JPH04168264A - Method for controlling elastic limit of metallic material and spring material produced by the method - Google Patents

Method for controlling elastic limit of metallic material and spring material produced by the method

Info

Publication number
JPH04168264A
JPH04168264A JP29697390A JP29697390A JPH04168264A JP H04168264 A JPH04168264 A JP H04168264A JP 29697390 A JP29697390 A JP 29697390A JP 29697390 A JP29697390 A JP 29697390A JP H04168264 A JPH04168264 A JP H04168264A
Authority
JP
Japan
Prior art keywords
elastic limit
metal
spring
spring material
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29697390A
Other languages
Japanese (ja)
Inventor
Akira Oba
彰 大場
Seiji Oishi
政治 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP29697390A priority Critical patent/JPH04168264A/en
Publication of JPH04168264A publication Critical patent/JPH04168264A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the elastic limit of a spring material without deteriorating the toughness, durability, etc., by coating the surface of a metallic base material with a hard film. CONSTITUTION:The surface of a substrate of a metal such as Cu, Ti, Al, Fe, Ni or Co or an alloy of such metals is coated with a hard film of the nitride, carbide or boride of Si, B, Co, Cr, Nb, etc., by CVD, sputtering or ion plating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属材料の弾性限度制御方法およびこの方法
によって製造されたバネ材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling the elastic limit of a metal material and a spring material manufactured by this method.

(従来の技術〉 金属材料の弾性限度制御方法、特に増大方法の代表的な
ものとして、焼き入れ等の熱処理による弾性限度の増大
方法、冷間加工等の処理により加工硬化させることによ
る弾性限度の増大方法、および引っ張り応力のかかる部
位に、予め圧縮応力を付与することによる弾性限界の増
大方法等が知られている。
(Prior art) Typical methods for controlling the elastic limit of metal materials, particularly methods for increasing the elastic limit, include methods for increasing the elastic limit by heat treatment such as quenching, and methods for increasing the elastic limit by work hardening through treatments such as cold working. A method of increasing the elastic limit, and a method of increasing the elastic limit by applying compressive stress in advance to a portion to which tensile stress is applied are known.

また、銅、アルミニウム、チタン等の金属は鉄系の金属
と異なり、熱処理および冷間加工等の処理による弾性限
度の増大はむずかしかった。
Furthermore, unlike iron-based metals, it has been difficult to increase the elastic limit of metals such as copper, aluminum, and titanium through treatments such as heat treatment and cold working.

(発明が解決しようとする課題) しかしながら、上記の金属材料の弾性限度増大方法にお
いては、熱処理による場合は、焼き入れにより靭性が低
下するので、靭性が必要なバネ材等として用いる場合に
は、焼き入れ後、靭性向上のため、焼き戻しを行わなけ
ればならず、また、加工硬化の場合には、硬化が過ぎる
と、靭性が低下するので、所定の限度でしか硬化処理を
行うことができず、バネ定数の制御が困難であった。更
にまた、圧縮応力の予付与による場合には、一般に−・
ヨツトピーニングによって行われているいるので、材料
の表面に微細な傷等の欠陥が生じて、耐久性が低下する
等の問題をそれぞれ有している。
(Problems to be Solved by the Invention) However, in the above method for increasing the elastic limit of a metal material, when heat treatment is used, the toughness decreases due to quenching, so when used as a spring material etc. that requires toughness, After quenching, tempering must be performed to improve toughness, and in the case of work hardening, hardening can only be performed within a specified limit, as toughness decreases if hardening is excessive. First, it was difficult to control the spring constant. Furthermore, in the case of pre-applying compressive stress, generally -
Since this is done by yacht peening, there are problems such as defects such as minute scratches occurring on the surface of the material, resulting in decreased durability.

また、熱的にも上記の処理は弱く、高温化では、熱処理
による硬化および残留応力による硬化もそれぞれなくな
り、ただの金属となってしまう問題もあった。
In addition, the above-mentioned treatment is thermally weak, and at high temperatures, hardening due to heat treatment and hardening due to residual stress disappear, resulting in a problem that the material becomes just a metal.

