JPH0416734A - Method for measuring light emission characteristic - Google Patents

Method for measuring light emission characteristic

Info

Publication number
JPH0416734A
JPH0416734A JP12223390A JP12223390A JPH0416734A JP H0416734 A JPH0416734 A JP H0416734A JP 12223390 A JP12223390 A JP 12223390A JP 12223390 A JP12223390 A JP 12223390A JP H0416734 A JPH0416734 A JP H0416734A
Authority
JP
Japan
Prior art keywords
light
current
measurement
measurement points
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12223390A
Other languages
Japanese (ja)
Other versions
JP2862331B2 (en
Inventor
Noriki Yoneda
米田 訓樹
Hideyuki Hashimoto
秀之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP12223390A priority Critical patent/JP2862331B2/en
Publication of JPH0416734A publication Critical patent/JPH0416734A/en
Application granted granted Critical
Publication of JP2862331B2 publication Critical patent/JP2862331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To shorten measurement time of light emission characteristic by selecting coarse measurement points on a non-light-emitting region. CONSTITUTION:When whether a laser diode is good or defective is to be deter mined, dense measurement points are selected on a light-emitting region A, while coarse measurement points are selected on a non-light-emitting region B, so that whole measurement time can be shortened. Further since the dense measurement points are taken on the light-emitting region, a bent part of a characteristic curve is not missed, and current-light emission amount characteristics can be measured with high reliability.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えばレーザダイオードのような発光素子の
電流対発光量の特性を測定する発光特性測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a light emission characteristic measuring device for measuring the current versus light emission characteristics of a light emitting element such as a laser diode.

「従来の技術」 第3図及び第4図にレーザダイオードの電流対発光量の
特性を示す1図において横軸I、は被測定発光素子に与
える電流値、縦軸Pは被測定発光素子の発光量を示す。
"Prior Art" Figures 3 and 4 show the characteristics of the current versus light emission amount of a laser diode. Indicates the amount of light emitted.

レーザダイオードのような発光素子では電流!。In a light emitting device like a laser diode, current! .

を境にこれより電流■3が増加すると発光量Pが急激に
増加し、X、以下では発光量Pは小さい。
When the current 3 increases beyond this point, the amount of light emitted P increases rapidly, and below X, the amount P of light emitted light is small.

つまり電流11以上て点灯し、■1以下では非点灯状態
と見られている。
In other words, when the current is 11 or more, the lamp lights up, and when the current is 1 or less, it is considered to be in a non-lighting state.

発光素子の電流−発光量特性を測定する理由は以下の如
くである。
The reason for measuring the current-light emission characteristics of a light emitting element is as follows.

レーザダイオードのような発光素子は光変調器の光源と
して利用される。このため電流−発光量特性が図示する
Q点のように弯曲していると変調された光が非直線歪み
を持つことになるため、変調器の光源として利用するこ
とができないことになる。
A light emitting device such as a laser diode is used as a light source for an optical modulator. For this reason, if the current-light emission characteristic is curved like point Q shown in the figure, the modulated light will have non-linear distortion and cannot be used as a light source for a modulator.

従って光変調器として利用するレーザダイオードは[流
−発光量特性を測定し、弯曲部Qが存在するか否かを測
定している。
Therefore, the flow-emission characteristics of the laser diode used as an optical modulator are measured to determine whether a curved portion Q exists or not.

「発明が解決しようとする課題j レーザダイオードの電流−発光量特性において、弯曲部
Qは比較的急峻な弯曲となっている。
``Problem to be Solved by the Invention j'' In the current-emission characteristics of a laser diode, the curved portion Q has a relatively steep curve.

このためこの弯曲部Qを検出するには測定ボイントPを
第4図に示すように細かく採らなければならない、つま
り第3図に示すように測定ポイントPを粗く採った場合
は弯曲部Qを見逃してしまうおそれがある。
Therefore, in order to detect this curved part Q, the measurement points P must be taken finely as shown in Figure 4.In other words, if the measurement points P are taken roughly as shown in Figure 3, the curved part Q will be missed. There is a risk that this may occur.

然しながら測定ポイントPを細かく採ることによって測
定に時間が掛る欠点が生じる。
However, by taking the measurement points P finely, a drawback arises in that the measurement takes time.

この発明の目的はこのように相反する条件を克服して弯
曲点Qを見逃すことなく短時間に発光素子の電流−発光
量特性を測定することができる測定方法を提案しようと
するものである。
An object of the present invention is to overcome these conflicting conditions and to propose a measurement method that can measure the current-light emission characteristics of a light emitting element in a short time without missing the curved point Q.

「課題を解決するための手段」 この発明では電流の供給によって或る電流値を境に発光
状態と非発光状態とに区分けされて動作する発光素子の
電流−発光量特性測定方法において、 発光素子の非発光領域では測定ポイントを粗に選定し、
これにより発光N域では測定ポイントを密に採っても全
体の測定時間を短かくすることができるようにした発光
特性測定方法を提案するものである。
"Means for Solving the Problems" The present invention provides a method for measuring current-light emission characteristics of a light-emitting element that operates by dividing the light-emitting element into a light-emitting state and a non-light-emitting state at a certain current value by supplying a current. In the non-emitting area, measurement points are roughly selected,
As a result, we propose a light emission characteristic measuring method that can shorten the overall measurement time even if measurement points are taken densely in the light emission N region.

二の発明の発光特性測定方法によれば光変訓器の光源と
して利用する場合に、その良否を判定する発光領域の測
定ポイントを密に採り、非発光領域の測定ポイントを粗
に採ったから、全体の測定時間を短かくすることができ
る。
According to the method for measuring luminescence characteristics of the second invention, when used as a light source for a light modifier, the measurement points in the light-emitting area to judge the quality are taken closely, and the measurement points in the non-light-emitting area are taken loosely. The overall measurement time can be shortened.

