JPH04169553A - Production of sec-butyl acetate - Google Patents

Production of sec-butyl acetate

Info

Publication number
JPH04169553A
JPH04169553A JP2294238A JP29423890A JPH04169553A JP H04169553 A JPH04169553 A JP H04169553A JP 2294238 A JP2294238 A JP 2294238A JP 29423890 A JP29423890 A JP 29423890A JP H04169553 A JPH04169553 A JP H04169553A
Authority
JP
Japan
Prior art keywords
acetic acid
reaction
temperature
catalyst
linear butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2294238A
Other languages
Japanese (ja)
Other versions
JP2883720B2 (en
Inventor
Yuichi Tokumoto
徳本 祐一
Kazuo Sakamoto
一夫 坂本
Kikuo Sasaki
佐々木 紀久夫
Isoo Shimizu
清水 五十雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd, Daicel Chemical Industries Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2294238A priority Critical patent/JP2883720B2/en
Priority to EP91118562A priority patent/EP0483826B1/en
Priority to DE69117871T priority patent/DE69117871T2/en
Publication of JPH04169553A publication Critical patent/JPH04169553A/en
Priority to US08/330,115 priority patent/US5457228A/en
Application granted granted Critical
Publication of JP2883720B2 publication Critical patent/JP2883720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound by feeding acetic acid and linear butene both in a liquid state to a specific catalytic layer of a continuous circulation type fixed bed reactor in a counter flow under a specific condition and recycling the reaction mixture to the catalytic layer at a specific temperature at a specific ratio. CONSTITUTION:A continuous circulation type fixed bed reactor 2 having a catalytic layer 3 packed with a styrene-based (and/or phenol)sulfonic acid type ion exchange resin catalyst wherein an inlet temperature of the catalytic layer is maintained at 80-120 deg.C is charged with acetic acid and linear butene both in a liquid state in a counter flow under conditions of a molar ratio A of acetic acid/linear butene in a feed flow 1 of 1.0-2.0 and LHSV based on the catalytic layer 3 of acetic acid of 0.1-1.0 and the prepared reaction mixture is cooled to >=70 deg.C, is circulated through an inlet of circulation flow 4 to the catalytic layer 3 in a ratio shown by the formula (X is weight ratio of circulation flow rate/feed flow rate) to give the title compound useful as a solvent, perfume, etc., by using an inexpensive reactor by a liquid-phase reaction efficiently and in readily temperature control in a reaction zone, in high linear butene conversion ratio and high productivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸性イオン交換樹脂触媒の存在下に、酢酸に
線状ブテンを付加させることによる酢酸sec−ブチル
の連続的製造方法に関する。本発明によって製造される
酢酸sec−ブチルは、溶剤や香料等として有用な物質
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a process for the continuous production of sec-butyl acetate by adding linear butene to acetic acid in the presence of an acidic ion exchange resin catalyst. sec-Butyl acetate produced according to the present invention is a substance useful as a solvent, a fragrance, and the like.

[従来の技術および発明が解決しようとする課jlJ]
酢酸と線状ブテンである1−ブテンまたは2−ブテンを
酸性イオン交換樹脂触媒により反応させると、下記式の
ように酢酸sec−ブチルが得られることはよく知られ
ている(特開昭第49−100016号公報、特開昭5
5−102530号公報)。
[Issues to be solved by the prior art and the invention]
It is well known that when acetic acid and linear butenes 1-butene or 2-butene are reacted with an acidic ion-exchange resin catalyst, sec-butyl acetate can be obtained as shown in the following formula (Japanese Patent Laid-Open No. 49-1999). -100016 Publication, Japanese Unexamined Patent Publication No. 5
5-102530).

(:)lscOOH+ CI(2=CH−CH2−CH
3→CH3CO0C!((CH3)CH2−CH3C)
13(:00H+  CH3−(:)I−CH−CH3
→CH3CO0CH(CH3)(:H2−CH3上記エ
ステル化反応は反応形態上、液相反応、気相反応および
気液混相反応が知られているが、気相反応では触媒上に
おける線状ブテンの重合が避けられず、そのために触媒
寿命が短くなるという不利があるので工業上好ましくな
い。また、液状の酢酸と気体状の線状ブテンによる気液
並流の混相反応では、液状の酢酸が触媒表面を湿潤化す
るため、触媒効率を高め、その結果、穏やかな反応条件
をとることが可能となる。
(:) lscOOH+ CI(2=CH-CH2-CH
3→CH3CO0C! ((CH3)CH2-CH3C)
13(:00H+ CH3-(:)I-CH-CH3
→CH3CO0CH(CH3)(:H2-CH3 The above esterification reaction is known to be a liquid phase reaction, a gas phase reaction, and a gas-liquid mixed phase reaction, but in the gas phase reaction, linear butene is polymerized on a catalyst. This is unavoidable, and this has the disadvantage of shortening the catalyst life, which is undesirable from an industrial perspective.Also, in a gas-liquid co-current multiphase reaction of liquid acetic acid and gaseous linear butene, liquid acetic acid tends to form on the catalyst surface. catalytic efficiency is increased, and as a result it becomes possible to use mild reaction conditions.

