JPH04167838A - Line changeover device - Google Patents

Line changeover device

Info

Publication number
JPH04167838A
JPH04167838A JP29453090A JP29453090A JPH04167838A JP H04167838 A JPH04167838 A JP H04167838A JP 29453090 A JP29453090 A JP 29453090A JP 29453090 A JP29453090 A JP 29453090A JP H04167838 A JPH04167838 A JP H04167838A
Authority
JP
Japan
Prior art keywords
line
signal
amplitude
error rate
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29453090A
Other languages
Japanese (ja)
Inventor
Junichi Uchibori
内堀 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29453090A priority Critical patent/JPH04167838A/en
Publication of JPH04167838A publication Critical patent/JPH04167838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To detect the deterioration in the quality of a line early by detecting primary amplitude distortion by an amplitude equalizer, adding an alarm signal representing it that primary amplitude distortion exceeds a specified value to a code error rate alarm signal and applying changeover control discrimination. CONSTITUTION:Primary amplitude distortion characteristic monitors LAD MON signals AP, AR generated from amplitude equalizers 31a, 31b of demodulator sections 3a, 3b are inputted to a changeover control section 6. The control section 6 generates a switching control signal S based on code error rate alarm signals P, R and monitor signals AP, AR and outputs the signal to an uninterruptible switching section 5 as a control signal. That is, the signal P, R are inputted to a discriminator 66 via a buffer 65 in the control section 6 and the signals AP, AR are compared with a reference value of reference power supplies 67, 68 by comparators 61-64. The result is inputted to the discriminator 66 via the buffer 65. The discriminator 66 outputs the switching control signals according to prescribed discrimination logic. As a result, the deterioration in the quality of a line being a cause to occurrence of fading is early detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1回線の現用回線に対して1回線の予備回線
を備える無線ディジタル通信システムの受信側装置たる
回線切替装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a line switching device that is a receiving side device of a wireless digital communication system that has one protection line for one working line.

(従来の技術) 周知のように、無線回線ではフェージング等回線品質を
劣化させる種々の要因があるので、その対策として予備
回線を設け、回線品質劣化の救済を図るようにしてい、
る。
(Prior Art) As is well known, there are various factors that degrade line quality in wireless lines, such as fading, so as a countermeasure, a backup line is provided to relieve line quality deterioration.
Ru.

本発明が対象とする無線ディジタル通信システムは、1
回線の現用回線に対して1回線の予備回線を備えるシス
テムであるが、このシステムでは、送信側は両回線に同
一データ信号を送出し、受信側において回線品質の良好
な回線を選択使用するようになっており、その受信側装
置たる回線切替装置としては、従来、例えば第7図に示
すものが知られている。
The wireless digital communication system targeted by the present invention includes 1
This system has one protection line for each working line, but in this system, the sending side sends the same data signal to both lines, and the receiving side selects and uses the line with good line quality. As the line switching device which is the receiving side device, the one shown in FIG. 7, for example, is conventionally known.

第7図において、現用・予備それぞれの受信系は共に同
一構成で、受信アンテナ(la、]、 b )と受信部
(2a、2b)と復調部(7a、7b)とディジタル信
号処理部(4a、4b)とがらなり、復調部(7a、7
b)は前段に振幅等化器(71a、71b)、中段に適
応型等化層(32a、32b)、後段に復調器(33a
、33b)を備える。
In FIG. 7, both the working and standby receiving systems have the same configuration, including receiving antennas (la, ], b), receiving sections (2a, 2b), demodulating sections (7a, 7b), and digital signal processing section (4a). , 4b) and demodulators (7a, 7
b) includes an amplitude equalizer (71a, 71b) at the front stage, an adaptive equalization layer (32a, 32b) at the middle stage, and a demodulator (33a, 33a) at the rear stage.
, 33b).

