JPH04169552A - Production of isopropyl acetate - Google Patents

Production of isopropyl acetate

Info

Publication number
JPH04169552A
JPH04169552A JP2294237A JP29423790A JPH04169552A JP H04169552 A JPH04169552 A JP H04169552A JP 2294237 A JP2294237 A JP 2294237A JP 29423790 A JP29423790 A JP 29423790A JP H04169552 A JPH04169552 A JP H04169552A
Authority
JP
Japan
Prior art keywords
propylene
acetic acid
reaction
catalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2294237A
Other languages
Japanese (ja)
Other versions
JP2883719B2 (en
Inventor
Yuichi Tokumoto
徳本 祐一
Kazuo Sakamoto
一夫 坂本
Kikuo Sasaki
佐々木 紀久夫
Isoo Shimizu
清水 五十雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd, Daicel Chemical Industries Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2294237A priority Critical patent/JP2883719B2/en
Priority to EP91118562A priority patent/EP0483826B1/en
Priority to DE69117871T priority patent/DE69117871T2/en
Publication of JPH04169552A publication Critical patent/JPH04169552A/en
Priority to US08/330,115 priority patent/US5457228A/en
Application granted granted Critical
Publication of JP2883719B2 publication Critical patent/JP2883719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound by feeding acetic acid and propylene both in a liquid state to a specific catalytic layer of a continuous circulation type fixed bed reactor in a counter flow under a specific condition and recycling the reaction mixture to the catalytic layer at a specific temperature at a specific ratio. CONSTITUTION:A continuous circulation type fixed bed reactor 2 having a catalytic layer 3 packed with a styrene-based (and/or phenol) sulfonic acid type ion exchange resin catalyst wherein an inlet temperature of the catalytic layer is maintained at 80-120 deg.C is charged with acetic acid and propylene both in a liquid state in a counter flow under conditions of a molar ratio A of acetic acid/propylene in a feed flow 1 of 1.0-2.0 and LHSV based on the catalytic layer 3 of acetic acid of 0.1-2.0 and the prepared reaction mixture is cooled to >=70 deg.C, is circulated through an inlet of circulation flow 4 to the catalytic layer 3 in a ratio shown by the formula (X is weight ratio of circulation flow rate/feed flow rate) to give the title compound useful as a solvent, perfume, etc., by using an inexpensive reactor by a liquid-phase reaction efficiently and in readily temperature control in a reaction zone, in high propylene conversion ratio and high productivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸性イオン交換樹脂触媒の存在下に、酢酸に
プロピレンを付加させることによる酢酸イソプロピルの
連続的製造方法に関する。本発明によって製造される酢
酸イソプロピルは、溶剤や香料等として有用な物質であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous process for producing isopropyl acetate by adding propylene to acetic acid in the presence of an acidic ion exchange resin catalyst. Isopropyl acetate produced according to the present invention is a substance useful as a solvent, a fragrance, and the like.

[従来の技術および発明が解決しようとする課題]酢酸
とプロピレンを酸性イオン交換樹脂触媒により反応させ
ると、下記式のように酢酸イソプロピルが得られること
はよく知られている。
[Prior Art and Problems to be Solved by the Invention] It is well known that when acetic acid and propylene are reacted using an acidic ion exchange resin catalyst, isopropyl acetate is obtained as shown in the following formula.

CHsCOOH+ CHa=CH−CHs −CHsC
OOCH(CHs)z上記エステル化反応は反応形態上
、液相反応、気相反応および気液混相反応が知られてい
るが、気相反応では触媒上におけるプロピレンの重合が
避けられず、そのために、触媒寿命が短くなるという不
利があるので工業上好ましくない。また、特公昭59−
44295号公報では、液状の酢酸と気体状のプロピレ
ンによる気液並流の混相反応を開示している。これによ
ると、液状の酢酸が触媒表面を湿潤化するため、触媒効
率を高め、その結果、穏やかな反応条件をとることが可
能となる。
CHsCOOH+ CHa=CH-CHs -CHsC
OOCH(CHs)z The above esterification reaction is known to include liquid phase reaction, gas phase reaction, and gas-liquid mixed phase reaction, but in gas phase reaction, polymerization of propylene on the catalyst is unavoidable. This is not preferred industrially because it has the disadvantage of shortening the catalyst life. In addition, special public service 1983-
Publication No. 44295 discloses a gas-liquid cocurrent multiphase reaction using liquid acetic acid and gaseous propylene. According to this, since liquid acetic acid moistens the catalyst surface, the catalyst efficiency is increased, and as a result, it becomes possible to use mild reaction conditions.

