそれぞれ対応し
て設けられ、吹出風の風向きを個別に調整可能な風向調
整手段とを具備するから、各熱交換器による温度の異な
る吹出風の風向きをそれぞれ風向調整手段にて個別に調
整可能となり、高温の吹出風を床面付近に吹き出し、低
温の吹出風を居住者の頭部付近に吹き出せば、部屋全体
の床面付近の温度分布を均一化することができるととも
に、頭寒足熱の理想的な暖房を実現することができる。
[Effects of the Invention] As described above, the air conditioner of the present invention includes a plurality of heat exchangers connected in series, a plurality of air outlets provided corresponding to each of the heat exchangers, and each of the heat exchangers. A blowing means for blowing out the conditioned air that has passed through the heat exchanger into the room as blow-off air through each of the blow-off ports, and a wind direction adjustment device that is provided corresponding to each of the blow-off ports and can individually adjust the direction of the blow-out air. Since the wind direction of each heat exchanger has a different temperature, it is possible to adjust the wind direction of each heat exchanger individually using the wind direction adjusting means, so that the high temperature wind is blown near the floor surface, and the low temperature wind is directed toward the occupants. If the air is blown out near the head of the room, it is possible to equalize the temperature distribution near the floor surface of the entire room, and to achieve ideal heating for cold heads and warm feet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の空気調和装置の室内機の斜視
図、第2図は本発明の実施例の空気調和装置の回路図、
第3図は本発明の実施例の空気調和装置の室内機の吹出
口の詳細を示す斜視図、第4図は本発明の実施例の空気
調和装置の電気的構成を示すブロック図、第5図は本発
明の実施例の空気調和装置のモリエル線図、第6図は本
発明の実施例の空気調和装置の制御回路が実行する処理
を示すフローチャート、第7図及び第8図は本発明の実
施例の空気調和装置の吹出風の風向きを説明するための
説明図、第9図は従来の空気調和装置の室内機の側断面
図、第10図は従来の空気調和装置の室内機の分解斜視
図、第11図は従来の空気調和装置の室内機の吹出口の
詳細を示す斜視図である。 図において、 3:第1の熱交換器、 4:第2の熱交換器 9:第1の吹出口 10:第2の吹出口 11:第1のクロスフローファン(送風手段)13:第
2のクロスフローファン(送風手段)15:第1のルー
バー(風向調整手段)18:第1のフラップ(風向調整
手段)20:第2のルーバー(風向調整手段)23:第
2のフラップ(風向調整手段)である。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。 代理人 弁理士 大岩 増雄 外2名 第7図 第9図 第11図
FIG. 1 is a perspective view of an indoor unit of an air conditioner according to an embodiment of the present invention, FIG. 2 is a circuit diagram of an air conditioner according to an embodiment of the present invention,
FIG. 3 is a perspective view showing details of the air outlet of the indoor unit of the air conditioner according to the embodiment of the present invention, FIG. 4 is a block diagram showing the electrical configuration of the air conditioner according to the embodiment of the present invention, and FIG. The figure is a Mollier diagram of an air conditioner according to an embodiment of the present invention, FIG. 6 is a flowchart showing the processing executed by the control circuit of the air conditioner according to an embodiment of the present invention, and FIGS. 7 and 8 are a diagram according to the present invention. 9 is a side sectional view of the indoor unit of the conventional air conditioner, and FIG. 10 is a side sectional view of the indoor unit of the conventional air conditioner. FIG. 11 is an exploded perspective view showing details of an air outlet of an indoor unit of a conventional air conditioner. In the figure, 3: first heat exchanger, 4: second heat exchanger 9: first outlet 10: second outlet 11: first cross flow fan (air blowing means) 13: second cross flow fan (air blowing means) 15: first louver (air direction adjustment means) 18: first flap (air direction adjustment means) 20: second louver (air direction adjustment means) 23: second flap (air direction adjustment means) means). In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts. Agent: Patent attorney Masuo Oiwa and two others Figure 7 Figure 9 Figure 11

Claims (1)

【特許請求の範囲】 直列接続された複数の熱交換器と、 前記各熱交換器にそれぞれ対応して設けられた複数の吹
出口と、 前記各熱交換器を通過した空調空気を前記各吹出口を介
し吹出風として室内に吹き出す送風手段と、 前記各吹出口にそれぞれ対応して設けられ、吹出風の風
向きを個別に調整可能な風向調整手段とを具備すること
を特徴とする空気調和装置。
[Scope of Claims] A plurality of heat exchangers connected in series, a plurality of air outlets provided corresponding to each of the heat exchangers, and a plurality of air conditioning air passing through each of the heat exchangers, which An air conditioner comprising: a blowing means for blowing air into the room through an outlet; and a wind direction adjusting means, which is provided corresponding to each of the blowing outlets and can individually adjust the direction of the blowing air. .
JP2295968A 1990-11-01 1990-11-01 Air conditioning apparatus Pending JPH04169738A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2295968A JPH04169738A (en) 1990-11-01 1990-11-01 Air conditioning apparatus
AU83828/91A AU626499B2 (en) 1990-11-01 1991-09-12 Air conditioner
DE69103727T DE69103727T2 (en) 1990-11-01 1991-10-02 Air conditioner.
EP91309006A EP0483977B1 (en) 1990-11-01 1991-10-02 Air conditioner
HK94295A HK94295A (en) 1990-11-01 1995-06-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295968A JPH04169738A (en) 1990-11-01 1990-11-01 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH04169738A true JPH04169738A (en) 1992-06-17

