JPH04168348A - Emission spectrophotometer - Google Patents

Emission spectrophotometer

Info

Publication number
JPH04168348A
JPH04168348A JP29642590A JP29642590A JPH04168348A JP H04168348 A JPH04168348 A JP H04168348A JP 29642590 A JP29642590 A JP 29642590A JP 29642590 A JP29642590 A JP 29642590A JP H04168348 A JPH04168348 A JP H04168348A
Authority
JP
Japan
Prior art keywords
light
sample
photomultiplier tubes
lamp
photomultiplier tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29642590A
Other languages
Japanese (ja)
Inventor
Shotaro Asada
浅田 庄太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29642590A priority Critical patent/JPH04168348A/en
Publication of JPH04168348A publication Critical patent/JPH04168348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To prevent dispersion in detecting sensitivity by storing the current values of the detected signals based on the emission of light from a sample, and controlling voltages to be applied so that the current value obtained by receiving the light of a fatigue lamp agrees with the stored value. CONSTITUTION:When light is emitted from a sample by spark discharge and the like, the light is reflected from a reflecting mirror 4a and cast on a grating 4b. The light is dispersed into spectral lights. The lights are received with photomultiplier tubes 6a - 6n, respectively. A CPU 14 applies specified voltages into the photomultiplier tubes 6a - 6n so as to obtain the desired sensitivities. The detected signals having the current values corresponding to the intensities of the spectral lights are outputted and digitized in A/D converters 10a - 10b. Thereafter the results are stored in a memory 12. Then, the CPU 14 stops the light emission of the sample and lights up a fatigue lamp 8. The signals corresponding to the amount of the light from the lamp 8 are outputted from the photomultiplier tubes 6a - 6n and received with the A/D converters 10a - 10n. The voltages applied on the photomultiplier tubes 6a - 6n are controlled so that the voltages agree with the stored values in the memory 12. Therefore, the response of the photomultiplier tubes 6a - 6n is quick in the sample analysis, and dispersion in sensitivity does not occur.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、発光分光分析装置に係り、特には、試料を発
光して得られる各元素固有のスペクトル光を受光して受
光量に対応した電流値を持つ受光信号を出力する光電子
増倍管の制御に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an optical emission spectrometer, and in particular, to an optical emission spectrometer that receives spectrum light unique to each element obtained by emitting light from a sample, and corresponds to the amount of received light. This invention relates to the control of a photomultiplier tube that outputs a light reception signal having a current value.

〈従来の技術〉 一般に、発光分光分析装置では、発光部において固体試
料ではスパーク等により、液体試料ではプラズマ励起等
によってそれぞれ発光させ、この発光部で発光された光
を分光部で分光し、分光された各元素固有のスペクトル
光を各光電子増倍管でそれぞれ受光して受光量に対応し
た電流値を持つ検出信号を取り出し、これらの検出信号
をデジタル化して積分強度を測定し、この測定結果を検
量線と比較することにより、試料の含有成分の定量分析
等を行う。この場合、光電子増倍管の検出感度は、印加
電圧に関係するので、試料の元素含有量に応じてその印
加電圧を適正な値に設定する必要がある。
<Prior art> In general, in an optical emission spectrometer, a light emitting section emits light using a spark, etc. for a solid sample, and by plasma excitation, etc. for a liquid sample, and the light emitted by the light emitting section is separated into spectroscopy by a spectrometer. The spectral light unique to each element is received by each photomultiplier tube, a detection signal with a current value corresponding to the amount of light received is extracted, these detection signals are digitized, the integrated intensity is measured, and the measurement result is Quantitative analysis of the components contained in the sample is performed by comparing it with the calibration curve. In this case, since the detection sensitivity of the photomultiplier tube is related to the applied voltage, it is necessary to set the applied voltage to an appropriate value depending on the element content of the sample.