しかしながら、触媒層中を気体状の線状ブテンが通過す
る場合、その部分の接触効率が必然的に低下するという
不利は避けられない。さらに、この気液混相反応の場合
実際に反応する線状ブテンは酢酸中に溶解している線状
ブテンであると考えられ、エステル化反応により液相中
の線状ブテンが消費されると気体状線状ブテンが再び液
相に溶解するのに必要があるがこれには時間がかかる。
However, when gaseous linear butene passes through the catalyst layer, there is an unavoidable disadvantage that the contact efficiency in that part inevitably decreases. Furthermore, in the case of this gas-liquid multiphase reaction, the linear butene that actually reacts is thought to be the linear butene dissolved in acetic acid, and when the linear butene in the liquid phase is consumed by the esterification reaction, it becomes a gas. It is necessary for the linear butenes to dissolve back into the liquid phase, which takes time.

従って、線状ブテンおよび酢酸のいずれも液相て反応さ
せる液相反応が工業的には好ましい反応である。
Therefore, a liquid phase reaction in which both linear butene and acetic acid are reacted in a liquid phase is an industrially preferred reaction.

上記エステル化反応の反応方式については、回分式より
も連続式の方が工業上有利である。連続式の場合にも連
続種型反応器、流通式固定床型反応器、移動床型反応器
、流動床型反応器等があるが、装置にかかるコストやメ
インテナンス等を考えると固定床連続管型反応器が最も
好ましいか、固定床連続管型反応器を用いて上記反応を
工業化しようとしたとき、上記反応は大きな発熱反応で
あるため、必然的に流れ方向の温度上昇を伴う。
Regarding the reaction method of the above-mentioned esterification reaction, a continuous method is industrially more advantageous than a batch method. In the case of continuous type reactors, there are continuous seed reactors, fixed bed flow reactors, moving bed reactors, fluidized bed reactors, etc., but when considering the cost and maintenance of the equipment, fixed bed continuous pipes are preferable. A type reactor is most preferred, or when attempting to industrialize the above reaction using a fixed bed continuous tubular reactor, since the above reaction is a large exothermic reaction, it is inevitably accompanied by an increase in temperature in the flow direction.

そのため、生成した酢酸sec−ブチルが酢酸と線状ブ
テンに分解する逆反応の速度が増大し、通常の方法では
最終的な線状ブテンの転化率を高められないだけでなく
、温度上昇が著しい場合には触媒の活性が失われること
が判明した。
As a result, the rate of the reverse reaction in which the generated sec-butyl acetate decomposes into acetic acid and linear butene increases, and the conventional method not only fails to increase the final conversion rate of linear butene, but also causes a significant temperature rise. It has been found that in some cases the catalyst loses its activity.

従って、高い線状ブテンの転化率と触媒活性とを確保す
るためには、反応領域内の温度分布を適切に管理制御す
る必要がある。
Therefore, in order to ensure high linear butene conversion and catalytic activity, it is necessary to appropriately manage and control the temperature distribution within the reaction zone.

したがって、賛用およびメインテナンス上有利な単管式
固定床反応器を用いた上記のエステル化反応を実現する
ために、安価で容易な反応温度管理制御方法の開発が切
望される。
Therefore, in order to realize the above-mentioned esterification reaction using a single-tube fixed bed reactor, which is advantageous in terms of use and maintenance, there is a strong need for the development of an inexpensive and easy reaction temperature control method.

[課題を解決するための手段] すなわち本発明は、供給流中の酢酸の線状ブテンに対す
るモル比が1.0〜2.0の範囲で、かつ酢酸の触媒層
に対するLHSVが0.1〜10である条件下で、スチ
レン系スルフォン酸型イオン交換樹脂触媒および/また
はフェノールスルフォン酸型イオン交換樹脂触媒を充填
してなる触媒層入口温度を80℃〜120℃の温度範囲
に維持した連続流通式固定床反応器に、酢酸と線状ブテ
ンをいずれも液状かつ並流で供給し、得られた反応混合
物を80℃を下回らない温度に冷却し、下記式(1)で
表わされる割合により前記触媒層に循環させることを特
徴とする酢酸sec−ブチルの製造方法に関するもので
ある。
[Means for Solving the Problems] That is, the present invention provides a method in which the molar ratio of acetic acid to linear butene in the feed stream is in the range of 1.0 to 2.0, and the LHSV of acetic acid to the catalyst layer is in the range of 0.1 to 2.0. 10, continuous flow with the inlet temperature of the catalyst layer filled with a styrene sulfonic acid type ion exchange resin catalyst and/or a phenolsulfonic acid type ion exchange resin catalyst maintained in the temperature range of 80°C to 120°C. Both acetic acid and linear butene are supplied in liquid form and in parallel flow to a fixed bed reactor, the resulting reaction mixture is cooled to a temperature not lower than 80°C, and the The present invention relates to a method for producing sec-butyl acetate, which is characterized by circulating it through a catalyst bed.

7.6 A + 5.9 ここで、Xは循環流量の供給流量に対する重量倍として
定義される循環割合を示し、Aは供給流中における酢酸
の線状ブテンに対するモル比を示す。
7.6 A + 5.9 where X indicates the circulation ratio, defined as the weight times the circulation flow rate over the feed flow rate, and A indicates the molar ratio of acetic acid to linear butenes in the feed stream.

以下に本発明をさらに説明する。The present invention will be further explained below.