シカしながら、触媒層中を気体状のプロピレンが通過す
ることから、その部分の接触効率が必然的に低下すると
いう不利は避けられない。さらに、この気液混相反応の
場合実際には、反応するプロピレンは酢酸中に溶解して
いるプロピレンであると考えられ、エステル化反応によ
り液相中のプロピレンが消費されると気体状プロピレン
が再び液相に溶解する必要があるが、これには時間がか
かる。従って、プロピレンおよび酢酸のいずれも液相で
反応させる液相反応が工業的には好ましい方法である。
However, since gaseous propylene passes through the catalyst layer, there is an unavoidable disadvantage that the contact efficiency in that part inevitably decreases. Furthermore, in the case of this gas-liquid multiphase reaction, the propylene that reacts is actually considered to be propylene dissolved in acetic acid, and when the propylene in the liquid phase is consumed by the esterification reaction, gaseous propylene is regenerated. It needs to be dissolved in the liquid phase, which takes time. Therefore, a liquid phase reaction in which both propylene and acetic acid are reacted in a liquid phase is an industrially preferred method.

上記エステル化反応の反応方式については、回分式より
も連続式の方が工業上有利である。連続式の場合にも連
続種型反応器、流通式固定床型反応器、移動床型反応器
、流動床型反応器等があるが、装置にかかるコストやメ
インテナンス等を考えると固定床連続管型反応器が最も
好ましい。しかし、固定床連続管型反応器を用いて上記
反応を工業化しようとしたとき、上記反応は大きな発熱
反応であるため、必然的に流れ方向の温度上昇を伴う。
Regarding the reaction method of the above-mentioned esterification reaction, a continuous method is industrially more advantageous than a batch method. In the case of continuous type reactors, there are continuous seed reactors, fixed bed flow reactors, moving bed reactors, fluidized bed reactors, etc., but when considering the cost and maintenance of the equipment, fixed bed continuous pipes are preferable. type reactors are most preferred. However, when attempting to industrialize the above reaction using a fixed bed continuous tubular reactor, the above reaction is a large exothermic reaction and is inevitably accompanied by a temperature rise in the flow direction.

そのため、生成した酢酸イソプロピルが酢酸とプロピレ
ンに分解する逆反応の速度が増大し、通常の方法では最
終的なプロピレンの転化率を高められないだけでなく、
温度上昇が著しい場合には触媒、特にイオン交換樹脂触
媒の活性が失われることが判明した。従って、高いプロ
ピレンの転化率と触媒活性とを確保するためには、反応
領域内の温度分布を適切に管理制御するy要がある。
Therefore, the rate of the reverse reaction in which the produced isopropyl acetate decomposes into acetic acid and propylene increases, and the final conversion rate of propylene cannot be increased by conventional methods.
It has been found that if the temperature rises significantly, the activity of the catalyst, especially the ion exchange resin catalyst, is lost. Therefore, in order to ensure high propylene conversion and catalytic activity, it is necessary to appropriately manage and control the temperature distribution within the reaction zone.

例えば、欧州特許公開公報第0054576号公報には
多管式固定床反応器が開示されているが、気液混相反応
または液相反応で上記反応を実施するためには、多管式
固定床のような複雑な反応器を用いる場合、十分な耐圧
性を持たせる必要があり、そのため反応設備の建設費が
高くなる上に、触媒交換等のメインテナンスが煩雑にな
り好ましくない。
For example, European Patent Publication No. 0054576 discloses a multi-tubular fixed bed reactor. When such a complex reactor is used, it is necessary to provide sufficient pressure resistance, which is not preferable because the construction cost of the reaction equipment increases and maintenance such as catalyst replacement becomes complicated.

従って、費用およびメインテナンス上有利な単管式固定
床反応器を用いた上記エステル化反応を実現するために
、安価で容易な反応温度管理制御方法の開発が切望され
る。
Therefore, in order to realize the above-mentioned esterification reaction using a single-tube fixed bed reactor which is advantageous in terms of cost and maintenance, there is a strong need for the development of an inexpensive and easy reaction temperature control method.

[課題を解決するための手段] すなわち本発明は、供給流中の酢酸のプロピレンに対す
るモル比が1.0〜2.0の範囲で、かつ酢酸の触媒層
に対するLHSVが0.1〜10である条件下で、スチ
レン系スルフォン酸型イオン交換樹脂および/またはフ
ェノールスルフォン酸型イオン交換樹脂触媒を充填して
なる触媒層の入口温度を70℃〜102℃の温度範囲に
維持した連続流通式固定床反応器に、酢酸とプロピレン
とをいずれも液状かつ並流で供給し、得られた反応混合
物を70℃を下回らない温度に冷却し、下記式(I)で
表わされる割合により前記触媒層に循環させることを特
徴とする酢酸イソプロピルの製造方法に関するものであ
る。
[Means for Solving the Problems] That is, the present invention provides a method in which the molar ratio of acetic acid to propylene in the feed stream is in the range of 1.0 to 2.0, and the LHSV of acetic acid to the catalyst layer is in the range of 0.1 to 10. Continuous flow fixed type in which the inlet temperature of the catalyst bed filled with styrene-based sulfonic acid type ion exchange resin and/or phenol sulfonic acid type ion exchange resin catalyst is maintained in the temperature range of 70°C to 102°C under certain conditions. Both acetic acid and propylene are supplied in liquid form and in parallel flow to the bed reactor, the resulting reaction mixture is cooled to a temperature not lower than 70°C, and the mixture is added to the catalyst layer according to the ratio represented by the following formula (I). The present invention relates to a method for producing isopropyl acetate, which is characterized by recycling.