ところで、ルーチン分析を行うような場合には、分析対
象品種はほぼ一定であり、試料の各成分の含有量は大幅
に変動することはなく、ある成分範囲内に限定されてい
る。したがって、このような略同−品種を分析するよう
な場合には、従来、その品種の試料の成分範囲内におい
て適した検出感度が得られるように、光電子増倍管の印
加電圧をそれぞれ所定の値に設定している。そして、−
旦、印加電圧を上記のように設定すれば、品種が変わっ
て試料の成分含有量が大幅に異なるようにならない限り
、試料を交換した場合でも、印加電圧を変更することな
く一定値に保持されている。
By the way, when performing routine analysis, the variety to be analyzed is almost constant, and the content of each component in the sample does not vary significantly and is limited within a certain range of components. Therefore, when analyzing approximately the same type of sample, conventionally the voltage applied to each photomultiplier tube is adjusted to a predetermined value in order to obtain an appropriate detection sensitivity within the component range of the sample of that type. is set to the value. And -
Once the applied voltage is set as above, the applied voltage will remain constant even if the sample is replaced, unless the product type changes and the component content of the sample differs significantly. ing.

一方、試料の交換時等、試料が発光状態にないときは、
光電子増倍管からの検出信号の電流値は略零であるが、
次に、試料を発光させた場合には、光電子増倍管からは
スペクトル光の強度に応じた電流値をもつ検出信号が出
力される。このように、光電子増倍管の電流値が試料の
発光の有無によりて大幅に変化する場合には、成分含有
量に対応する値に到達するまでの電流の立ち上がりに時
間を要する。そのため、応答性に欠け、検出感度が不十
分となる。
On the other hand, when the sample is not in a luminescent state, such as when replacing the sample,
Although the current value of the detection signal from the photomultiplier tube is approximately zero,
Next, when the sample is caused to emit light, the photomultiplier tube outputs a detection signal having a current value corresponding to the intensity of the spectral light. In this way, when the current value of the photomultiplier tube changes significantly depending on whether or not the sample emits light, it takes time for the current to rise until it reaches the value corresponding to the component content. Therefore, responsiveness is lacking and detection sensitivity is insufficient.

そこで、従来技術では、白熱灯などの単一のファティー
グランプを設け、試料の分析が終了すると、直ちにこの
ファティーグランプを点灯させて各光電子増倍管を照光
し、試料を発光させていない場合にも光電子増倍管から
一定の電流が出力されるようにしている。
Therefore, in the conventional technology, a single fatty lamp such as an incandescent lamp is provided, and as soon as the analysis of the sample is completed, this faty lamp is turned on to illuminate each photomultiplier tube, and when the sample is not emitting light, The photomultiplier tube also outputs a constant current.

〈発明が解決しようとする課題〉 上述したように、ルーチン分析においては、各光電子増
倍管に対して印加される電圧は、通常、一定値に保持さ
れており、したがって、このような状態でファティーグ
ランプからの光を受光した場合と、試料からの光を受光
した場合とでは、光電子増倍管から出力される電流値の
大きさが異なってくる。たとえば、微量元素を検出する
光電子増倍管では、検出感度を高めるために印加電圧が
大きく設定されるので、ファティーグランプの発光量が
大きいときにはスケールオーバしてしまう。
<Problems to be Solved by the Invention> As mentioned above, in routine analysis, the voltage applied to each photomultiplier tube is usually maintained at a constant value, and therefore The magnitude of the current output from the photomultiplier tube differs depending on whether the light from the fatty lamp is received or the light from the sample is received. For example, in a photomultiplier tube that detects trace elements, the applied voltage is set high to increase the detection sensitivity, so when the amount of light emitted by the fatty lamp is large, the scale will be over-scaled.

これを防ぐため、ファティーグランプの発光量を絞ると
、含有量の多い元素を検出する光電子増倍管において、
ファティーグランプからの光を受光した場合に出力され
る電流値がスペクトル光を受光した場合に比べて極端に
小さくなってしまう。
In order to prevent this, by reducing the amount of light emitted by the Fatty lamp, the photomultiplier tube that detects elements with high content
The current value outputted when light from the fatty lamp is received is extremely small compared to when spectral light is received.