本発明でいう酸性イオン交換樹脂とは、酸性を示すイオ
ン交換樹脂であり、スチレン系スルホン酸型樹脂あるい
はフェノールスルホン酸型樹脂である。スチレン系スル
ホン酸型イオン交換樹脂はスチレンとジビニルベンゼン
などの多不飽和化合物を共重合させて得られる樹脂をス
ルホン化したものである。また、フェノールスルホン酸
型イオン交換樹脂は通常フェノールスルホン酸をホルム
アルデヒドで縮合したものである。
The acidic ion exchange resin referred to in the present invention is an ion exchange resin exhibiting acidity, and is a styrene sulfonic acid type resin or a phenol sulfonic acid type resin. Styrenic sulfonic acid type ion exchange resin is a sulfonated resin obtained by copolymerizing styrene and a polyunsaturated compound such as divinylbenzene. Furthermore, the phenolsulfonic acid type ion exchange resin is usually a product obtained by condensing phenolsulfonic acid with formaldehyde.

また、線状ブテンとは1−ブテンまたは2−ブテンのこ
とであり、そのいずれも同様に用いることができる。こ
こで、単に線状ブテンというときはこの両者をいう。
Moreover, linear butene refers to 1-butene or 2-butene, and either of them can be used in the same manner. Here, when we simply refer to linear butene, we mean both of them.

本発明で使用する線状ブテンの供給源としては、線状ブ
テンを約20重量%以上含有する炭化水素混合物を用い
ることができ、このような炭化水素混合物としてはナフ
サなどの石油類を熱分解して得られる線状ブテンを含む
C4留分であって、ブタジェン、イソブチレンおよびア
セチレン類を除いた、いわゆるスペント・スペントBB
留分か有効である。本発明の方法においては、反応によ
る発熱を抑制するためには上記スペント・スペントBB
留分(本明細書においてrS/Sブテン」ということか
ある)を使用するのか好ましい。
As a source of linear butene used in the present invention, a hydrocarbon mixture containing about 20% by weight or more of linear butene can be used. The so-called spent-spent BB is a C4 fraction containing linear butenes obtained by
The distillate is valid. In the method of the present invention, in order to suppress heat generation due to the reaction, the above-mentioned spent-spent BB
It is preferable to use a fraction (sometimes referred to herein as rS/S butene).

このS/Sブテンには、線状ブテン、ブタンなどの炭素
数4の炭化水素のほかに炭素数4以外のオレフィン、ジ
オレフィンなども微量ながら含有される。従って、炭素
数4以外のオレフィンが酢酸と反応して、未反応原料で
ある酢酸や製品である酢酸sec−ブチルの精製を阻害
するような不純物を生成したりすることか懸念される。
In addition to hydrocarbons having 4 carbon atoms such as linear butene and butane, this S/S butene also contains trace amounts of olefins and diolefins having other than 4 carbon atoms. Therefore, there is a concern that olefins having carbon atoms other than 4 may react with acetic acid to generate impurities that may inhibit the purification of acetic acid as an unreacted raw material or sec-butyl acetate as a product.

しかしながら、後述の実施例によって説明するように、
本発明においてはこれらの不都合は生じない。
However, as explained by the examples below,
These disadvantages do not occur in the present invention.

触媒層への新たな原料の供給流(本明細書に導いて単に
「供給流」という)における酢酸/線状ブテンのモル比
は1.0〜2.0、より好ましくは1.2〜2,0であ
る。モル比が1.0より小さいと線状ブテンの重合等の
副反応が多くなり経済上好ましくない。またモル比が2
.0より大きいと未反応の酢酸の量が多く、蒸留等回収
にかかる負担が大きくなり好ましくない。線状ブテンと
酢酸は上記モル比を維持する限り反応器に別個にまたは
混合して供給することができる。なお、上記供給流とは
後述の循環流を含まない流れをいう。したがって、上記
モル比における酢酸と線状ブテンには後述の循環流から
派生する成分は含まれないものである。
The acetic acid/linear butene molar ratio in the feed stream of fresh raw material to the catalyst bed (hereinafter simply referred to as "feed stream") is between 1.0 and 2.0, more preferably between 1.2 and 2. ,0. If the molar ratio is less than 1.0, side reactions such as polymerization of linear butenes will increase, which is economically unfavorable. Also, the molar ratio is 2
.. If it is larger than 0, the amount of unreacted acetic acid is large, which increases the burden of recovery such as distillation, which is not preferable. Linear butene and acetic acid can be fed to the reactor separately or in a mixture as long as the above molar ratio is maintained. Note that the above-mentioned supply flow refers to a flow that does not include the circulation flow described below. Therefore, the acetic acid and linear butene in the above molar ratio do not contain components derived from the circulating flow described below.

触媒層への供給流量は、触媒層に対する酢酸の・ LH
SVとして好ましくは0.1〜10、より好ましくは0
.2〜5の範囲である。LHSVが0.1より小さいと
生産効率が低くなり過ぎ好ましくない。
The supply flow rate to the catalyst layer is the LH of acetic acid to the catalyst layer.
SV is preferably 0.1 to 10, more preferably 0
.. It is in the range of 2-5. If LHSV is less than 0.1, the production efficiency will be too low, which is not preferable.

また、10より大きいと反応に必要な触媒層における平
均滞留時間が確保できず、転化率が低くなるので好まし
くない。
On the other hand, if it is larger than 10, the average residence time in the catalyst layer necessary for the reaction cannot be ensured and the conversion rate becomes low, which is not preferable.