そこで、本発明は、靭性等の他の特性を損ねることなく
、弾性限度を増大させることのできる金属材料の弾性限
度制御方法を提供することを目的とするものである。
Therefore, an object of the present invention is to provide a method for controlling the elastic limit of a metal material, which can increase the elastic limit without impairing other properties such as toughness.

本発明の他の目的は、弾性限度および靭性の両者が高く
、しかも耐久性に優れたバネ材を提供することにある。
Another object of the present invention is to provide a spring material that has both a high elastic limit and high toughness, and has excellent durability.

(課題を解決するための手段) 本発明による金属材料の弾性限度制御方法は、金属基体
の表面に、該基体の材料より硬度の高い硬質膜をコーテ
ィングすることにより、金属材料の弾性限度を制御する
ことを特徴とするものである。
(Means for Solving the Problems) A method for controlling the elastic limit of a metal material according to the present invention controls the elastic limit of a metal material by coating the surface of a metal base with a hard film that is harder than the material of the base. It is characterized by:

上記コーティングの方法としては、CVD、スパッタ、
イオンプレーティングが挙げられる。
The above coating methods include CVD, sputtering,
Examples include ion plating.

また、本発明によるバネ材は、金属基体、およびこの基
体の表面上に形成された該基体の材料より硬度の高いコ
ーティング膜を備えていることを特徴とするものである
Further, the spring material according to the present invention is characterized by comprising a metal base and a coating film formed on the surface of the base that is harder than the material of the base.

上記基体の材料としては、例えば、Cu、Ti。Examples of the material for the base include Cu and Ti.

Ajl!、Fe、Ni、Co、Zr、Mo、W、Ta。Ajl! , Fe, Ni, Co, Zr, Mo, W, Ta.

Nbおよびこれらの合金の何れかを用いることができ、
上記コーティング膜の材料としては、Sl。
Nb and any of these alloys can be used,
The material for the coating film is Sl.

B、  Co、  Cr、  Nb、  Ni、  M
o、  Ti、  Zr。
B, Co, Cr, Nb, Ni, M
o, Ti, Zr.

Ta、V、W等の窒化物、炭化物、ホウ化物の何れかを
用いることができる。
Any of nitrides, carbides, and borides of Ta, V, W, etc. can be used.

(作 用) 本発明の金属材料の弾性限度制御方法によれば、金属基
体の表面上に、該基体の材料より硬度の高いコーティン
グ膜を単に形成することにより弾性限度を増大するよう
にしているので、従来方法による場合のように、金属基
体の靭性等の他の特性を損ねることがない。また、従来
バネ材として使用不可能であった材質および極薄の形状
のものをバネ材として用いることができるようになる。
(Function) According to the method for controlling the elastic limit of a metal material of the present invention, the elastic limit is increased by simply forming a coating film on the surface of a metal substrate that is harder than the material of the substrate. Therefore, other properties such as toughness of the metal substrate are not impaired as in the case of conventional methods. Furthermore, materials and extremely thin shapes that could not be used as spring materials in the past can now be used as spring materials.

更に、基体の一部に上記コーティング膜を部分的に施せ
ば、一つの基体において、弾性限度の異なる部位を形成
することができる。
Furthermore, by partially applying the above-mentioned coating film to a part of the base, regions having different elastic limits can be formed in one base.

更にまた、本発明の方法を用いれば、バネ材として特に
必要な弾性限度および靭性の大きいバネ材を得ることが
できる。
Furthermore, by using the method of the present invention, it is possible to obtain a spring material having a high elastic limit and high toughness, which are especially necessary as a spring material.