Family

ID=17827421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295968A Pending JPH04169738A (en) 1990-11-01 1990-11-01 Air conditioning apparatus

Country Status (5)

Country Link
EP (1) EP0483977B1 (en)
JP (1) JPH04169738A (en)
AU (1) AU626499B2 (en)
DE (1) DE69103727T2 (en)
HK (1) HK94295A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021386A (en) * 2001-07-09 2003-01-24 Mitsubishi Electric Corp Indoor machine for air conditioner and wind direction control method using the same
JP2008101894A (en) * 2006-10-17 2008-05-01 Samsung Electronics Co Ltd Air conditioner and control method therefor
JP2014129954A (en) * 2012-12-28 2014-07-10 Fujitsu General Ltd Air conditioner and control circuit
US20170261215A1 (en) * 2014-09-15 2017-09-14 Samsung Electronics Co., Ltd. Air current changeable full front blowing type air conditioner
JPWO2019043980A1 (en) * 2017-08-30 2020-08-06 シャープ株式会社 Indoor unit of air conditioner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050117665A (en) * 2004-06-11 2005-12-15 엘지전자 주식회사 Indoor unit for air conditioner
ES2319479B1 (en) * 2006-05-03 2009-11-23 Samsung Electronics C., Ltd. AIR CONDITIONER.
JP5220068B2 (en) * 2010-08-04 2013-06-26 三菱電機株式会社 Air conditioner indoor unit and air conditioner
CN103591640B (en) * 2012-08-16 2016-03-23 珠海格力电器股份有限公司 Air conditioner room unit, air-conditioner and control method thereof
CN104990148B (en) * 2015-07-31 2017-12-05 芜湖美智空调设备有限公司 Air conditioner room unit and air conditioner
KR102508221B1 (en) * 2015-11-20 2023-03-10 삼성전자주식회사 Indoor unit of air conditioner
CN105841330A (en) * 2016-05-25 2016-08-10 广东明朗智能科技股份有限公司 Air outlet device with liftable operation panel
CN108758822A (en) * 2018-07-27 2018-11-06 青岛海尔空调器有限总公司 Wall-hanging air conditioner indoor unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269282B1 (en) * 1986-10-30 1992-09-30 Kabushiki Kaisha Toshiba Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021386A (en) * 2001-07-09 2003-01-24 Mitsubishi Electric Corp Indoor machine for air conditioner and wind direction control method using the same
JP2008101894A (en) * 2006-10-17 2008-05-01 Samsung Electronics Co Ltd Air conditioner and control method therefor
JP2014129954A (en) * 2012-12-28 2014-07-10 Fujitsu General Ltd Air conditioner and control circuit
US20170261215A1 (en) * 2014-09-15 2017-09-14 Samsung Electronics Co., Ltd. Air current changeable full front blowing type air conditioner
US10837655B2 (en) * 2014-09-15 2020-11-17 Samsung Electronics Co., Ltd. Air current changeable full front blowing type air conditioner
JPWO2019043980A1 (en) * 2017-08-30 2020-08-06 シャープ株式会社 Indoor unit of air conditioner

Also Published As

Publication number Publication date
DE69103727T2 (en) 1995-01-26
AU8382891A (en) 1992-05-07
HK94295A (en) 1995-06-23
AU626499B2 (en) 1992-07-30
DE69103727D1 (en) 1994-10-06
EP0483977B1 (en) 1994-08-31
EP0483977A1 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
JPH04169738A (en) Air conditioning apparatus
JP5507231B2 (en) Air conditioner
JPH08334255A (en) Indoor machine of air conditioner
JP3187087B2 (en) Control device for air conditioner
JPH0635895B2 (en) Heat pump type air conditioner operation control method and heat pump type air conditioner
JP2008101894A (en) Air conditioner and control method therefor
JPH0792257B2 (en) Air conditioner
JP2838941B2 (en) Duct air conditioner
JP3433072B2 (en) Air conditioner
JP4225137B2 (en) Indoor panel of air conditioner and air conditioner
JPH04356653A (en) Air conditioner
JP2901148B2 (en) Apparatus and method for controlling air flow of an air conditioner
JPH0566043A (en) Air direction control device of air conditioner
JPH06159786A (en) Wind direction control device for air conditioner
JP3032361B2 (en) Underfloor air conditioning system
JPH05296548A (en) Air conditioner
JPH0467096B2 (en)
KR19990042899A (en) Wind direction control method of air conditioner
JPH0436535A (en) Method of operating indoor fan of air conditioner
JP6897735B2 (en) Air conditioning indoor unit and air conditioner
JP3144834B2 (en) Air conditioner
JP6849032B2 (en) Air conditioning indoor unit and air conditioner
JP3135289B2 (en) Air conditioner
JPH10148382A (en) Air conditioner
JP2011127800A (en) Air conditioner