本発明における反応器内の反応圧力は、反応系を液相に
保つに充分な圧力でよく、たとえば5 Kg/cm2〜
100 Kg7cm2、好ましくは5にg/crn2〜
50にg/cm2の範囲から適宜選択できる。反応圧力
が5 Kg/cm2より低いと、気相部分が生じるので
好ましくない。また、反応圧力が100 Kg/cm2
より高いと耐圧性が非常に高い設備を設けなければなら
ないので経済上好ましくない。
The reaction pressure in the reactor in the present invention may be a pressure sufficient to maintain the reaction system in a liquid phase, for example, 5 Kg/cm2 to
100 Kg7cm2, preferably 5 to g/crn2
It can be appropriately selected from the range of 50 g/cm2 to 50 g/cm2. When the reaction pressure is lower than 5 Kg/cm2, a gas phase portion is generated, which is not preferable. In addition, the reaction pressure is 100 Kg/cm2
If the pressure is higher, equipment with extremely high pressure resistance must be provided, which is economically unfavorable.

本発明の目的とする反応は発熱反応であるが、これを設
備黄のかからない流通式固定床反応器において実現する
ためには、反応領域内の温度管理が重要であることを本
発明者らは見出し、その方法を確立した。
The reaction targeted by the present invention is an exothermic reaction, but in order to realize this in a flow-type fixed bed reactor that does not cause yellowing, the present inventors have realized that temperature control within the reaction zone is important. I found a new idea and established a method.

すなわち、反応器における触媒層入口近傍の反応温度は
80〜120℃にあることが必要である。
That is, the reaction temperature near the inlet of the catalyst layer in the reactor needs to be 80 to 120°C.

本発明の反応は既に述べたように発熱反応であるが、上
記温度は触媒層入口近傍の温度を示すから、上記温度範
囲に維持するには循環流の存在も考慮に入れて、適宜に
加熱または冷却することにより容易に達成することがで
きる。触媒層入口近傍の温度が80℃より低いと、その
後の触媒層温度が高くても反応速度が遅くなり過ぎるた
めに好ましくない。また120℃より高いと酢@sec
−ブチルが酢酸と線状ブテンに分解するという逆反応の
速度が増大して線状ブテンの転化率を高められないだけ
でなく、線状ブテンの重合などの副反応も多くなり好ま
しくない。
As mentioned above, the reaction of the present invention is an exothermic reaction, but since the above temperature indicates the temperature near the inlet of the catalyst layer, in order to maintain the temperature within the above range, heating must be carried out as appropriate, taking into account the presence of circulation flow. Alternatively, this can be easily achieved by cooling. If the temperature near the inlet of the catalyst layer is lower than 80° C., the reaction rate will be too slow even if the subsequent temperature of the catalyst layer is high, which is not preferable. Also, if the temperature is higher than 120℃, vinegar @sec
The rate of the reverse reaction in which -butyl decomposes into acetic acid and linear butene increases, which not only makes it impossible to increase the conversion rate of linear butene, but also increases side reactions such as polymerization of linear butene, which is undesirable.

本発明においては、触媒層を通過した反応生成物である
反応混合物の少なくとも一部の特定量を、熱交換器など
の適宜の除熱設備を介して触媒層に循環することにより
、反応領域内の温度制御を行うことが肝要である。循環
するに際しては、反応器から流出した反応生成物から未
反応物あるいは目的とする酢酸sec−ブチルを特に分
離することなく循環させる。
In the present invention, a specific amount of at least a part of the reaction mixture, which is a reaction product that has passed through the catalyst bed, is circulated to the catalyst bed through an appropriate heat removal equipment such as a heat exchanger, so that It is important to control the temperature. During the circulation, unreacted substances or the desired sec-butyl acetate are circulated without being particularly separated from the reaction product flowing out from the reactor.

適宜の除熱設備を介して触媒層に循環される循環流の温
度は、冷却されて循環されるので触媒層出口の反応生成
物の温度よりも低いことは当然であるが、前記の触媒層
入口近傍の温度を下回らないような温度、すなわち、8
0℃を下回らない温度に冷却する。80℃より低い温度
まで冷却して循環させると、循環流が導入された触媒層
温度が低下し過ぎるために好ましくない。より好ましく
は、導入する触媒層部分における反応温度とほぼ同一の
温度が適当である。
The temperature of the circulating flow that is circulated to the catalyst bed via appropriate heat removal equipment is naturally lower than the temperature of the reaction product at the outlet of the catalyst bed because it is circulated after being cooled. The temperature does not fall below the temperature near the inlet, i.e. 8
Cool to a temperature not below 0°C. If the catalyst is cooled to a temperature lower than 80° C. and circulated, the temperature of the catalyst layer into which the circulating flow is introduced becomes too low, which is not preferable. More preferably, the temperature is approximately the same as the reaction temperature in the catalyst layer portion to be introduced.

本発明の反応温度制御に必要な循環流量は、反応領域内
の発熱量と許される温度上昇幅、および反応領域外への
放熱量などにより異なる。また、この反応領域内の発熱
量は供給流における酢酸と線状ブテンのモル比および供
給流量により異なる。
The circulation flow rate required for the reaction temperature control of the present invention varies depending on the amount of heat generated within the reaction region, the allowable temperature rise range, the amount of heat dissipated to the outside of the reaction region, and the like. Additionally, the amount of heat generated within this reaction zone varies depending on the molar ratio of acetic acid to linear butene in the feed stream and the feed flow rate.