ここで、Xは循環流量の供給流量に対する重量倍として
定義される循環割合を示し、Aは供給流中における酢酸
のプロピレンに対するモル比を示す。
Here, X indicates the circulation ratio, defined as the weight times the circulation flow rate to the feed flow rate, and A indicates the molar ratio of acetic acid to propylene in the feed stream.

以下に本発明をさらに説明する。The present invention will be further explained below.

本発明でいう酸性イオン交換樹脂とは、酸性を示すイオ
ン交換樹脂であり、スチレン系スルホン酸型樹脂あるい
はフェノールスルホン酸型樹脂である。スチレン系スル
ホン酸型イオン交換樹脂はスチレンとジビニルベンゼン
などの多不飽和化合物を共重合させて得られる樹脂をス
ルホン化したものである。また、フェノールスルホン酸
型イオン交換樹脂は通常フェノールスルホン酸をポルム
アルデヒドで縮合したものである。
The acidic ion exchange resin referred to in the present invention is an ion exchange resin exhibiting acidity, and is a styrene sulfonic acid type resin or a phenol sulfonic acid type resin. Styrenic sulfonic acid type ion exchange resin is a sulfonated resin obtained by copolymerizing styrene and a polyunsaturated compound such as divinylbenzene. Furthermore, the phenolsulfonic acid type ion exchange resin is usually a product obtained by condensing phenolsulfonic acid with pormaldehyde.

本発明で使用するプロピレンの供給源としては、プロピ
レンを約20重量%以上含有する炭化水素混合物を用い
ることができ、そのような炭化水素混合物としてはナフ
サなどの石油類を接触分解して得られるプロピレンを含
むCs留分が有効である。
As a source of propylene used in the present invention, a hydrocarbon mixture containing about 20% by weight or more of propylene can be used, and such a hydrocarbon mixture can be obtained by catalytically cracking petroleum such as naphtha. A Cs fraction containing propylene is effective.

本発明の方法においては、反応による発熱を抑制するた
めに上記ナフサなどの石油類を接触分解して得られるC
s留分(以下rFCCプロピレン」ということがある)
を使用するのが好ましい。
In the method of the present invention, in order to suppress heat generation due to the reaction, C
s fraction (hereinafter sometimes referred to as rFCC propylene)
It is preferable to use

このFCCプロピレンには、プロピレン、プロパンなど
の炭素数3の炭化水素のほかに炭素数3以外のオレフィ
ン、重金属類あるいは硫黄なども微量ながら含有されて
いる。従って、炭素数3以外のオレフィンが酢酸と反応
して、未反応原料である酢酸や製品である酢酸イソプロ
ピルの純度を低下させるような不純物を生成したり、あ
るいは重金属類や硫黄などが触媒の劣化を促進させたり
することが懸念される。しかしながら、後述の実施例に
より説明するように、本発明の方法においてはこれらの
不都合は生じない。
In addition to hydrocarbons having three carbon atoms such as propylene and propane, this FCC propylene also contains trace amounts of olefins having other than three carbon atoms, heavy metals, sulfur, and the like. Therefore, olefins with a carbon number other than 3 react with acetic acid, producing impurities that reduce the purity of the unreacted raw material acetic acid and the product isopropyl acetate, or heavy metals and sulfur deteriorate the catalyst. There are concerns that this may encourage However, as will be explained in the Examples below, these disadvantages do not occur in the method of the present invention.

触媒層への新たな原料の供給流(本明細書においては単
に「供給流」という)における酢酸/プロピレンのモル
比は1.0〜2.01より好ましくは1.2〜2.0 
とする。当該モル比が1.0より小さいとプロピレンの
重合等の副反応が多くなり経済上好ましくない。また、
モル比が2゜0より大きいと未反応の酢酸の量が多く、
蒸留等の回収にかかる負担が大きくなり好ましくない。
The molar ratio of acetic acid/propylene in the feed stream of new raw materials to the catalyst bed (herein simply referred to as "feed stream") is 1.0 to 2.01, more preferably 1.2 to 2.0.
shall be. If the molar ratio is less than 1.0, side reactions such as propylene polymerization will increase, which is economically unfavorable. Also,
When the molar ratio is greater than 2°0, the amount of unreacted acetic acid is large;
This is not preferable because it increases the burden of recovery such as distillation.

プロピレンと酢酸は上記モル比を維持する限り反応器に
別個にまたは混合して供給することができる。なお、上
記供給流とは後述の循環流を含まない流れをいう。した
がって、上記のモル比における酢酸とプロピレンには後
述の循環流から派生する成分は含まれないものである。
Propylene and acetic acid can be fed to the reactor separately or in a mixture as long as the above molar ratio is maintained. Note that the above-mentioned supply flow refers to a flow that does not include the circulation flow described below. Therefore, the acetic acid and propylene in the above molar ratio do not contain components derived from the circulating flow described below.