受信アンテナ(la、lb)に到達した信号は受信部(
2a、2b)にて高周波増幅、中間周波(IP)への周
波数変換されて復調部(7a、7b)に入る。復調部(
7a、7b)では、振幅等化器(71a、71b)にて
まず受信IP信号の振幅歪を等化し、次いで適応型等化
器(32a、32b)にて受信パルス波形に重畳される
符号量干渉を除去し、復調器(33a、33b)にてベ
ースバンド信号に復調し識別処理をして復調データたる
受信ディジタルデータ列を形成し、ディジタル信号処理
部(4a、4b)に出力する。ディジタル信号処理部(
4a、4b)では、フレーム同期の確立、冗長ビットの
抽出及び挿入、誤り訂正復号等を行い伝送データを再生
し無瞬断切替部5に出力する一方、誤り訂正復号の過程
で生成されるシンドロームパルスを計測し、その計測値
を所定の閾値と比較し、比較結果の内容たる符号誤り率
警報(BERALM)信号(P、R)を切替制御部8に
出力する。切替制御部8は、例えば第8図に示すように
、バッファ81と判定器82とを備え、判定器82は両
BERALM信号(P、R)の内容に応じた切替制御信
号Sを無瞬断切替部5に制御信号として出力する。これ
により、無瞬断切替部5は一方の回線のデータ信号を選
択出力する。
The signal reaching the receiving antenna (la, lb) is sent to the receiving section (
2a, 2b), the signal is high-frequency amplified, frequency-converted to an intermediate frequency (IP), and then enters the demodulator (7a, 7b). Demodulator (
7a, 7b), the amplitude equalizers (71a, 71b) first equalize the amplitude distortion of the received IP signal, and then the adaptive equalizers (32a, 32b) equalize the amount of code superimposed on the received pulse waveform. The interference is removed, demodulated into a baseband signal by a demodulator (33a, 33b), and subjected to identification processing to form a received digital data string as demodulated data, which is output to a digital signal processing section (4a, 4b). Digital signal processing section (
4a and 4b), the transmission data is regenerated by establishing frame synchronization, extracting and inserting redundant bits, error correction decoding, etc. and outputting it to the uninterrupted switching unit 5. The pulse is measured, the measured value is compared with a predetermined threshold value, and a bit error rate alarm (BERALM) signal (P, R), which is the content of the comparison result, is output to the switching control section 8. For example, as shown in FIG. 8, the switching control unit 8 includes a buffer 81 and a determiner 82, and the determiner 82 seamlessly outputs the switching control signal S according to the contents of both BERALM signals (P, R). It is output to the switching unit 5 as a control signal. As a result, the uninterrupted switching section 5 selectively outputs the data signal of one line.

以下、回線切替の態様を具体的に説明する。BERAL
M信号(P、R)が共に゛正常′°である通常の状態で
は、無瞬断切替部5は現用回線を選択するように制御さ
れている。そして、選択性フェージング等の発生のため
現用回線の回線品質(符号誤り率〉が劣化し、BERA
L、M信号Rが“′発動″となったとする。但し、予備
回線の回線品質(符号誤り率)は″正常”′て、BER
ALM信号Pはパ正常″だとする。この場合は、明らか
に予備回線の方が現用回線よりも回線品質がまさってい
るのて、切替制御部8は、「切替」を内容とする切替制
御信号Sを無瞬断切替部5に出力する。これにより、無
瞬IJi切替部5は、現用回線と予備回線間で伝送信号
データの位相補正を行い、データの瞬断なく現用回線か
ら予備回線へ切り替える。
The mode of line switching will be specifically explained below. BERAL
In a normal state in which both the M signals (P, R) are "normal", the uninterrupted switching unit 5 is controlled to select the working line. Then, due to the occurrence of selective fading, etc., the line quality (code error rate) of the working line deteriorates, and BERA
Assume that the L and M signals R are "activated". However, the line quality (bit error rate) of the protection line is "normal" and the BER is
Assume that the ALM signal P is "normal". In this case, since the line quality of the protection line is clearly superior to that of the working line, the switching control unit 8 performs switching control with the content "switching". The signal S is output to the non-interruption switching section 5. Thereby, the instantaneous IJi switching unit 5 performs phase correction of the transmission signal data between the working line and the protection line, and switches from the working line to the protection line without momentary data interruption.