(実施例) 以下、添付図面を参照しつつ、本発明の好ましい実施例
による金属材料の弾性限度制御方法およびバネ材につい
て説明する。
(Example) Hereinafter, a method for controlling the elastic limit of a metal material and a spring material according to a preferred example of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の金属材料の弾性限度制御方法を実施
するためのイオンプレーティング装置の一例を示す概略
図である。なお、この実施例においては、T1の金属基
体上にTiNのコーティング膜を形成することにより、
弾性限度を増大する方法について説明する。
FIG. 1 is a schematic diagram showing an example of an ion plating apparatus for carrying out the method for controlling the elasticity limit of a metal material according to the present invention. In this example, by forming a TiN coating film on the metal substrate of T1,
A method for increasing the elastic limit will be described.

第1図において、符号1はイオンプレーティング装置を
示し、このイオンプレーティング装置1は、真空槽2を
備え、この真空槽2は、開閉弁3が配された真空排気系
4が接続されている。上記真空槽2の内部には、その上
方部分に、金属基体Mを吊り下げた状態で支持する支持
板5が、その底部の金属基体Mと対向する位置に、蒸発
物質としてTi(チタン)の入った水冷銅製ハース6が
それぞれ設けられており、このTiを蒸発させるため、
中空陰極型電子銃7が設置されている。また、上記真空
槽2には、反応ガスである窒素ガスのための反応ガス供
給系8が接続されている。
In FIG. 1, reference numeral 1 indicates an ion plating apparatus, and this ion plating apparatus 1 is equipped with a vacuum chamber 2, to which a vacuum exhaust system 4 having an on-off valve 3 is connected. There is. Inside the vacuum chamber 2, there is a support plate 5 which supports the metal base M in a suspended state in the upper part thereof, and a support plate 5 which supports the metal base M in a suspended state at the bottom thereof, and a support plate 5 containing Ti (titanium) as an evaporated substance at a position facing the metal base M at the bottom. A water-cooled copper hearth 6 containing Ti is provided, and in order to evaporate this Ti,
A hollow cathode type electron gun 7 is installed. Further, a reaction gas supply system 8 for nitrogen gas, which is a reaction gas, is connected to the vacuum chamber 2.

以上のイオンプレーティング装置1を用いて、TIの金
属基体上にTjNのコーティング膜を形成する本方法に
ついて以下説明する。
This method for forming a TjN coating film on a TI metal substrate using the above ion plating apparatus 1 will be described below.

先ず、支持板5に板状の金属基体M(厚さ0゜2mm)
を吊り下げた状態で支持させ、この状態で、真空槽2の
内部を真空排気系4を用いて真空引きし5 Xl 0−
sTorrとした。次いで、中空陰極型電子銃7にアル
ゴンガスを流しながら(5X10−’ Torrとなる
)、水冷銅製ハース6と電子銃7との間に直流電源RF
スタータ(DC−RF)により電圧をかけ、中空熱陰極
放電を起こしてチタンを蒸発させ、これと同時に支持板
5にバイアス電圧を一50Vをかけた。これにより、金
属基体Mの表面に、第2図に密着層10として示したチ
タン(Ti)被膜が形成された。次いで、真空槽2内に
、反応ガス供給系8から窒素ガスを導入し、内部の真空
度が5 X 10−3Torrとなるように調整すると
、金属基体M上には、更に硬質層すなわち硬度の高いコ
ーティング膜11である窒化チタン(TiN)被膜が形
成された。この被膜をX線回折によって調べたところ、
この被膜は、主として窒化チタン(TiN)からなり、
その他にチタン(Ti)も含まれていた。以上の方法に
よって得られた密着層10のTI被被膜厚さはコンマ数
μm5TiNを主とするコーティング膜11の厚さは約
2μmであった。上記工程中の成膜速度は0.1〜0.
3μm/minであった。また、得られた試料12のコ
ーティング膜11の上からマイクロビッカース硬度計で
硬度を測定したところ、約Hv1400であった。
First, a plate-shaped metal base M (thickness 0°2 mm) is placed on the support plate 5.
is supported in a suspended state, and in this state, the inside of the vacuum chamber 2 is evacuated using the evacuation system 4.
It was set as sTorr. Next, while flowing argon gas through the hollow cathode type electron gun 7 (5X10-' Torr), a DC power source RF was connected between the water-cooled copper hearth 6 and the electron gun 7.
A voltage was applied by a starter (DC-RF) to cause hollow hot cathode discharge to evaporate titanium, and at the same time, a bias voltage of -50 V was applied to the support plate 5. As a result, a titanium (Ti) film shown as the adhesive layer 10 in FIG. 2 was formed on the surface of the metal base M. Next, when nitrogen gas is introduced into the vacuum chamber 2 from the reaction gas supply system 8 and the internal vacuum degree is adjusted to 5 X 10-3 Torr, a hard layer is formed on the metal substrate M. A titanium nitride (TiN) film, which is a high coating film 11, was formed. When this film was examined by X-ray diffraction, it was found that
This coating mainly consists of titanium nitride (TiN),
Titanium (Ti) was also included. The thickness of the TI coating of the adhesive layer 10 obtained by the above method was a few tenths of a micrometer.The thickness of the coating film 11 mainly made of TiN was about 2 micrometers. The film formation rate during the above process is 0.1 to 0.
It was 3 μm/min. Further, when the hardness was measured from above the coating film 11 of the obtained sample 12 using a micro Vickers hardness meter, it was about Hv1400.