触媒層への供給流量は、触媒層に対する酢酸のLHSV
として好ましくは0.1〜10、より好ましくは0.2
〜5の範囲である。LHSVが0.1より小さいと生産
効率が低くなり過ぎ好ましくない。一方、LHSVが1
0より大きいと反応に必要な触媒層における平均滞留時
間が確保できず、転化率が低くなるので好ましくない。
The supply flow rate to the catalyst layer is determined by the LHSV of acetic acid to the catalyst layer.
preferably 0.1 to 10, more preferably 0.2
It is in the range of ~5. If LHSV is less than 0.1, the production efficiency will be too low, which is not preferable. On the other hand, LHSV is 1
If it is larger than 0, the average residence time in the catalyst layer necessary for the reaction cannot be ensured and the conversion rate becomes low, which is not preferable.

本発明における反応器内の反応圧力は反応系を液相に保
つために十分な圧力でよく、例えば、15kg/cm”
〜100kg/cm”、より好ましくは15kg/印2
〜50kg/cm’の範囲から適宜選択できる。反応圧
力が15kg/cm”より低いと、気相部分が生じるの
で好ましくない。また、反応圧力が100kg/cT1
1”より高いと、不必要な耐圧設備を設けることになる
ので経済上好ましくない。
The reaction pressure in the reactor in the present invention may be a pressure sufficient to maintain the reaction system in a liquid phase, for example, 15 kg/cm"
~100kg/cm”, more preferably 15kg/mark 2
It can be appropriately selected from the range of ~50 kg/cm'. If the reaction pressure is lower than 15 kg/cm'', a gas phase will be generated, which is not preferable.
If it is higher than 1", unnecessary pressure-resistant equipment will be provided, which is economically undesirable.

本発明の目的とする反応は発熱反応であるが、本発明者
らは、これを建設費のかからない流通式固定床反応器に
おいて実現するためには、反応領域内の温度管理が重要
であることを見出し、その方法を確立した。
Although the reaction targeted by the present invention is an exothermic reaction, the present inventors believe that temperature control within the reaction zone is important in order to realize this in a flow-through fixed bed reactor that does not require construction costs. discovered and established a method.

すなわち、反応器における触媒層入口近傍の反応温度は
70〜120°Cにあることが必要である。本発明の反
応は既に述べたように発熱反応であるが、上記温度は触
媒層入口近傍の温度を示すから、上記温度範囲に維持す
るには循環流の存在も考慮に入れて、適宜に加熱または
冷却することにより容易に達成できる。触媒層入口近傍
の温度が70℃より低いと、その後の触媒層温度が高く
ても反応速度カ遅くなり過ぎるために好ましくない。ま
た120℃より高いと酢酸イソプロピルが酢酸とプロピ
レンに分解するという逆反応の速度が増大してプロピレ
ンの転化率を高められないだけでなく、プロピレンの重
合などの副反応も多(なり好ましくない。
That is, the reaction temperature near the inlet of the catalyst layer in the reactor needs to be 70 to 120°C. As mentioned above, the reaction of the present invention is an exothermic reaction, but since the above temperature indicates the temperature near the inlet of the catalyst layer, in order to maintain the temperature within the above range, heating must be carried out as appropriate, taking into account the presence of circulation flow. Or this can be easily achieved by cooling. If the temperature near the inlet of the catalyst layer is lower than 70° C., the reaction rate will be too slow even if the subsequent temperature of the catalyst layer is high, which is not preferable. Furthermore, if the temperature is higher than 120°C, the rate of the reverse reaction in which isopropyl acetate decomposes into acetic acid and propylene increases, which not only makes it impossible to increase the conversion rate of propylene, but also causes many side reactions such as propylene polymerization (which is not preferable).

本発明においては、触媒層を通過した反応生成物である
反応混合物の少なくとも一部の特定量を、熱交換器など
の適宜の除熱設備を介して触媒層に循環することにより
、反応領域内の温度制御を行うことが肝要である。循環
するに際しては、反応器から流出した反応生成物から未
反応物あるいは目的とする酢酸イソプロピルを特に分離
することなく循環させる。
In the present invention, a specific amount of at least a part of the reaction mixture, which is a reaction product that has passed through the catalyst bed, is circulated to the catalyst bed through an appropriate heat removal equipment such as a heat exchanger, so that It is important to control the temperature. During the circulation, unreacted substances or the desired isopropyl acetate are circulated without being particularly separated from the reaction product flowing out from the reactor.

適宜の除熱設備を介して触媒層に循環される循環流の温
度は、冷却されて循環されるので触媒層出口の反応生成
物の温度よりも低いことは当然であるが、前記の触媒層
入口近傍の温度を下回らないような温度、すなわち、7
0℃を下回らない温度に冷却する。70℃より低い温度
まで冷却して循環させると、循環流が導入された触媒層
温度が低下し過ぎるために好ましくない。より好ましく
は、導入する触媒層部分における反応温度とほぼ同一の
温度が適当である。
The temperature of the circulating flow that is circulated to the catalyst bed via appropriate heat removal equipment is naturally lower than the temperature of the reaction product at the outlet of the catalyst bed because it is circulated after being cooled. The temperature does not fall below the temperature near the inlet, i.e. 7
Cool to a temperature not below 0°C. If the catalyst is cooled to a temperature lower than 70° C. and circulated, the temperature of the catalyst layer into which the circulating flow is introduced becomes too low, which is not preferable. More preferably, the temperature is approximately the same as the reaction temperature in the catalyst layer portion to be introduced.