したがって、試料を発光させて分析を開始した場合には
、ファティーグランプを全く設けていない場合に比べれ
ば、幾分、検出応答性は改善されているものの、依然と
して検出信号の立ち上がりの変化が大きく、検出感度に
ばらつきを生じる等の不都合があった。
Therefore, when analysis is started by emitting light from the sample, although the detection response is somewhat improved compared to the case where no fatty lamp is provided, there is still a large change in the rise of the detection signal. There were disadvantages such as variations in detection sensitivity.

〈課題を解決するための手段〉 本発明は、このような事情に鑑みてなされたものであっ
て、光電子増倍管の検出応答性を一層改善し、検出感度
のばらつきが生じないようにするものである。
<Means for Solving the Problems> The present invention has been made in view of the above circumstances, and aims to further improve the detection response of a photomultiplier tube and prevent variations in detection sensitivity from occurring. It is something.

そのため、本発明は、試料を発光する発光部と、この発
光部で発光された光を分光する分光部と、この分光部で
分光された各元素固有のスペクトル光を受光して受光量
に対応した電流値を持つ検出信号を出力する光電子増倍
管と、前記発光部の発光停止状態において各光電子増倍
管に対して照光するファティーグランプとを備えた発光
分光分析装置において、試料の発光に基づくスペクトル
光を各光電子増倍管で受光して得られる検出信号の電流
値をそれぞれ記憶する記憶手段と、ファティーグランプ
の光を光電子増倍管で受光して得られる電流値が記憶手
段に記憶されている電流値と一致するように各光電子増
倍管の印加電圧を制御する制御手段とを備えた構成とし
た。
Therefore, the present invention includes a light emitting section that emits light from the sample, a spectroscopic section that spectrally spectra the light emitted by this light emitting section, and a spectroscopic section that receives spectrum light unique to each element separated by this spectroscopic section and responds to the amount of received light. In an optical emission spectrometer equipped with a photomultiplier tube that outputs a detection signal having a current value of storage means for storing current values of detection signals obtained by receiving spectrum light based on the photomultiplier tube with each photomultiplier tube; and storage means storing current values obtained by receiving light from the Fatty lamp by the photomultiplier tubes. The photomultiplier tube is configured to include a control means for controlling the voltage applied to each photomultiplier tube so as to match the current value set in the photomultiplier tube.

〈作用〉 上記構成において、試料の発光に基づく各スペクトル光
を光電子増倍管で受光して得られる検出信号の電流値は
、それぞれ記憶手段に記憶される。
<Function> In the above configuration, the current values of the detection signals obtained by receiving each spectrum of light based on the light emission of the sample with the photomultiplier tube are stored in the storage means.

試料の分析が終了して発光が停止すると、ファティーグ
ランプが点灯されるが、このとき、制御手段は、ファテ
ィーグランプの光を光電子増倍管で受光して得られる電
流値が既に記憶手段に記憶されている電流値と一致する
ように各光電子増倍管の印加電圧を制御する。
When the analysis of the sample is completed and the light emission stops, the Fatty lamp is turned on, but at this time, the control means has already stored in the storage means the current value obtained by receiving the light from the Fatty lamp with the photomultiplier tube. The voltage applied to each photomultiplier tube is controlled to match the current value.

この状態で、次に、新たな試料を発光させた場・合、そ
の試料の各成分の含有量は、ルーチン分析を前提として
いる限り大幅に変動していないので、スペクトル光を光
電子増倍管で受光して得られる検出信号の電流値もファ
ティーグランプの光を受光した場合に得られる電流値と
大きな変化は生じない。そのため、検出応答性が優れる
In this state, when a new sample is caused to emit light, the content of each component in that sample has not changed significantly as long as routine analysis is assumed, so the spectral light is transferred to a photomultiplier tube. The current value of the detection signal obtained by receiving the light from the Fatih lamp does not change significantly from the current value obtained when the light from the Fatty lamp is received. Therefore, detection responsiveness is excellent.

〈実施例〉 第1図は本発明の実施例に係る発光分光分析装置の構成
図である。
<Example> FIG. 1 is a block diagram of an optical emission spectrometer according to an example of the present invention.