本発明者らは、これらの複雑な因子について鋭意研究し
た結果、循環流量の供給流量に対する重量倍率として定
義される循環割合X(以下「循環倍数」という)が供給
流中における酢酸の線状ブテンに対するモル比Aを変数
とする前記式(I)で表される値以上あれば、適切な温
度制御が可能であることを見出し、本発明を完成した。
As a result of intensive research into these complex factors, the present inventors have determined that the circulation ratio The present invention has been completed based on the discovery that appropriate temperature control is possible when the molar ratio A to the molten metal is equal to or higher than the value expressed by the above formula (I) as a variable.

特に、本発明の反応において循環倍数が供給流中におけ
る酢酸の線状ブテンに対するモル比Aのみで規定され得
ることは予想され得ないことである。
In particular, it is unexpected that in the reaction of the invention the circulation factor can be defined solely by the molar ratio A of acetic acid to linear butene in the feed stream.

循環倍数の上限は特に制限はないか、必要以上の循環量
は循環にかかる設備、エネルギー等の負担が大きくなり
好ましくなく、実用上は100倍以下である。
There is no particular limit to the upper limit of the circulation number, and a circulation amount greater than necessary increases the burden on equipment, energy, etc. required for circulation, which is undesirable, and is practically 100 times or less.

本発明において、循環流が導入される触媒層の位置は特
に制限はない。たとえば、第1図に示すように反応器入
口で供給流と合流するような位置で循環流を循環させる
こともてきる。
In the present invention, there is no particular restriction on the position of the catalyst layer where the circulating flow is introduced. For example, as shown in FIG. 1, the recycle stream may be circulated at a location where it joins the feed stream at the reactor inlet.

しかしながら、循環流による温度制御効果を有効に発揮
するためには、たとえば第2図に示すように触媒層の中
間の位置に循環させることもできる。但し、この場合に
は循環流が導入される位置から触媒層出口までの触媒層
容積を■とすると、■が全触媒層容積の10分の1以上
となるような位置か好ましい。この位置よりも後部に導
入すると、循環流の触媒層内での分散か不十分となり、
安定した温度制御が困難となるために適当でない。
However, in order to effectively exert the temperature control effect of the circulating flow, it is also possible to circulate the circulating flow to a position in the middle of the catalyst layer, as shown in FIG. 2, for example. However, in this case, assuming that the volume of the catalyst bed from the position where the circulating flow is introduced to the outlet of the catalyst bed is 2, the position is preferably such that 2 is one-tenth or more of the total volume of the catalyst bed. If it is introduced at the rear of this position, the circulating flow will not be sufficiently dispersed within the catalyst layer.
This is not suitable because stable temperature control becomes difficult.

本発明の方法は1段の反応器によって説明したか、上述
の条件を満たす限り2段以上の複数の反応器を直列に配
列させた反応器であっても良い。
Although the method of the present invention has been described using a single stage reactor, it may also be a reactor having two or more stages arranged in series as long as the above-mentioned conditions are met.

複数の直列式反応器の場合は、前記の供給流および触媒
層入口近傍の温度のいずれも、はじめに反応が起こる第
一の反応器における温度をそれぞれ意味し、また前記の
循環流の循環させるべき位置の説明における触媒層容積
は、複数の反応器における触媒層の合計の容積を意味す
る。
In the case of multiple reactors in series, both the feed stream and the temperature near the catalyst bed inlet refer to the temperature in the first reactor where the reaction initially occurs, and also to the temperature at which the circulating stream should be circulated. The catalyst bed volume in the position description means the total volume of the catalyst beds in a plurality of reactors.

なお、反応混合物から適宜に抜き出して蒸留することに
より容易に目的物たる酢酸sec−ブチルの高純度のも
のが得られる。
In addition, by appropriately extracting from the reaction mixture and distilling it, the target product, sec-butyl acetate, of high purity can be easily obtained.

[実施例] 以下、実施例により本発明をさらに詳しく説明する。本
実施例で使用したS/Sブテンの組成は、線状ブテン6
4.3重量%、ブタン35.2重量%である。また、モ
ル比とは、線状ブテンに対する酢酸のモル比を言い、L
HSVは酢酸の供給量を基準とする。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. The composition of the S/S butene used in this example is linear butene 6
4.3% by weight, butane 35.2% by weight. In addition, the molar ratio refers to the molar ratio of acetic acid to linear butene, and L
HSV is based on the amount of acetic acid supplied.

火五■ユ 長さ2+a、内径10cmのステンレス製円筒管の中央
部に、触媒としてスチレン−ジビニルベンゼン共重合体
をスルフォン化してなる酸性イオン交換樹脂触媒である
バイエル社製のレワチット5P0118(H−型、商品
名)を10リツトル充填し、残りの空間部分には磁器製
ラシヒリングを詰めて固定床連続管型反応器とした。こ
の反応器を85℃に保持した恒温槽に垂直に入れ、第1
図のような装置を作製した。恒温槽は図示していない。
In the center of a stainless steel cylindrical tube with a length of 2+A and an inner diameter of 10 cm, a catalyst was placed in the center of a stainless steel cylindrical tube with Rewacit 5P0118 (H- The reactor was filled with 10 liters of mold (trade name), and the remaining space was filled with porcelain Raschig rings to form a fixed bed continuous tubular reactor. This reactor was placed vertically in a constant temperature bath maintained at 85°C, and
The device shown in the figure was constructed. A constant temperature bath is not shown.