本発明の反応温度制御に必要な循環流量は、反応領域内
の発熱量と許される温度上昇幅、および反応領域外への
放熱量などにより異なる。また、この反応領域内の発熱
量は供給流における酢酸とプロピレンのモル比および供
給流量により異なる。
The circulation flow rate required for the reaction temperature control of the present invention varies depending on the amount of heat generated within the reaction region, the allowable temperature rise range, the amount of heat dissipated to the outside of the reaction region, and the like. Additionally, the amount of heat generated within this reaction zone varies depending on the molar ratio of acetic acid to propylene in the feed stream and the feed flow rate.

本発明者らは、これらの複雑な因子について鋭意研究し
た結果、循環流量の供給流量に対する重量倍率として定
義される循環割合X(以下「循環倍数」という)が、供
給流中における酢酸のプロピレンに対するモル比Aを変
数とする前記式(I)で表される値以上あれば、適切な
温度制御が可能であることを見出し本発明を完成した。
As a result of intensive research into these complex factors, the present inventors found that the circulation ratio The present invention was completed by discovering that appropriate temperature control is possible if the molar ratio A is equal to or higher than the value expressed by the above formula (I) as a variable.

特に、本発明の反応において循環倍数が供給流中におけ
る酢酸のプロピレンに対するモル比Aのみで規定される
ことは予想され得ないことである。
In particular, it would not be expected that in the reaction of the invention the circulation factor is defined solely by the molar ratio A of acetic acid to propylene in the feed stream.

循環倍数の上限は特に制限はないが、必要以上の循環量
は循環にかかる設備やエネルギー等の負担が太き(なり
好ましくなく、実用上は100倍以下である。
Although there is no particular upper limit to the circulation rate, a circulation rate greater than necessary increases the burden on equipment, energy, etc. required for circulation (which is undesirable; in practical terms, it is 100 times or less).

本発明において、循環流が導入される触媒層の位置は特
に制限はない。例えば、第1図に示すように反応器入口
で供給流と合流するような位置で循環流を循環させるこ
ともできる。
In the present invention, there is no particular restriction on the position of the catalyst layer where the circulating flow is introduced. For example, as shown in FIG. 1, the recycle stream can be circulated at a location where it joins the feed stream at the reactor inlet.

しかしながら、循環流による温度制御効果を有効に発揮
するためには、例えば第2図に示すように触媒層の中間
の位置に循環させることもできる。
However, in order to effectively exhibit the temperature control effect of the circulating flow, it is also possible to circulate the circulating flow to a position in the middle of the catalyst layer, as shown in FIG. 2, for example.

但し、この場合には循環流が導入される位置から触媒層
出口までの触媒層容積をVとすると、■か全触媒層容積
の10分の一以上となるような位置が好ましい。この位
置よりも後部に導入すると、循環流の触媒層内での分散
が不十分となり、安定した温度制御が困難となるために
適当でない。
However, in this case, if the volume of the catalyst bed from the position where the circulation flow is introduced to the catalyst bed outlet is V, the position is preferably one where the volume is 1/10 or more of the total volume of the catalyst bed. If it is introduced at a position rearward than this position, the circulating flow will not be sufficiently dispersed within the catalyst layer, making stable temperature control difficult, and thus is not suitable.

本発明の方法は一段の反応器によって説明したか、上述
の条件を満たす限り二段以上の複数の反応器を直列に配
列させた反応器であってもよい。
Although the method of the present invention has been described using a single stage reactor, it may also be a reactor having two or more stages arranged in series as long as the above-mentioned conditions are met.

複数の直列式反応器の場合は、前記の供給流および触媒
層入口近傍の温度のいずれもが、はじめに反応が起こる
第一の反応器における温度をそれぞれ意味し、また前記
の循環流の循環させるべき位置の説明における触媒層容
積は、複数の反応器における触媒層の合計の容積を意味
する。
In the case of a plurality of series reactors, both the above-mentioned feed stream and the temperature near the catalyst bed inlet refer respectively to the temperature in the first reactor where the reaction initially takes place, and also the temperature at which the above-mentioned circulating flow is circulated. The catalyst layer volume in the description of the position means the total volume of the catalyst layers in a plurality of reactors.

なお、反応混合物から適宜に抜き出して蒸留することに
より容易に目的物たる酢酸イソプロピルの高純度のもの
が得られる。
In addition, by appropriately extracting from the reaction mixture and distilling it, the target product, isopropyl acetate, of high purity can be easily obtained.

[実施例コ 以下、実施例により本発明をさらに詳しく説明する。[Example code] Hereinafter, the present invention will be explained in more detail with reference to Examples.

ここで、以下の実施例で使用したFCCプロピレンの組
成は、プロピレン76.1重量%およびプロパン22.
0重量%である。また、モル比とは、プロピレンに対す
る酢酸のモル比を指し、LHSVは酢酸の供給量を基準
とする。
Here, the composition of the FCC propylene used in the following examples was 76.1% by weight of propylene and 22% by weight of propane.
It is 0% by weight. Furthermore, the molar ratio refers to the molar ratio of acetic acid to propylene, and LHSV is based on the amount of acetic acid supplied.