次に、現用回線の回線品質(符号誤り率)が復活し、現
用回線のBERALM信号Rがパ正常゛′へ復帰したと
する。この時、予備回線及び現用回線の両方の回線品質
(符号誤り率)は正常となるが、切替動作を必要最小限
とするため、伝送信号は予備回線を使用したままとなる
Next, it is assumed that the line quality (code error rate) of the working line is restored and the BERALM signal R of the working line returns to normal performance. At this time, the line quality (code error rate) of both the protection line and the working line becomes normal, but in order to minimize the switching operation necessary, the transmission signal continues to use the protection line.

この状態のままて(予備回線を使用している状B)、今
度は予備回線の回線品質(符号誤り率)か劣化し、予備
回線のBERALM信号Pが゛発動°″となると、切替
制御部8では、現用回線のBERALM信号Rとの比較
を行い、現用回線の回線品質(符号誤り率)が正常であ
れば、先程と同様、無瞬断切替部5へ切替制御信号Sを
送出し、伝送信号を予備回線から現用回線へ切り替える
(先程と同様、データの瞬断は生じない)。
If this state remains (condition B in which the protection line is used), the line quality (bit error rate) of the protection line deteriorates, and the BERALM signal P of the protection line becomes "activated", the switching control unit At step 8, a comparison is made with the BERALM signal R of the working line, and if the line quality (code error rate) of the working line is normal, the switching control signal S is sent to the uninterrupted switching unit 5 as before. Switch the transmission signal from the protection line to the working line (as before, there will be no momentary data interruption).

又、予備回線と現用回線の回線品質(符号誤り率)が両
方共劣化している場合(予備回線と現用回線のBERA
LM信号(P、R)が両方共“発動パとなった場合)、
二重障害となり、回線切替を行っても回線品質劣化の救
済は出来ないので、回線切替動作は行わない。
In addition, if the line quality (bit error rate) of both the protection line and the working line has deteriorated (BERA of the protection line and the working line
When both LM signals (P, R) become “activated”),
A double failure occurs, and even if the line is switched, the line quality deterioration cannot be relieved, so no line switching operation is performed.

(発明が解決しようとする課題) 上述した従来の回線切替装置では、符号誤り率の劣化度
合を監視し回線切替を行うようにしているが、回線品質
劣化の主原因である選択性フェージングが発生した場合
、ノツチ(落ち込み点)の周波数軸上の移動速度が速い
こと、また、誤り訂正機能を使用した場合、受信信号の
周波数特性劣化に対する符号誤り率の変化の度合いが、
誤り訂正機能未使用に比べ、大きいこと等の理由から、
BERALM信号により回線切替を完了する前に、回線
品質劣化が急速に進み、ディジタル信号としてフレーム
同期外れや再生搬送波信号と非同期が発生して回線断に
到り、回線切替による伝送信号救済が間に合わないとい
う問題点があった。
(Problems to be Solved by the Invention) In the conventional line switching device described above, line switching is performed by monitoring the degree of deterioration of the bit error rate, but selective fading, which is the main cause of line quality deterioration, occurs. In this case, the moving speed of the notch (falling point) on the frequency axis is fast, and when the error correction function is used, the degree of change in the code error rate due to the deterioration of the frequency characteristics of the received signal is
Due to reasons such as being larger than when the error correction function is not used,
Before the line switching is completed by the BERALM signal, the line quality rapidly deteriorates, and the digital signal loses frame synchronization and becomes unsynchronized with the reproduced carrier signal, resulting in line disconnection, and the transmission signal cannot be saved in time by line switching. There was a problem.

本発明は、このような従来の問題に鑑みなされたもので
、その目的は、回線品質(符号誤り率)の劣化の早期検
出を可能とする手段を設けた回線切替装置を提供するこ
とにある。
The present invention has been made in view of such conventional problems, and its purpose is to provide a line switching device equipped with means that enables early detection of deterioration in line quality (code error rate). .

(課題を解決するための手段) 前記目的を達成するために、本発明の回線切替装置は次
の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, the line switching device of the present invention has the following configuration.