すなわち、酢酸と線状ブテンからなる液状の供給流1は
、反応器2に供給され触媒層3において反応し、反応混
合物は循環ポンプを経て抜き出°される。反応混合物は
熱交換器を介して冷却され、その一部は循環流導入口4
に循環される。循環流は循環流導入口4において供給流
1と合流する。
That is, a liquid feed stream 1 consisting of acetic acid and linear butenes is fed to a reactor 2 and reacts in a catalyst bed 3, and the reaction mixture is withdrawn via a circulation pump. The reaction mixture is cooled via a heat exchanger, a portion of which is cooled through the circulation flow inlet 4.
is circulated. The circulating flow joins the feed stream 1 at the circulating flow inlet 4 .

また、反応混合物は、連続的に反応混合物出口5から抜
き出される。
Moreover, the reaction mixture is continuously extracted from the reaction mixture outlet 5.

この反応器に、酢酸をLHSV1.Oおよび線状ブテン
(純度99重量%)のモル比1,8の供給流を反応圧力
20にg/cm2で流した。循環流は熱交換器を介して
85℃に冷却して循環倍数15(前記式(I)から計算
された計算循環倍数:1.5)で循環し触媒層入口から
導入した。この時の触媒層内の温度分布は単調に上昇し
ており、触媒層の入口と出口の温度はそれぞれ85℃と
89℃であった。
Acetic acid was added to this reactor at LHSV1. A feed stream with a molar ratio of 1,8 of O and linear butenes (99% purity by weight) was flowed at a reaction pressure of 20 g/cm2. The circulating stream was cooled to 85° C. via a heat exchanger, circulated at a circulation factor of 15 (calculated circulation factor calculated from the above formula (I): 1.5), and introduced from the inlet of the catalyst bed. At this time, the temperature distribution within the catalyst layer was increasing monotonically, and the temperatures at the inlet and outlet of the catalyst layer were 85° C. and 89° C., respectively.

流出反応混合物を5時間おきにガスクロマドクラフィー
で分析し、組成か安定した定常状態では、線状ブテンの
転化率は86.2モル%、酢酸sec−ブチルへの選択
率は94.3モル%てあり、t、oo。
The effluent reaction mixture was analyzed by gas chromatography every 5 hours, and under steady state conditions with stable composition, the conversion of linear butene was 86.2 mol%, and the selectivity to sec-butyl acetate was 94.3 mol%. There is, t,oo.

時間連続運転しても触媒の活性はほとんど変化なく、同
様の転化率および選択率が得られた。
Even after continuous operation for hours, the activity of the catalyst hardly changed, and similar conversion rates and selectivities were obtained.

夫族孤にj 前記実施例1の装置において触媒を同しくスチレン−ジ
ビニルヘンセン共重合体をスルフォン化してなる酸性イ
オン交換樹脂触媒であるロームアンドハース社製アンバ
ーリスト−15(H−型、商品名)に入れ替え、S/S
ブテンを線状ブテン原料とし、触媒層入口温度、モル比
、LH5V、反応圧力および循環倍数を代えた他は実施
例1と同様に反応させた。
In the apparatus of Example 1, the catalyst was Amberlyst-15 (H type, Product name), S/S
The reaction was carried out in the same manner as in Example 1, except that butene was used as a linear butene raw material, and the catalyst bed inlet temperature, molar ratio, LH5V, reaction pressure, and circulation ratio were changed.

得られた結果を表1に示す。いずれも触媒活性の低下は
認められなかった。
The results obtained are shown in Table 1. No decrease in catalyst activity was observed in either case.

表1 実施例       2 3 4 5 反応圧力(Kg/cm2)  50  25   :l
IO50L HS V     O,22,010,0
5,0モル比       1.0 2.0 2.0 
1.5恒温検温度(”C)   80  90  10
0 120計算循環倍数   (7.3 1.3 1.
3 1.9循環倍数     2(7.0 4.2 3
,4 10.0実施例6および7 循環流を触媒層に導入する位置を変えた第2図に示すよ
うな装置を用いた他は、実施例3と同様に反応させた。
Table 1 Example 2 3 4 5 Reaction pressure (Kg/cm2) 50 25 :l
IO50L HS V O,22,010,0
5,0 molar ratio 1.0 2.0 2.0
1.5 Constant temperature measurement temperature (”C) 80 90 10
0 120 calculation circulation multiple (7.3 1.3 1.
3 1.9 circulation multiple 2 (7.0 4.2 3
, 4 10.0 Examples 6 and 7 The reaction was carried out in the same manner as in Example 3, except that an apparatus as shown in FIG. 2 was used in which the position at which the circulating flow was introduced into the catalyst bed was changed.

なお、恒温槽は図示していない。Note that a constant temperature bath is not shown.

すなわち、第2図において酢酸と線状ブテンからなる液
状の供給流1は、反応器2に供給され触媒層3において
反応し、反応混合物は循環ポンプを経て抜き出される。
That is, in FIG. 2, a liquid feed stream 1 consisting of acetic acid and linear butenes is fed to a reactor 2, reacts in a catalyst bed 3, and the reaction mixture is withdrawn via a circulation pump.

反応混合物は熱交換器を介して冷却され、その一部は触
媒層3の中間に位置する循環流導入口4から循環流とし
て触媒層3中へ導入される。また、反応混合物は、連続
的に反応混合物出口5から抜き出される。
The reaction mixture is cooled through a heat exchanger, and a portion of the reaction mixture is introduced into the catalyst bed 3 as a recycle stream through a recycle flow inlet 4 located in the middle of the catalyst bed 3 . Moreover, the reaction mixture is continuously extracted from the reaction mixture outlet 5.