夾凰五よ 長さ2m、内径10cmのステンレス製円筒管の中央部
ニ、触媒としてスチレン−ジビニルベンゼン共重合体を
スルフォン化してなる酸性イオン交換樹脂触媒であるバ
イエル社製のレヮチット5PC118(H−型、商品名
)を10リツトル充填し、残りの空間部分には磁器製ラ
シヒリングを詰めて固定床連続流通式反応器とした。
In the center of a stainless steel cylindrical tube with a length of 2 m and an inner diameter of 10 cm, a catalyst containing Rectit 5PC118 (H- The reactor was filled with 10 liters of mold (trade name), and the remaining space was filled with porcelain Raschig rings to form a fixed bed continuous flow reactor.

この反応器を85°Cに保持した恒温槽に垂直に入れ、
第1図のような装置を作成した。恒温槽は図示していな
い。
This reactor was placed vertically in a constant temperature bath maintained at 85°C.
A device as shown in Figure 1 was created. A constant temperature bath is not shown.

すなわち、酢酸とプロピレンからなる液状の供給流1は
、反応器2に供給され触媒層3において反応し、反応混
合物は循環ポンプを経て抜き出される。反応混合物は熱
交換器を介して冷却され、その一部は循環流導入口4に
循環される。循環流は循環流導入口4において供給流1
と合流する。
That is, a liquid feed stream 1 consisting of acetic acid and propylene is fed to a reactor 2 and reacts in a catalyst bed 3, and the reaction mixture is withdrawn via a circulation pump. The reaction mixture is cooled via a heat exchanger and a portion thereof is recycled to the circulation inlet 4. The circulating flow is connected to the supply stream 1 at the circulating flow inlet 4.
join with.

また、反応混合物は、連続的に反応混合物出口5から抜
き出される。
Moreover, the reaction mixture is continuously extracted from the reaction mixture outlet 5.

この反応器に、酢酸をLHSV 1.0およびプロピレ
ン(純度95重量%)のモル比1.43の供給流を反応
圧力40kg/cm2で流した。循環流は熱交換器を介
して85°Cに冷却して循環倍数12(前記式(I)か
ら計算された計算循環倍数:2.Q)で循環し触媒層入
口から導入した。この時の触媒槽内の温度分布は単調に
上昇しており、触媒層の入口と出口の温度はそれぞれ8
5°Cと92℃であった。
The reactor was fed with a feed stream of acetic acid at an LHSV of 1.0 and a molar ratio of propylene (95 wt% purity) of 1.43 at a reaction pressure of 40 kg/cm2. The circulating stream was cooled to 85° C. via a heat exchanger, circulated at a circulation factor of 12 (calculated circulation factor calculated from the above formula (I): 2.Q), and introduced from the inlet of the catalyst bed. At this time, the temperature distribution inside the catalyst tank was increasing monotonically, and the temperature at the inlet and outlet of the catalyst layer was 8.
5°C and 92°C.

流出反応混合物を5時間おきにガスクロマトグラフィー
で分析し、組成が安定した定常状態では、プロピレンの
転化率は89.8モル%、酢酸イソプロピルへの選択率
は96.6モル%であり、1.000時間連続運転して
も触媒の活性は殆ど変化なく、同様の転化率および選択
率が得られた。
The effluent reaction mixture was analyzed by gas chromatography every 5 hours, and in a steady state with a stable composition, the conversion of propylene was 89.8 mol%, the selectivity to isopropyl acetate was 96.6 mol%, and 1 Even after continuous operation for 0.000 hours, the activity of the catalyst hardly changed, and similar conversion rates and selectivities were obtained.

実施例2〜5 前記実施例1の装置において触媒を同じくスチレン−ジ
ビニルベンゼン共重合体をスルフォン化してなる酸性イ
オン交換樹脂触媒であるロームアンドハース社製アンバ
ーリスト−15(+’!−型、商品名)に入れ替え、F
CCプロピレンを原料プロピレンとし、触媒層入口温度
、モル比、LHSV、反応圧力および循環倍数を代えた
他は、実施例1と同様に反応させた。
Examples 2 to 5 In the apparatus of Example 1, the catalyst was Amberlyst-15 (+'!- type, manufactured by Rohm and Haas), which is an acidic ion exchange resin catalyst made by sulfonating a styrene-divinylbenzene copolymer. Product name), F
The reaction was carried out in the same manner as in Example 1, except that CC propylene was used as the raw material propylene, and the catalyst bed inlet temperature, molar ratio, LHSV, reaction pressure, and circulation ratio were changed.

得られた結果を表1に示す。いずれも触媒活性の低下は
認められなかった。
The results obtained are shown in Table 1. No decrease in catalyst activity was observed in either case.