即ち、本発明の回線切替装置は、1回線の現用回線に対
して1回線の予備回線を備え送信側は両回線に同一デー
タ信号を送出するようにした無線ディジタル通信システ
ムの受信側装置であって、振幅等化器を含む復調部とこ
の復調部が出力する復調データにディジタル信号処理を
施しデータ出力及び符号誤り率警報の出力を行うディジ
タル信号処理部とを備える現用・予備それぞれの受信系
と; 現用・予備それぞれの受信系が出力する前記符号
誤り率警報に基づき回線切替制御信号を出力する切替制
御部; 現用・予備それぞれの受信系が出力するデータ
信号の一方を前記回線切替制御信号に従って選択出力す
る切替部と; を備える回線切替装置において: 現用
・予備それぞれの受信系における復調部が備える前記振
幅等化器に、1次振幅歪を検出する振幅特性抽出回路;
を設け、かつ、前記切替制御部に、現用・予備それぞれ
の受信系が出力する前記1次振幅歪検出信号を基準値と
比較し、その結果を回線切替の判定要素に加味する手段
; を設けたことを特徴とするものである。
That is, the line switching device of the present invention is a receiving side device of a wireless digital communication system in which one protection line is provided for one working line, and the transmitting side sends the same data signal to both lines. The current and standby receiving systems each include a demodulation section including an amplitude equalizer and a digital signal processing section that performs digital signal processing on the demodulated data output by the demodulation section and outputs data and code error rate alarms. and; a switching control unit that outputs a line switching control signal based on the code error rate alarm outputted by each of the working and backup receiving systems; In a line switching device comprising: a switching unit that selectively outputs according to the following: an amplitude characteristic extraction circuit that detects primary amplitude distortion in the amplitude equalizer provided in the demodulation unit in each of the working and standby receiving systems;
and the switching control unit includes means for comparing the primary amplitude distortion detection signals output from each of the working and standby receiving systems with a reference value, and taking the result into consideration as a determining factor for line switching. It is characterized by:

(作 用) 次に、前記の如く構成される本発明の回線切替装置の作
用を説明する。
(Function) Next, the function of the line switching device of the present invention configured as described above will be explained.

本発明では、回線品質劣化の主原因である選択性フェー
ジングによる符号誤り率の劣化が生ずる過程、即ち、選
択性フェージングが発生すると、受信スペクトラムの一
部が削れ′、復調パルス波形は大きく歪み、その結果符
号誤り率が劣化するという事実に着目し、振幅等化器に
て1次振幅歪を検出できるようにし、符号誤り率が規定
値を越えて劣化する以前に1次振幅歪が規定値を越えた
ときには回線の切替ができるようにしである。
In the present invention, when selective fading occurs, which is the main cause of line quality deterioration, and the code error rate deteriorates, a part of the received spectrum is cut off, and the demodulated pulse waveform is greatly distorted. Focusing on the fact that the bit error rate deteriorates as a result, we designed an amplitude equalizer to detect the first-order amplitude distortion, so that the first-order amplitude distortion reaches the specified value before the bit error rate deteriorates beyond the specified value. This allows the line to be switched when the limit is exceeded.

その結果、フレーム同期外れや再生搬送波信号同期外れ
による回線断に到る前に回線切替を行うことができ、伝
送信号救済が確実となるという効果がある。
As a result, it is possible to switch the line before the line is disconnected due to loss of frame synchronization or reproduction carrier signal synchronization, and there is an effect that the transmission signal can be reliably repaired.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る回線切替装置を示す。FIG. 1 shows a line switching device according to an embodiment of the present invention.

本発明では、第1図に示すように、復調部(3a、3b
)の振幅等化器(31a、31b)で発生するLAD 
 MON (1次振幅歪特性モニタ)信号(AP、AR
)を切替制御部6に入力し、切替制御部6では従来から
のBERALM信号(、P、R)と本発明に係るLAD
  MON信号(AP、AR)とに基づき、切替制御信
号Sを発生するようにしである。以下、本発明に係る部
分を中心に説明する。
In the present invention, as shown in FIG.
) generated in the amplitude equalizer (31a, 31b)
MON (primary amplitude distortion characteristic monitor) signal (AP, AR
) is input to the switching control unit 6, and the switching control unit 6 inputs the conventional BERALM signal (, P, R) and the LAD according to the present invention.
The switching control signal S is generated based on the MON signal (AP, AR). Hereinafter, parts related to the present invention will be mainly explained.