同図において、符号1は発光分光分析装置の全体を示し
、2は試料を発光させる発光部、4は発光部2で発光さ
れた光を分光する分光部であり、反射ミラー4aとグレ
ーティング4bとを含む。63〜6nは分光部4で分光
された各元素固有のスペクトル光を受光して受光量に対
応した電流値を持つ検出信号を出力する光電子増倍管、
8は発光部2の発光停止状態において各光電子増倍管6
a〜6nに対して照光するファティーグランプ、10a
〜IOnは各光電子増倍管6a〜6nの検出信号をデジ
タル化するA/D変換器である。
In the figure, reference numeral 1 indicates the entire emission spectrometer, 2 is a light emitting section that makes the sample emit light, and 4 is a spectroscopic section that separates the light emitted by the light emitting section 2, which includes a reflecting mirror 4a and a grating 4b. including. 63 to 6n are photomultiplier tubes that receive spectrum light unique to each element separated by the spectrometer 4 and output a detection signal having a current value corresponding to the amount of received light;
Reference numeral 8 indicates each photomultiplier tube 6 when the light emitting unit 2 is in a non-emission state.
Fatty lamp illuminating a to 6n, 10a
~IOn is an A/D converter that digitizes the detection signal of each photomultiplier tube 6a~6n.

I2は試料の発光に基づくスペクトル光を各光電子増倍
管6a〜6nで受光して得られる検出信号の電流値をそ
れぞれ記憶する記憶手段としてのメモリ、14はファテ
ィーグランブ8の光を各光電子増倍管6a〜6nで受光
して得られる電流値がメモリ12に記憶されている電流
値と一致するように各光電子増倍管6a〜6nの印加電
圧を制御する制御手段としてのCPUである。
Reference numeral I2 is a memory for storing the current value of the detection signal obtained by receiving the spectrum light based on the light emission of the sample by each of the photomultiplier tubes 6a to 6n, and 14 is a storage means for storing the current value of the detection signal obtained by receiving the spectrum light based on the emission of the sample by each photomultiplier tube 6a. The CPU serves as a control means for controlling the voltage applied to each of the photomultiplier tubes 6a to 6n so that the current value obtained by receiving light with the multiplier tubes 6a to 6n matches the current value stored in the memory 12.

上記構成において、CPUI4が発光部2に対して制御
信号を出力して試料をスパーク放電等によって発光させ
ると、その光は分光部4の反射ミラー4aで反射されて
グレーティング4bに照射され、各元素固有の波長をも
つスペクトル光に分散される。この分散されたスペクト
ル光は、それぞれ光電子増倍管6a〜6nで受光される
。各光電子増倍管6a〜6aには、所望の検出感度が得
られるように、CPU14によって所定の電圧が印加さ
れており、したがって、各光電子増倍管6a〜6nから
は、スペクトル光の強度に応じた電流値をもつ検出信号
が出力される。そして、この検出信号がA/D変換器1
0a−10nでデジタル化された後、CPU14に取り
込まれる。CPU14は、各光電子増倍管6a〜6nで
得られた電流値をメモリ12に記憶する。
In the above configuration, when the CPU 4 outputs a control signal to the light emitting unit 2 to cause the sample to emit light by spark discharge or the like, the light is reflected by the reflection mirror 4a of the spectrometer 4 and irradiated onto the grating 4b, and each element Dispersed into a spectrum of light with unique wavelengths. This dispersed spectral light is received by photomultiplier tubes 6a to 6n, respectively. A predetermined voltage is applied to each photomultiplier tube 6a to 6a by the CPU 14 so as to obtain a desired detection sensitivity. A detection signal with a corresponding current value is output. Then, this detection signal is sent to the A/D converter 1.
After being digitized by 0a-10n, it is taken into the CPU 14. The CPU 14 stores in the memory 12 the current values obtained by each of the photomultiplier tubes 6a to 6n.