表   1 実施例6および7 循環流を触媒層に導入する位置を変ええた第2図に示す
ような装置を用いた他は、実施例3と同様に反応させた
。なお、恒温槽は図示していない。
Table 1 Examples 6 and 7 The reaction was carried out in the same manner as in Example 3, except that an apparatus as shown in FIG. 2 was used in which the position at which the circulating flow was introduced into the catalyst bed could be changed. Note that a constant temperature bath is not shown.

すなわち、第2図において酢酸とプロピレンからなる液
状の供給流1は、反応器2に供給され触媒層3において
反応し、反応混合物は循環ポンプを経て抜き出される。
That is, in FIG. 2, a liquid feed stream 1 consisting of acetic acid and propylene is fed to a reactor 2, reacts in a catalyst bed 3, and the reaction mixture is withdrawn via a circulation pump.

反応混合物は熱交換器を介して冷却され、その一部は触
媒層3の中間に位置する循環流導入口4から循環流とし
て触媒層3中へ導入される。また、反応混合物は、連続
的に反応混合物出口5から抜き出される。
The reaction mixture is cooled through a heat exchanger, and a portion of the reaction mixture is introduced into the catalyst bed 3 as a recycle stream through a recycle flow inlet 4 located in the middle of the catalyst bed 3 . Moreover, the reaction mixture is continuously extracted from the reaction mixture outlet 5.

第2図に示された反応器により得られた結果を表2に示
す。いずれも触媒活性の低下は認められなかった。
The results obtained with the reactor shown in FIG. 2 are shown in Table 2. No decrease in catalyst activity was observed in either case.

表   2 (注) 循環位置:循環流導入位置から触媒層出口までの触媒層
容積を全触媒層容積で割った値で示す。
Table 2 (Note) Circulation position: Shown as the value obtained by dividing the catalyst bed volume from the circulation flow introduction position to the catalyst bed exit by the total catalyst bed volume.

比較例1 実施例2において反応混合物を循環させることなく流通
させたほかは同様にして反応させた〇その結果、触媒槽
内の温度は急激に増加し、出口の温度が180°C以上
となって反応器流出部で多量の亜硫酸ガスが検知された
ので反応を停止し、触媒層を調べたところ反応前におい
ては渋茶色であった触媒が黒変しており、酸活性を殆ど
失っていた。
Comparative Example 1 The reaction was carried out in the same manner as in Example 2, except that the reaction mixture was circulated without being circulated. As a result, the temperature inside the catalyst tank increased rapidly, and the temperature at the outlet reached 180°C or higher. A large amount of sulfur dioxide gas was detected at the outflow of the reactor, so the reaction was stopped and the catalyst layer was examined.The catalyst, which was astringent brown before the reaction, had turned black and had lost most of its acid activity. .

比較例2および3 循環倍数を変えた他は、それぞれ実施例4および5と同
様にして反応させた。
Comparative Examples 2 and 3 Reactions were carried out in the same manner as in Examples 4 and 5, respectively, except that the circulation ratio was changed.

得られた結果を表3に示す。いずれも数時間から数分で
触媒が活性を失った。
The results obtained are shown in Table 3. In both cases, the catalyst lost its activity within several hours to several minutes.

表   3 [発明の効果コ 本発明の方法により、設備費があまりかからない固定床
連続管型反応器において効率のよい液相反応を実現し、
さらに反応領域内の温度分布の管理制御が容易で、かつ
高いプロピレンの転化率および高い酢酸イソプロピルの
生産効率を安定して確保することが可能となった。これ
はまた、反応混合物から分離されるプロピレンおよびプ
ロパンの混合ガスは、そのまま廃棄しても十分経済性が
確保できるので、さらにプロピレンを回収、精製、昇圧
して再使用する必要がなく、そのための設備費が大幅に
削減できるという効果を伴った。
Table 3 [Effects of the Invention] The method of the present invention realizes an efficient liquid phase reaction in a fixed bed continuous tubular reactor that does not require much equipment cost,
Furthermore, it has become possible to easily manage and control the temperature distribution within the reaction region, and to stably ensure a high conversion rate of propylene and high production efficiency of isopropyl acetate. This also means that the mixed gas of propylene and propane separated from the reaction mixture is economical enough to be disposed of as is, so there is no need to further recover, purify, pressurize, and reuse propylene. This has the effect of significantly reducing equipment costs.