第2図に示された反応器により得られた結果を表2に示
す。いずれも触媒活性の低下は認められなかった。
The results obtained with the reactor shown in FIG. 2 are shown in Table 2. No decrease in catalyst activity was observed in either case.

表2 実施例         67 反応圧力(にg/cm2)    25    25L
 HS V         2.0    2.0モ
ル比         2.0    2.0恒温槽部
度(”C)     90    90計算循環倍数 
     33   33循環倍数        4
.2    4.2循環位置        0.5 
   0.25(注) 循環位置:循環流導入位置から触媒層出口までの触媒層
容積を全触媒層容積で割った値で示す。
Table 2 Example 67 Reaction pressure (g/cm2) 25 25L
HS V 2.0 2.0 Molar ratio 2.0 2.0 Constant temperature chamber part ("C) 90 90 Calculated circulation multiple
33 33 circulation multiple 4
.. 2 4.2 Circulation position 0.5
0.25 (Note) Circulation position: Shown as the value obtained by dividing the catalyst bed volume from the circulation flow introduction position to the catalyst bed exit by the total catalyst bed volume.

―紋亘ユ 実施例2において反応混合物を循環させることなく流通
させたほかは同様にして反応させた。
- Monwayu The reaction was carried out in the same manner as in Example 2 except that the reaction mixture was circulated without being circulated.

その結果、触媒層内の温度は急激に増加し、出口の温度
か180℃以上となフて反応器流出部で多量の亜硫酸ガ
スか検知されたので反応を停止し、触媒層を調べたとこ
ろ反応前においては濃茶色であった触媒が黒変しており
、酸活性をほとんど失っていた。
As a result, the temperature inside the catalyst layer rapidly increased, and the temperature at the outlet reached 180℃ or higher, and a large amount of sulfur dioxide gas was detected at the outlet of the reactor, so the reaction was stopped and the catalyst layer was examined. The catalyst, which was dark brown before the reaction, had turned black and had almost lost its acid activity.

ル!」1λ上、l−?乙l 循環倍数を変えたほかはそれぞれ実施例4および5と同
様に反応させた。
Le! ”1λ above, l-? Reactions were carried out in the same manner as in Examples 4 and 5, except that the circulation ratio was changed.

得られた結果を表3に示す。いずれも数時間から数分で
触媒が活性を失フた。
The results obtained are shown in Table 3. In both cases, the catalyst lost its activity within several hours to several minutes.

表3 比較例         23 反応圧力(にg/cm2)    30    50L
 HS V        10.0    5.0モ
ル比         2.0    1.5恒温検温
度(t)     100    120計算循環倍数
      413    1.9循環倍数     
   0.5    1.−0[発明の効果] 本発明の方法により、設備費のかからない固定床連続管
型反応器において効率のよい液相反応を実現し、さらに
反応領域内の温度分布の管理制御か容易で、かつ高い線
状ブテンの転化率および高い酢酸sec−ブチルの生産
効率を安定して確保することが可能となった。これはま
た、反応混合物がら分離される線状ブテンおよびブタン
の混合ガスは、そのまま廃棄しても充分経済性が確保で
きるので、さらに線状ブテンを回収、精製、昇圧して再
使用する必要がなく、そのための設備費が大幅に削減で
きるという効果を伴フた。
Table 3 Comparative Example 23 Reaction pressure (g/cm2) 30 50L
HS V 10.0 5.0 Molar ratio 2.0 1.5 Constant temperature measurement (t) 100 120 Calculated circulation multiple 413 1.9 Circulation multiple
0.5 1. -0 [Effects of the Invention] The method of the present invention realizes an efficient liquid phase reaction in a fixed bed continuous tubular reactor that does not require equipment costs, and also allows easy control of temperature distribution within the reaction region. It has become possible to stably secure a high conversion rate of linear butene and high production efficiency of sec-butyl acetate. This also means that the mixed gas of linear butene and butane separated from the reaction mixture can be economically efficient even if it is disposed of as is, so it is necessary to recover, purify, pressurize, and reuse the linear butene. This has the effect of significantly reducing equipment costs.