次に、CPU14は、試料の発光を停止させると同時に
、ファティーグランプ8を点灯させる。
Next, the CPU 14 stops the sample from emitting light and at the same time turns on the fatty lamp 8.

これにより、各光電子増倍管6a〜6nからは、ファテ
ィーグランブ8からの光強度に応じた電流値をもつ信号
が出力され、この信号がA/D変換器l0a−10aを
介してCPUI4に取り込まれる。
As a result, each of the photomultiplier tubes 6a to 6n outputs a signal having a current value corresponding to the light intensity from the fat granbe 8, and this signal is taken into the CPUI 4 via the A/D converter l0a to 10a. It can be done.

そこで、CPtJ14は、この電流値がメモリ12に既
に格納されている電流値と一致するように各光電子増倍
管6a〜6nの印加電圧を制御する。両型流値が一致す
ると、CPUI4は、各光電子増倍管6a〜6nの印加
電圧をその時点の値に保持する。
Therefore, the CPtJ 14 controls the voltage applied to each photomultiplier tube 6a to 6n so that this current value matches the current value already stored in the memory 12. When both types of current values match, the CPUI 4 maintains the voltage applied to each photomultiplier tube 6a to 6n at the value at that time.

次の試料を分析するには、CPUI4は、試料を発光さ
せるのと同時に、ファティーグランプ8を消灯し、かつ
光電子増倍管6a〜6nに対する印加電圧を、先の試料
の発光の際と同じ値に設定し直す。この場合、試料の各
成分の含有量は、ルーチン分析を前提としている限り大
幅に変動しないので、光電子増倍管6a〜6nから出力
される検出信号の電流値は、ファティーグランブ8の点
灯状態において得られる電流値と大幅な変動はない。
To analyze the next sample, the CPU 4 causes the sample to emit light, simultaneously turns off the fatty lamp 8, and sets the voltage applied to the photomultiplier tubes 6a to 6n to the same value as when the previous sample emitted light. Set it again. In this case, the content of each component in the sample does not vary significantly as long as routine analysis is assumed, so the current value of the detection signal output from the photomultiplier tubes 6a to 6n is There is no significant variation from the obtained current value.

したがって、光電子増倍管6a〜6nの応答性が速く、
感度ばらつきが生じないことになる。
Therefore, the responsiveness of the photomultiplier tubes 6a to 6n is fast,
This means that sensitivity variations will not occur.

〈発明の効果〉 本発明によれば、試料の分析の有無によって光電子増倍
管から出力される電流値が大幅に変化するといったこと
がなくなるので、光電子増倍管の検出応答性が一層改善
される。そのため、検出感度のばらつきが生じないよう
になる等の優れた効果が発揮される。
<Effects of the Invention> According to the present invention, the current value output from the photomultiplier tube does not change significantly depending on whether or not a sample is being analyzed, so the detection response of the photomultiplier tube is further improved. Ru. Therefore, excellent effects such as no variation in detection sensitivity can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す発光分光分析装置の構成
図である。 l・・・発光分光分析装置、2・・・発光部、4・・・
分光部、68〜6n・・・光電子増倍管、8・・・ファ
テイーグランプ、12・・記憶手段(メモリ)、14・
・制御手段(CPU)。
FIG. 1 is a block diagram of an optical emission spectrometer showing an embodiment of the present invention. l...Emission spectrometer, 2...Light emitting section, 4...
Spectroscopic section, 68-6n... Photomultiplier tube, 8... Fatty lamp, 12... Storage means (memory), 14.
- Control means (CPU).