まず、振幅等化器(31a、31b)に設けた振幅特性
抽出回路は例えば第2図に示すように構成される。この
振幅特性抽出回路は、中心周波数がf。+f1、fo−
fl、foである3種の狭帯域ろ波器(21,22,2
3)を並設し、それらのろ波出力を対応する検波器(2
4,25,26)でレベル検波し、2つの差動増幅器(
27,28)にて差分を増幅し、差動増幅器27からL
ADMON信号が出力されるようにしである。なお、差
動増幅器28からはQAD  MON (2次振幅歪特
性モニタ)信号が出力されるが、これは振幅等化器(3
1a、31b)内部で使用されるもので、本発明とは直
接の関係がないのでその説明は省略する。
First, the amplitude characteristic extraction circuit provided in the amplitude equalizer (31a, 31b) is configured as shown in FIG. 2, for example. This amplitude characteristic extraction circuit has a center frequency of f. +f1,fo-
Three types of narrowband filters (21, 22, 2
3) are installed in parallel, and their filtered outputs are connected to the corresponding detectors (2).
4, 25, 26), and two differential amplifiers (
27, 28) to amplify the difference, and from the differential amplifier 27
This is so that the ADMON signal is output. Note that the differential amplifier 28 outputs a QAD MON (secondary amplitude distortion characteristic monitor) signal, which is output by the amplitude equalizer (3
1a, 31b) are used internally and have no direct relation to the present invention, so their explanation will be omitted.

ここに、3種の狭帯域ろ波器(21,22,23)のろ
波特性の相互関係は第3図に示しであるが、foは振幅
等化器(31a、31b)に入力する受信IF信号(I
F、IN)の中心値に等しく、また受信IF信号帯域幅
Bに関し2f、<Bの関係にある。
Here, the interrelationship of the filtering characteristics of the three types of narrowband filters (21, 22, 23) is shown in Figure 3, and fo is input to the amplitude equalizer (31a, 31b). Reception IF signal (I
F, IN), and has the relationship 2f<B with respect to the received IF signal bandwidth B.

前記した通り、選択性フェージングが発生すると、受信
スペクトラムの一部が削られる。即ち、第4図に示すよ
うに、選択性フェージングが発生していない正常時、即
ち、1次振幅歪(LAD)が発生していないときは、受
信スペクトラムはフラットとなるが(第4図(a))、
選択性フェージングが発生すると受信スペクトラムは低
い周波数側が削られ右上りとなる(第4図(b))、あ
るいは、高い周波数側が削られ右下つとなる(第4図(
C))。
As described above, when selective fading occurs, part of the received spectrum is cut off. That is, as shown in Fig. 4, in normal conditions when selective fading does not occur, that is, when primary amplitude distortion (LAD) does not occur, the received spectrum is flat (Fig. 4 ( a)),
When selective fading occurs, the lower frequency side of the reception spectrum is shaved off, resulting in an upward trend to the right (Fig. 4 (b)), or the high frequency side is reduced, resulting in a lower right trend (Fig. 4 (b)).
C)).

従って、正常時(第4図(a))のLADをLAD=O
(dB)とし、第4図(b)の場合はLAD〉0〔dB
〕とし、第4図(c)の場合はLAD<0(dB)とし
て差動増幅器27の出力(LAD  MON)を図示す
れば第5図に示すようになり、LADに比例した電圧が
得られる。第5図は、LAD=OCds )ではLAD
  MON=V。
Therefore, when LAD is normal (Fig. 4(a)), LAD=O
(dB), and in the case of Fig. 4(b), LAD〉0[dB
], and in the case of Fig. 4(c), if LAD<0 (dB) and the output (LAD MON) of the differential amplifier 27 is plotted, it will become as shown in Fig. 5, and a voltage proportional to LAD will be obtained. . Figure 5 shows that LAD=OCds)
MON=V.