また、上記試料12から幅10 m m s長さ70m
mの実験用試料12aを切り出し、第3図に示したよう
に、この実験用試料12aを、その一端(20mm長さ
)で固定支持し、他端すなわち自由端に力を加えて、弾
性限度を示す撓み量Fを測定したところ、lQmmであ
った。同様にして、金属基体Mの弾性限度を示す撓み量
を測定したところ、3mmであった。したがって、本実
施例によれば、弾性限度が3倍強増大したことが分かる
Also, from the sample 12 above, the width is 10 mm and the length is 70 m.
As shown in FIG. 3, this experimental sample 12a is fixedly supported at one end (20 mm length), and a force is applied to the other end, that is, the free end, to determine the elastic limit. The amount of deflection F was measured and was 1Qmm. Similarly, the amount of deflection indicating the elastic limit of the metal base M was measured and found to be 3 mm. Therefore, it can be seen that according to this example, the elastic limit increased by more than three times.

また、この試料12は、−40℃においても脆くなるこ
とがなかった。
Moreover, this sample 12 did not become brittle even at -40°C.

従って、本実施例により、良好な特性を備えたバネ材が
得られた。
Therefore, according to this example, a spring material with good properties was obtained.

以上と同様にして、Cuの金属基体M上にTiNでコー
ティング層11を形成して試料12を作製し、この試料
12から実験用試料12aを切り出して撓み量を測定し
たところ、5mmであった。
In the same manner as above, a coating layer 11 was formed with TiN on a Cu metal substrate M to prepare a sample 12, and an experimental sample 12a was cut out from this sample 12 and the amount of deflection was measured, and it was found to be 5 mm. .

Cuの金属基体M自体の撓み量を測定したところ、2r
nmであり、コーティング層11により、弾性限度が2
.5倍となったことが分かる。
When the amount of deflection of the Cu metal base M itself was measured, it was found that 2r
nm, and the elastic limit is 2 due to the coating layer 11.
.. It can be seen that it has increased five times.

これにより、導電性の良いバネ材が得られた。As a result, a spring material with good conductivity was obtained.

また、上記と同様にして、ステンレスの金属基体M上に
T1の密着膜とTiNのコーティング層11を形成して
試料12を作製し、この試料12から実験用試料12a
を切り出して撓み量を測定したところ、20mmであっ
た。ステンレスの金属基体M自体の撓み量を測定したと
ころ、5rnmであり、コーティング層11により、弾
性限度が3倍強となったことが分かる。
In addition, in the same manner as described above, a T1 adhesive film and a TiN coating layer 11 were formed on a stainless steel metal substrate M to prepare a sample 12, and from this sample 12 an experimental sample 12a
When it was cut out and the amount of deflection was measured, it was 20 mm. When the amount of deflection of the stainless steel metal base M itself was measured, it was 5 nm, indicating that the coating layer 11 increased the elastic limit by more than three times.