Claims (1)

【特許請求の範囲】[Claims] (1)試料を発光させる発光部(2)と、この発光部(
2)で発光された光を分光する分光部(4)と、この分
光部(4)で分光された各元素固有のスペクトル光を受
光して受光量に対応した電流値を持つ検出信号を出力す
る光電子増倍管(6a)〜(6n)と、前記発光部(2
)の発光停止状態において各光電子増倍管(6a)〜(
6n)に対して照光するファティーグランプ(8)とを
備えた発光分光分析装置において、 前記試料の発光に基づくスペクトル光を各光電子増倍管
(6a)〜(6n)で受光して得られる検出信号の電流
値をそれぞれ記憶する記憶手段(12)と、前記ファテ
ィーグランプ(8)の光を光電子増倍管(6a)〜(6
n)で受光して得られる電流値が記憶手段(12)に記
憶されている電流値と一致するように各光電子増倍管(
6a)〜(6n)の印加電圧を制御する制御手段(14
)と、 を備えることを特徴とする発光分光分析装置。
(1) A light emitting part (2) that makes the sample emit light, and this light emitting part (
A spectroscopic section (4) that separates the light emitted in step 2), and a spectroscopic section (4) that receives the spectrum light unique to each element separated by this spectroscopic section (4) and outputs a detection signal with a current value corresponding to the amount of received light. photomultiplier tubes (6a) to (6n), and the light emitting section (2).
), each photomultiplier tube (6a) to (
Detection obtained by receiving spectrum light based on the emission of the sample with each of the photomultiplier tubes (6a) to (6n). Storage means (12) for storing the current values of the signals, and photomultiplier tubes (6a) to (6) for transmitting the light from the fatty lamp (8).
Each photomultiplier tube (n) is adjusted so that the current value obtained by receiving light at
Control means (14) for controlling the applied voltages of 6a) to (6n)
), and an emission spectrometer characterized by comprising:
JP29642590A 1990-10-31 1990-10-31 Emission spectrophotometer Pending JPH04168348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29642590A JPH04168348A (en) 1990-10-31 1990-10-31 Emission spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29642590A JPH04168348A (en) 1990-10-31 1990-10-31 Emission spectrophotometer

Publications (1)

Publication Number Publication Date
JPH04168348A true JPH04168348A (en) 1992-06-16

Family

ID=17833377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29642590A Pending JPH04168348A (en) 1990-10-31 1990-10-31 Emission spectrophotometer

Country Status (1)

Country Link
JP (1) JPH04168348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373267A (en) * 2018-01-26 2020-07-03 株式会社日立高新技术 Automatic analyzer and method for controlling automatic analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373267A (en) * 2018-01-26 2020-07-03 株式会社日立高新技术 Automatic analyzer and method for controlling automatic analyzer
CN111373267B (en) * 2018-01-26 2023-10-24 株式会社日立高新技术 Automatic analyzer and control method for automatic analyzer

Similar Documents

Publication Publication Date Title
US6842250B2 (en) Device for a quantified determination of the quality of surfaces
US8189196B2 (en) Self referencing LED detection system for spectroscopy applications
JPH0663841B2 (en) Device and method for measuring fluorescence characteristics of sample
JP2008298579A (en) Reflection characteristic measuring apparatus and its calibration method
US4946279A (en) Flourescence spectrophotometer for measuring fluorescent light of a plurality of wavelength conditions
EP1562037A1 (en) Measuring instrument and fluorometric method
JP2008286562A (en) Fluorescence spectrophotometer
WO2014030475A1 (en) Spectrophotometer
EP0306337B1 (en) Spectrophotometer
US5315528A (en) Method of, and apparatus for, absorbance correction in atomic absorption spectroscopy
JPH04168348A (en) Emission spectrophotometer
JP3921889B2 (en) Fluorescence spectrophotometer
JPH01214723A (en) Spectral fluorescence photometer
JP4626572B2 (en) Optical emission spectrometer
JP2007003428A (en) Emission spectrophotometry and emission spectrophotometer
US4523096A (en) Liquid chromatography apparatus
JP3624587B2 (en) Fluorescence measuring device
JPH01212323A (en) Spectral fluorophotometer
JP2934451B2 (en) How to switch hollow cathode lamp of atomic absorption spectrophotometer
JPH06281580A (en) Emission spectrochemical analyzer
JPH08304283A (en) Fluorescent photometer
JPS63151838A (en) Emission spectroanalyser
JPS63298126A (en) Spectrophotometer
JPS601528A (en) Spectrophotometer
JPH03230453A (en) Method of inspecting fluorescent lamp