であるが、このLAD  MON信号がV。よりも大き
ければ大きい程、また、逆に小さければ小さい程LAD
の絶対値が大きい、つまり、スペクトラムの有する1次
傾斜の傾きが大きいことを示している。
However, this LAD MON signal is V. The larger the LAD, and conversely the smaller the LAD
This indicates that the absolute value of is large, that is, the slope of the first-order slope of the spectrum is large.

換言すれば、選択性フェージングの到来により、受信ス
ペクトラムの削れが生ずるが、周波数軸上低い方からフ
ェージングのノツチが接近した第4図(b)の場合はL
AD>OCdB )によりLAD  M ON > V
 oとなる。又、逆に高い方がらフェージングのノツチ
が接近した第4図(c)の場合は、LAD<O(dB 
)によりLAD  MON〈■oとなるのであり、いず
れの場合も確実に検出できるのである。
In other words, the arrival of selective fading causes a reduction in the received spectrum, but in the case of Fig. 4(b), where the fading notches approach from the lower side on the frequency axis, L
AD>OCdB)
It becomes o. On the other hand, in the case of Fig. 4(c) where the fading notches approach each other as the height increases, LAD<O(dB
), LAD MON〈■o' is obtained, and detection can be ensured in either case.

次に、切替制御部は、例えば第6図に示すように構成さ
れる。第6図において、BERALM信号(P、R)は
、従来と同様に、バッファ65を介して判定器66に入
力するが、LAD  M○N信号(AP、AR)はまず
比較器(61〜64)にて基準電源(67,68)の基
準値(VRefl、Vnerz)と比較され(第5図参
照)、その結果がバッファ65を介して判定器66に入
力する。
Next, the switching control section is configured as shown in FIG. 6, for example. In FIG. 6, the BERALM signals (P, R) are input to the determiner 66 via the buffer 65 as in the conventional case, but the LAD M○N signals (AP, AR) are first input to the comparators (61 to 64). ) is compared with the reference values (VRefl, Vnerz) of the reference power supplies (67, 68) (see FIG. 5), and the result is input to the determiner 66 via the buffer 65.

判定器66は、フリップフロップや汎用ゲートにより構
成される順序回路、あるいはROM等のメモリで構成さ
れ、例えば下表に示す論理に従って切替制御信号Sを出
力する。
The determiner 66 is composed of a sequential circuit composed of a flip-flop or a general-purpose gate, or a memory such as a ROM, and outputs a switching control signal S according to the logic shown in the table below, for example.

LAD  ALMとは、比較器(61〜64)において
LAD  MON信号(AP、AR)と基準値(VRe
fl、VRerz) ノ比較結果、LAD  MON 
> V Rafl、またはLAD  MON<Vner
zとなった1次振幅歪警報を意味する。
LAD ALM means that the LAD MON signal (AP, AR) and the reference value (VRe
fl, VRerz) comparison results, LAD MON
>V Rafl, or LAD MON<Vner
z means the primary amplitude distortion alarm.

判定の論理(下表)は次のようにして定めてある。The logic of judgment (table below) is determined as follows.

まず、現用回線と予備回線の相互間においては、BER
ALMはLAD  ALMに比べ回線品質劣化の度合が
大きく、回線切替の優先度が高い。
First, between the working line and the protection line, the BER
ALM has a greater degree of deterioration in line quality than LAD ALM, and has a higher priority for line switching.

従って、表中下2項に示すように、現用回線と予備回線
のいずれか一方がBERALMを発動し、他方がLAD
  ALMを発動しとすると、BERALM発動回線の
方が劣化度合大と判断し、LAD  ALM発動回線を
選択する。
Therefore, as shown in the second item below in the table, either the working line or the protection line activates BERALM, and the other activates LAD.
When ALM is activated, it is determined that the degree of deterioration is greater in the BERALM activated line, and the LAD ALM activated line is selected.

また、現用回線と予備回線それぞれの同回線においては
、LAD  ALMの方がBERALMよりも時間的に
早く送出されるので、他回線が止常(NORM)である
限り、LAD  ALMが発動した時点で他回線を選択
する(表中上から第4項目及び第5項目)。従来は、こ
の判定をしていなかった故、問題が生じていた。
In addition, since LAD ALM is sent out earlier than BERALM on the same line, both the working line and the protection line, as long as the other line is NORM, the LAD ALM is activated. Select another line (4th and 5th items from the top in the table). Conventionally, this determination was not made, which caused problems.