従って、本実施例により、特に良好な特性を備えたバネ
材が得られた。
Therefore, according to this example, a spring material with particularly good properties was obtained.

更ニ、上記ト同様ニシテ、Ti−6Aj!−4Vの金属
基体M上にTiNでコーティング層11を形成して試料
12を作製し、この試料12から実験用試料12aを切
り出して撓み量を測定したところ、22mmであった。
Sarani, same as above, Ti-6Aj! A sample 12 was prepared by forming a TiN coating layer 11 on a -4V metal substrate M. An experimental sample 12a was cut out from this sample 12 and the amount of deflection was measured, and it was found to be 22 mm.

Ti−6Aj!−4Vの金属基体M自体の撓み量を測定
したところ、4mmであり、コーティング層11により
、弾性限度が5.5倍となったことが分かる。
Ti-6Aj! When the amount of deflection of the metal base M itself at -4V was measured, it was 4 mm, indicating that the coating layer 11 increased the elastic limit by 5.5 times.

従って、本実施例により、特に良好な特性を備えたバネ
材が得られた。
Therefore, according to this example, a spring material with particularly good properties was obtained.

上記T1重金属体M上にTiNコーティング層11を形
成したバネ材は、耐寒性に優れたものであったが、耐熱
性合金の金属基体Mの表面にTiCのコーティング層1
1を形成すれば、耐熱性に優れたバネ材を得ることがで
きる。
The spring material in which the TiN coating layer 11 was formed on the T1 heavy metal body M had excellent cold resistance.
1, a spring material with excellent heat resistance can be obtained.

また、1枚のステンレスバネに、コーティング層を一部
形成することにより、1枚のバネの中でバネ定数の異な
るバネを作製することができる。
Furthermore, by partially forming a coating layer on a single stainless steel spring, springs with different spring constants can be manufactured within the single spring.

更に、コーティング層の材質および厚みを適宜選択する
ことにより、バネ材のバネ定数を容易にコントロールす
ることができる。
Furthermore, by appropriately selecting the material and thickness of the coating layer, the spring constant of the spring material can be easily controlled.

(発明の効果) 以上本発明によれば、靭性、耐久性等の他の特性を損ね
ることなく、金属材料、特にバネ材の弾性Va度を増大
させることができる。また、バネ材の弾性限度を容易に
コントロールすることができるとともに、複雑な形状の
バネも製造することができるようになり、バネの設計が
極めて容易になるとともに、その自由度が拡大する。
(Effects of the Invention) As described above, according to the present invention, the degree of elasticity Va of a metal material, particularly a spring material, can be increased without impairing other properties such as toughness and durability. In addition, the elastic limit of the spring material can be easily controlled, and springs with complex shapes can also be manufactured, making it extremely easy to design springs and increasing the degree of freedom.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による金属材料の弾性限度
制御方法に使用されるイオンプレーティング装置の概略
図、 vJ2図は、形成された試料すなわちバネ材の断面図、 第3図は、弾性限度を示す撓み量の測定方法の一例を示
す図である。 M  金属基体 10  密着膜 11  コーティング層 12  試料(バネ材)
FIG. 1 is a schematic diagram of an ion plating apparatus used in a method for controlling the elastic limit of a metal material according to an embodiment of the present invention, FIG. , is a diagram illustrating an example of a method for measuring the amount of deflection indicating the elastic limit. M Metal base 10 Adhesive film 11 Coating layer 12 Sample (spring material)

Claims (4)