また、実施例でみられるように、酢酸インプロピルへの
選択率は十分に高く、変動費原価の低減のみならず、酢
酸イソプロピルおよび未反応の酢酸の精製も容易である
Furthermore, as seen in the examples, the selectivity to inpropyl acetate is sufficiently high, and not only is the variable cost reduced, but it is also easy to purify isopropyl acetate and unreacted acetic acid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は実施例で用いた反応器を含む行程
図である。 1・・・供給流 2・・・反応器 3・・・触媒層 4・・・循環流導入口 5・・・反応混合物出口 特許出願人 日本石油化学株式会社
FIGS. 1 and 2 are process diagrams including reactors used in Examples. 1...Feed stream 2...Reactor 3...Catalyst layer 4...Circulating flow inlet 5...Reaction mixture outlet Patent applicant Nippon Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)供給流中の酢酸のプロピレンに対するモル比が1
.0〜2.0の範囲で、かつ酢酸の触媒層に対するLH
SVが0.1〜10である条件下で、スチレン系スルフ
ォン酸型イオン交換樹脂触媒および/またはフェノール
スルフォン酸型イオン交換樹脂触媒を充填してなる触媒
層の入口温度を70℃〜120℃の温度範囲に維持した
連続流通式固定床反応器に、酢酸とプロピレンとを、い
ずれも液状かつ並流で供給し、得られた反応混合物を7
0℃を下回らない温度に冷却し、下記式( I )で表わ
される割合により前記触媒層に循環させることを特徴と
する酢酸イソプロピルの製造方法、 (7.9A+4.9)/(3.7A^2+1.17A−
1)≦X( I )ここで、Xは循環流量の供給流量に対
する重量倍率として定義される循環割合を示し、Aは供
給流中における酢酸のプロピレンに対するモル比を示す
(1) The molar ratio of acetic acid to propylene in the feed stream is 1.
.. LH in the range of 0 to 2.0 and for the acetic acid catalyst layer
Under conditions where the SV is 0.1 to 10, the inlet temperature of the catalyst bed filled with the styrene sulfonic acid type ion exchange resin catalyst and/or the phenolsulfonic acid type ion exchange resin catalyst is set at 70°C to 120°C. Acetic acid and propylene were both fed in liquid form and in parallel flow to a continuous flow fixed bed reactor maintained at a temperature range, and the resulting reaction mixture was
A method for producing isopropyl acetate, characterized in that it is cooled to a temperature not lower than 0°C and circulated through the catalyst layer at a rate expressed by the following formula (I): (7.9A+4.9)/(3.7A^) 2+1.17A-
1)≦X(I) where X indicates the circulation ratio, defined as the weight multiple of the circulation flow rate to the feed flow rate, and A indicates the molar ratio of acetic acid to propylene in the feed stream.
(2)石油類を接触分解して得られるC_3留分および
酢酸からなる供給流を使用することを特徴とする請求項
1記載の方法。
2. The method according to claim 1, characterized in that (2) a feed stream consisting of a C_3 fraction obtained by catalytic cracking of petroleum and acetic acid is used.
JP2294237A 1990-10-31 1990-10-31 Method for producing isopropyl acetate Expired - Lifetime JP2883719B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2294237A JP2883719B2 (en) 1990-10-31 1990-10-31 Method for producing isopropyl acetate
EP91118562A EP0483826B1 (en) 1990-10-31 1991-10-30 Method for producing lower alkyl acetate
DE69117871T DE69117871T2 (en) 1990-10-31 1991-10-30 Process for the preparation of a lower alkyl acetate
US08/330,115 US5457228A (en) 1990-10-31 1994-10-27 Method for producing lower alkyl acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2294237A JP2883719B2 (en) 1990-10-31 1990-10-31 Method for producing isopropyl acetate

Publications (2)

Publication Number Publication Date
JPH04169552A true JPH04169552A (en) 1992-06-17
JP2883719B2 JP2883719B2 (en) 1999-04-19

Family

ID=17805123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2294237A Expired - Lifetime JP2883719B2 (en) 1990-10-31 1990-10-31 Method for producing isopropyl acetate

Country Status (1)

Country Link
JP (1) JP2883719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838029B2 (en) * 2008-05-21 2015-12-24 昭和電工株式会社 Method for producing n-propyl acetate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838029B2 (en) * 2008-05-21 2015-12-24 昭和電工株式会社 Method for producing n-propyl acetate

Also Published As

Publication number Publication date
JP2883719B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
EP0483826B1 (en) Method for producing lower alkyl acetate
EP1017487B1 (en) Catalytic converter and method for highly exothermic reactions
US6057475A (en) Process for the production of acetic acid
US7611678B2 (en) Multi-zone moving-bed reaction device with an addition of regenerated or fresh catalyst in each zone
US4343957A (en) Process for the production of cumene
JP4121154B2 (en) Method and reactor for epoxidation with energy recovery
JP2000506774A (en) Countercurrent fixed bed reactor with packing element
JP4292072B2 (en) Production of t-butanol
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JP4422893B2 (en) Process for producing bis (4-hydroxyaryl) alkanes
JPH04169552A (en) Production of isopropyl acetate
JP2883720B2 (en) Method for producing sec-butyl acetate
US5596127A (en) Process for the continuous preparation of terpene esters
JP5902885B2 (en) Method for producing aromatic iodinated compound
JP2007506686A (en) Method for producing bisphenol A
JPH101447A (en) Stepwise alkylation
JPH0383948A (en) Production of alpha-(4-isobutylphenyl)propionic acid or its precursor
JPS60204730A (en) Continuous manufacture and apparatus for alkylate from olefin and paraffin
US4341913A (en) Process for the production of cumene
US3493609A (en) Production of acetic acid with partial recycling
JPH11199526A (en) Production of ethylbenzene
WO2015005243A1 (en) Method for producing unsaturated acid ester or unsaturated acid
CA3137511C (en) Olefin trimerization
JPH06321823A (en) Production of 1,3-cyclohexanedimethanol
JPH07233099A (en) Continuous production of monoalkyl aromatic hydrocarbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12