但し、両回線がLAD  ALM同士、又は、BERA
LM同士の場合は切替を行わない。勿論NORM同士で
は切替の必要はない。
However, both lines are LAD ALM or BERA
Switching is not performed between LMs. Of course, there is no need to switch between NORMs.

(発明の効果) 以上説明したように、本発明の回線切替装置によれば、
振幅等化器にて1次振幅歪を検出できるようにし、符号
誤り率警報信号に、1次振幅歪が規定値を越えたことを
示す警報信号を加えて切替制御の判定を行うようにした
ので、選択性フェージング発生を原因とする回線品質(
符号誤り率)の劣化を従来に比へ早く検出することが可
能となる。
(Effects of the Invention) As explained above, according to the line switching device of the present invention,
The amplitude equalizer is now able to detect the primary amplitude distortion, and an alarm signal indicating that the primary amplitude distortion exceeds a specified value is added to the code error rate alarm signal to determine switching control. Therefore, line quality due to selective fading (
This makes it possible to detect deterioration in code error rate (code error rate) earlier than before.

その結果、フレーム同期外れや再生搬送波信号同期外れ
による回線断に到る前に回線切替を行うことができ、伝
送信号救済が確実となるという効果がある。
As a result, it is possible to switch the line before the line is disconnected due to loss of frame synchronization or reproduction carrier signal synchronization, and there is an effect that the transmission signal can be reliably repaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る回線切替装置の構成ブ
ロック図、第2図は振幅特性抽出回路の構成ブロック図
、第3図は狭帯域ろ波器の特性図、第4図は1次振幅歪
(LAD)特性の説明図、第5図は1次振幅歪み特性信
号の特性図、第6図は切替制御部の構成ブロック図、第
7図は従来の回線切替装置の構成ブロック図、第8図は
従来の切替制御部の構成ブロック図である。 la、lb・・・・・・受信アンテナ、 2a、2b・
・・・・・受信部、 3a、3b・・・・・・復調部、
 4a、4b・・・・・・ディジタル信号処理部、 5
・・・・無瞬断切替部、 6・・・・・・切替制御部、
 21〜23・・・・・・狭帯域ろ波器、 24〜26
・・・・・・検波器、27.28・・・・・・差動増幅
器、 31a、31b・・・・・・振幅等化器、 61
〜64・・・・・・比較器、65・・・・・バッファ、
 66・・・・・・判定器、67.68・・・・・基準
電源。 代理人 弁理士  八 幡  義 博 ノンアシ徒幅づRk−(LAD)□こp)1憧(又Xり
Yラム)第 4 図 / )欠J辰ホロ歪4針セしくニク化ADMON)の李
目生p]第S 図
FIG. 1 is a block diagram of a line switching device according to an embodiment of the present invention, FIG. 2 is a block diagram of an amplitude characteristic extraction circuit, FIG. 3 is a characteristic diagram of a narrowband filter, and FIG. An explanatory diagram of the primary amplitude distortion (LAD) characteristic, Fig. 5 is a characteristic diagram of the primary amplitude distortion characteristic signal, Fig. 6 is a configuration block diagram of the switching control section, and Fig. 7 is a configuration block of a conventional line switching device. 8 are block diagrams showing the configuration of a conventional switching control section. la, lb...Receiving antenna, 2a, 2b.
...Reception section, 3a, 3b...Demodulation section,
4a, 4b...Digital signal processing section, 5
. . . Uninterrupted switching section, 6 . . . Switching control section,
21-23...Narrowband filter, 24-26
......Detector, 27.28...Differential amplifier, 31a, 31b...Amplitude equalizer, 61
~64...Comparator, 65...Buffer,
66...Judgment device, 67.68...Reference power supply. Agent: Yoshihiro Yawata Figure S

Claims (1)