【特許請求の範囲】[Claims] (1)金属基体の表面に、該基体の材料より硬度の高い
硬質膜をコーティングすることにより、金属材料の弾性
限度を制御することを特徴とする金属材料の弾性限度制
御方法。
(1) A method for controlling the elastic limit of a metal material, which comprises controlling the elastic limit of the metal material by coating the surface of the metal substrate with a hard film that is harder than the material of the substrate.
(2)前記コーティングが、CVD、スパッタ、イオン
プレーティングのいずれかにより行われることを特徴と
する請求項第1項記載の金属材料の弾性限度制御方法。
(2) The method for controlling the elastic limit of a metal material according to claim 1, wherein the coating is performed by any one of CVD, sputtering, and ion plating.
(3)金属基体、およびこの基体の表面上に形成された
該基体の材料より硬度の高い材料からなるコーティング
膜を備えていることを特徴とするバネ材。
(3) A spring material comprising a metal base and a coating film formed on the surface of the base and made of a material harder than the material of the base.
(4)前記基体の材料が、Cu,Ti,Al,Fe,N
i,Co,Zr,Mo,W,Ta,Nbおよびこれらの
合金の何れかであり、前記コーティング膜の材料が、S
i,B,Co,Cr,Nb,Ni,Mo,Ti,Zr,
Ta,V,W等の窒化物、炭化物、ホウ化物の何れかで
あることを特徴とする請求項第3項記載のバネ材。
(4) The material of the base is Cu, Ti, Al, Fe, N
i, Co, Zr, Mo, W, Ta, Nb and alloys thereof, and the material of the coating film is S.
i, B, Co, Cr, Nb, Ni, Mo, Ti, Zr,
4. The spring material according to claim 3, wherein the spring material is one of nitride, carbide, and boride of Ta, V, and W.
JP29697390A 1990-11-01 1990-11-01 Method for controlling elastic limit of metallic material and spring material produced by the method Pending JPH04168264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29697390A JPH04168264A (en) 1990-11-01 1990-11-01 Method for controlling elastic limit of metallic material and spring material produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29697390A JPH04168264A (en) 1990-11-01 1990-11-01 Method for controlling elastic limit of metallic material and spring material produced by the method

Publications (1)

Publication Number Publication Date
JPH04168264A true JPH04168264A (en) 1992-06-16

Family

ID=17840600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29697390A Pending JPH04168264A (en) 1990-11-01 1990-11-01 Method for controlling elastic limit of metallic material and spring material produced by the method

Country Status (1)

Country Link
JP (1) JPH04168264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798143A (en) * 1994-07-18 1998-08-25 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland CVD process for making a hollow diamond tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798143A (en) * 1994-07-18 1998-08-25 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland CVD process for making a hollow diamond tube

Similar Documents

Publication Publication Date Title
US6716540B2 (en) Multilayer film formed body
Helmersson et al. Adhesion of titanium nitride coatings on high‐speed steels
Sundgren et al. A review of the present state of art in hard coatings grown from the vapor phase
US4741975A (en) Erosion-resistant coating system
Chuang et al. Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass
US4931152A (en) Method for imparting erosion-resistance to metallic substrate
Ferreira et al. Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering
KR20040014223A (en) Thermal barrier coating utilizing a dispersion strengthened metallic bond coat
JPH0450382B2 (en)
Spalvins Tribological and microstructural characteristics of ion-nitrided steels
Kamminga et al. First results on duplex coatings without intermediate mechanical treatment
US5262202A (en) Heat treated chemically vapor deposited products and treatment method
Kelly et al. Novel engineering coatings produced by closed-field unbalanced magnetron sputtering
EP0570219B1 (en) Use of a molten zinc resistant alloy
US4873152A (en) Heat treated chemically vapor deposited products
JPH04168264A (en) Method for controlling elastic limit of metallic material and spring material produced by the method
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
Birol Response to thermal cycling of duplex-coated hot work tool steels at elevated temperatures
JPS59229482A (en) Metal coated matter and manufacture
US5254369A (en) Method of forming a silicon diffusion and/or overlay coating on the surface of a metallic substrate by chemical vapor deposition
JP2941260B1 (en) Titanium metal watch exterior parts and surface treatment method
JPH06183890A (en) Artificial diamond-coated material
Inoue et al. Effects of ion flux on the properties of dc magnetron-sputtered stainless steel films
Window et al. Stress and microhardness in sputter deposited molybdenum and chromium films
JP3260156B2 (en) Method for producing diamond-coated member