また、実施例でみられるように、酢酸sec−ブチルへ
の選択率は充分に高く、変動費原価の低減のみならず、
酢酸5eC−ブチルおよび未反応の酢酸の精製も容易で
ある。
In addition, as seen in the examples, the selectivity to sec-butyl acetate is sufficiently high, which not only reduces variable costs but also
Purification of 5eC-butyl acetate and unreacted acetic acid is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は実施例で用いた反応器を含む工程
図である。 1・・・供給流 2・・・反応器 3・・・触媒層 4・・・循環流導入口 5・・・反応混合物出口 特許出願人 日本石油化学株式会社
FIGS. 1 and 2 are process diagrams including reactors used in Examples. 1...Feed stream 2...Reactor 3...Catalyst layer 4...Circulating flow inlet 5...Reaction mixture outlet Patent applicant Nippon Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)供給流中の酢酸の線状ブテンに対するモル比が1
.0〜2.0の範囲で、かつ酢酸の触媒層に対するLH
SVが0.1〜10である条件下で、スチレン系スルフ
ォン酸型イオン交換樹脂触媒および/またはフェノール
スルフォン酸型イオン交換樹脂触媒を充填してなる触媒
層の入口温度を80℃〜120℃の温度範囲に維持した
連続流通式固定床反応器に、酢酸と線状ブテンをいずれ
も液状かつ並流で供給し、得られた反応混合物を80℃
を下回らない温度に冷却し、下記式( I )で表わされ
る割合により前記触媒層に循環させることを特徴とする
酢酸sec−ブチルの製造方法。 (7.6A+5.9)/(3.6A^2+1.5A−1
)≦X( I )ここで、Xは循環流量の供給流量に対す
る重量倍率として定義される循環割合を示し、Aは供給
流中における酢酸の線状ブテンに対するモル比を示す。
(1) The molar ratio of acetic acid to linear butenes in the feed stream is 1.
.. LH in the range of 0 to 2.0 and for the acetic acid catalyst layer
Under conditions where the SV is 0.1 to 10, the inlet temperature of the catalyst bed filled with the styrene sulfonic acid type ion exchange resin catalyst and/or the phenolsulfonic acid type ion exchange resin catalyst is set at 80°C to 120°C. Acetic acid and linear butene were both fed in liquid form and in parallel flow to a continuous flow fixed bed reactor maintained at a temperature range, and the resulting reaction mixture was heated to 80°C.
A method for producing sec-butyl acetate, characterized in that the sec-butyl acetate is cooled to a temperature not lower than , and circulated through the catalyst layer at a rate represented by the following formula (I). (7.6A+5.9)/(3.6A^2+1.5A-1
)≦X(I) where X indicates the circulation ratio, defined as the weight multiple of the circulation flow rate to the feed flow rate, and A indicates the molar ratio of acetic acid to linear butenes in the feed stream.
(2)前記供給流中の線状ブテンとして、ナフサを熱分
解して得られるC_4留分からブタジエンおよびイソブ
チレンを除いた留分を使用することを特徴とする請求項
1記載の方法。
(2) The method according to claim 1, characterized in that, as the linear butene in the feed stream, a fraction obtained by removing butadiene and isobutylene from a C_4 fraction obtained by thermally decomposing naphtha is used.
JP2294238A 1990-10-31 1990-10-31 Method for producing sec-butyl acetate Expired - Lifetime JP2883720B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2294238A JP2883720B2 (en) 1990-10-31 1990-10-31 Method for producing sec-butyl acetate
EP91118562A EP0483826B1 (en) 1990-10-31 1991-10-30 Method for producing lower alkyl acetate
DE69117871T DE69117871T2 (en) 1990-10-31 1991-10-30 Process for the preparation of a lower alkyl acetate
US08/330,115 US5457228A (en) 1990-10-31 1994-10-27 Method for producing lower alkyl acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2294238A JP2883720B2 (en) 1990-10-31 1990-10-31 Method for producing sec-butyl acetate

Publications (2)

Publication Number Publication Date
JPH04169553A true JPH04169553A (en) 1992-06-17
JP2883720B2 JP2883720B2 (en) 1999-04-19

Family

ID=17805137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2294238A Expired - Lifetime JP2883720B2 (en) 1990-10-31 1990-10-31 Method for producing sec-butyl acetate

Country Status (1)

Country Link
JP (1) JP2883720B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539108A (en) * 2007-09-14 2010-12-16 湖南中創化工股分有限公司 Method for removing heavy hydrocarbons from reaction products producing sec-butyl acetate
CN105712877A (en) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 Preparation method for sec-butyl acetate
CN114436826A (en) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 Method for preparing sec-butylamine through post-etherification C4 by supergravity method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539108A (en) * 2007-09-14 2010-12-16 湖南中創化工股分有限公司 Method for removing heavy hydrocarbons from reaction products producing sec-butyl acetate
CN105712877A (en) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 Preparation method for sec-butyl acetate
CN114436826A (en) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 Method for preparing sec-butylamine through post-etherification C4 by supergravity method

Also Published As

Publication number Publication date
JP2883720B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
EP0659473B1 (en) Catalytic converter and method for highly exothermic reactions
US5760253A (en) Catalytic converter and method for highly exothermic reactions
EP0483826B1 (en) Method for producing lower alkyl acetate
US4739124A (en) Method for oxygen addition to oxidative reheat zone of ethane dehydrogenation process
AU2005226768B2 (en) Utilization of acetic acid reaction heat in other process plants
US4599471A (en) Method for oxygen addition to oxidative reheat zone of hydrocarbon dehydrogenation process
AU2002234884B2 (en) Method for controlling reaction and controlling apparatus
CA3031565A1 (en) Oxidative dehydrogenation (odh) of ethane
US4343957A (en) Process for the production of cumene
JPH04169553A (en) Production of sec-butyl acetate
US5466836A (en) Catalytic converter and method for highly exothermic reactions
JP4422893B2 (en) Process for producing bis (4-hydroxyaryl) alkanes
MXPA05011806A (en) Process for the preparation of vinyl acetate.
JPH0235729B2 (en)
JP2883719B2 (en) Method for producing isopropyl acetate
JPH0115512B2 (en)
US4075413A (en) Process for preparation of diacetoxybutene
EP0690021B1 (en) Oxidation of secondary alcohols
JPH101447A (en) Stepwise alkylation
CA3137511C (en) Olefin trimerization
US4341913A (en) Process for the production of cumene
CN111848386A (en) Systems and methods for processing variable acetyl streams
JPH08501082A (en) A new method for aromatic alkylation.
JPH0347140A (en) Method for multistage dehydrogenation of ethylbenzene with divided supply flow of hydrocarbon
US3425955A (en) Regeneration of aluminum halide containing catalysts