【特許請求の範囲】[Claims]  1回線の現用回線に対して1回線の予備回線を備え送
信側は両回線に同一データ信号を送出するようにした無
線ディジタル通信システムの受信側装置であって、振幅
等化器を含む復調部とこの復調部が出力する復調データ
にディジタル信号処理を施しデータ出力及び符号誤り率
警報の出力を行うディジタル信号処理部とを備える現用
・予備それぞれの受信系と;現用・予備それぞれの受信
系が出力する前記符号誤り率警報に基づき回線切替制御
信号を出力する切替制御部;現用・予備それぞれの受信
系が出力するデータ信号の一方を前記回線切替制御信号
に従って選択出力する切替部と;を備える回線切替装置
において;現用・予備それぞれの受信系における復調部
が備える前記振幅等化器に、1次振幅歪を検出する振幅
特性抽出回路;を設け、かつ、前記切替制御部に、現用
・予備それぞれの受信系が出力する前記1次振幅歪検出
信号を基準値と比較し、その結果を回線切替の判定要素
に加味する手段;を設けたことを特徴とする回線切替装
置。
A receiving side device of a wireless digital communication system in which one protection line is provided for one working line and the transmitting side sends the same data signal to both lines, the demodulation unit including an amplitude equalizer. and a digital signal processing unit that performs digital signal processing on the demodulated data output by the demodulation unit and outputs data and a code error rate alarm; A switching control unit that outputs a line switching control signal based on the code error rate alarm to be output; a switching unit that selectively outputs one of the data signals output by each of the working and standby receiving systems in accordance with the line switching control signal; In the line switching device; the amplitude equalizer included in the demodulation section in each of the working and standby reception systems is provided with an amplitude characteristic extraction circuit for detecting primary amplitude distortion; A line switching device comprising: means for comparing the first-order amplitude distortion detection signal outputted by each receiving system with a reference value and adding the result to a decision factor for line switching.
JP29453090A 1990-10-31 1990-10-31 Line changeover device Pending JPH04167838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29453090A JPH04167838A (en) 1990-10-31 1990-10-31 Line changeover device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29453090A JPH04167838A (en) 1990-10-31 1990-10-31 Line changeover device

Publications (1)

Publication Number Publication Date
JPH04167838A true JPH04167838A (en) 1992-06-15

Family

ID=17808977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29453090A Pending JPH04167838A (en) 1990-10-31 1990-10-31 Line changeover device

Country Status (1)

Country Link
JP (1) JPH04167838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809406A (en) * 1994-12-15 1998-09-15 Fujitsu Limited Receiving apparatus and method for switching between active and standby receivers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809406A (en) * 1994-12-15 1998-09-15 Fujitsu Limited Receiving apparatus and method for switching between active and standby receivers

Similar Documents

Publication Publication Date Title
US5274670A (en) Method of equalization in digital mobile communication with improved tracking ability
US8687737B2 (en) System and method for anticipatory receiver switching based on signal quality estimation
JPH08167867A (en) Radio receiver and method for constrolling switching of receiving system in the radio receiving
JP2586169B2 (en) Demodulation system
US5596605A (en) Radio receiver for use in the reception of digital multiplexing signals
JPH04167838A (en) Line changeover device
US5184242A (en) Supervisory circuit for optical repeater
JPS6412136B2 (en)
US5535248A (en) Digital radio communication system
JP2658605B2 (en) Digital signal transmission system
JP3010805B2 (en) Receiver
JP2526475B2 (en) Demodulator with cross polarization interference canceller
JP2605500B2 (en) Cross polarization interference cancellation circuit
JPH03255731A (en) Equipment fault detecting system for intermediate frequency band equalizer
JP3203639B2 (en) Receiver
JPS61100031A (en) Line switching device
JPH01176130A (en) Digital demodulation system for two polarized wave
JP3102334B2 (en) Line switching device
JPH04267634A (en) Radio communication system
JPH09233001A (en) Tdma burst signal demodulator
JP3362684B2 (en) Diversity combining circuit and diversity combining method
JPH10303871A (en) Line switching system
JPS6216588B2 (en)
JPH08139782A (en) Carrier regenerating circuit
JPH02244912A (en) Transversal type equalizer