然も発光領域の測定ポイントを密に採るから弯曲部を見
逃すことはない、従って短時間に然も信転性の高い発光
素子の電流−発光量特性を測定することができる。
Moreover, since the measurement points in the light emitting region are taken closely, curved parts are not overlooked, and therefore the current-light emission characteristics of the light emitting element with high reliability can be measured in a short period of time.

「実施例」 第り図にこの発明の一実施例を示す、この実施例では被
測定発光素子が発光状態となる領域Aでは境界となる電
流値1hを境に測定点Pの間隔をΔIずつ採り、非発光
領域Bでは測定点Pの間隔をn・ΔI(n≧2)に選定
した場合を示す。
"Example" Figure 2 shows an example of the present invention. In this example, in region A where the light emitting element to be measured is in a light emitting state, the interval between measurement points P is increased by ΔI from the current value 1h which is the boundary. In the non-emission region B, the interval between the measurement points P is selected to be n·ΔI (n≧2).

具体的にはΔI = 0.1−^、n’ΔI=:2+A
、Ih−70+wA、最大電流1==90mAとした場
合、発光領域Aで200ポイント、非発光領域Bで35
ポイントの測定点の数となる。
Specifically, ΔI = 0.1-^, n'ΔI=:2+A
, Ih-70+wA, maximum current 1==90mA, 200 points in light-emitting area A, 35 points in non-light-emitting area B
This is the number of measurement points.

従ってこの発明によれば全体で測定ポイントPの数は2
35ポイントとなる。
Therefore, according to this invention, the total number of measurement points P is 2.
It will be 35 points.

これに対し従来は0〜90■への領域の全体を0.1■
Aのステップで測定するから測定ポイントPの数は90
0ポイントになる。
In contrast, conventionally the entire range from 0 to 90■ is 0.1■
Since the measurement is performed at step A, the number of measurement points P is 90.
It becomes 0 points.

例えば1ポイントの測定時間が20m5とすると従来の
測定方法では900X2(1+a’=18秒となる。こ
れに対し、この発明による測定方法によれば235X2
0ws=4.7秒となる。
For example, if the measurement time for one point is 20m5, the conventional measurement method would take 900X2 (1+a'=18 seconds.On the other hand, according to the measurement method of the present invention, it would take 235X2
0ws=4.7 seconds.

第2図にこの発明による測定方法によって動作する測定
装置の構成を示す。
FIG. 2 shows the configuration of a measuring device that operates according to the measuring method according to the present invention.

図中1は被測定レーザダイオード、2はこの被測定レー
ザダイオードlに電流1.を与える電流源、3は被測定
ダイオード1から出射される光4を受光して光4のエネ
ルギを電気信号に変換する受光素子を示す。
In the figure, 1 is the laser diode to be measured, 2 is the laser diode to be measured, and the current 1. 3 indicates a light receiving element that receives light 4 emitted from the diode 1 to be measured and converts the energy of the light 4 into an electrical signal.

受光素子3は光4のエネルギに対応した電流1、を出力
し、この1.を電流−電圧変換器5で電圧信号Vに変換
し、この電圧信号■をAD変換器6でAD変換して制御
器7に入力する。
The light receiving element 3 outputs a current 1 corresponding to the energy of the light 4, and this 1. is converted into a voltage signal V by a current-voltage converter 5, and this voltage signal (2) is AD-converted by an AD converter 6 and input to a controller 7.

制御器7はマイクロコンピュータによって構成すること
ができる。マイクロコンピュータは周知のように中央演
算処理袋fcPUと、この中央演算処理装置CPUを所
定の順序に従って動作させるプログラムを収納するリー
ドオンリーメモリROMと、データ等を一時記憶するメ
モリRAMと、入力ポートINF、出力ポート○UPと
によって構成される。
The controller 7 can be configured by a microcomputer. As is well known, a microcomputer has a central processing unit fcPU, a read-only memory ROM that stores a program for operating the central processing unit CPU in a predetermined order, a memory RAM that temporarily stores data, etc., and an input port INF. , and an output port UP.

入カポ−) TNPにはAD変換器6の外に数値入力手
段8が接続され、この数値入力手段8から被測定レーザ
ダイオード1の発光HMAと非発光領域Bの境界1+b
  (予想値)を入力すると共に、発光領域Aの測定ス
テップPのステツプ幅を規定する電流値ΔI及び非発光
領域Bの測定ステップ幅を決めるn値を入力する。
A numerical input means 8 is connected to the TNP outside the AD converter 6, and from this numerical input means 8 the boundary 1+b between the light emitting HMA of the laser diode 1 to be measured and the non-emitting region B is connected to the TNP.
(estimated value), and also input the current value ΔI that defines the step width of the measurement step P in the light emitting region A and the n value that determines the measurement step width in the non-light emitting region B.

中央演算処理装置は数値入力手段8から入力された各設
定値に従って非発光領域Bでは測定ポイン)Pをn・Δ
Iのステップで変化する制御信号を出力ポートOUPか
ら出力し、この制御信号を電流源2に与えて被試験レー
ザダイオード!に与える電流■、をn・ΔIのステップ
で変化させる。
The central processing unit calculates the measurement point (P) in the non-light-emitting area B according to each setting value inputted from the numerical input means 8 by n·Δ.
A control signal that changes in steps I is output from the output port OUP, and this control signal is applied to the current source 2 to drive the laser diode under test! The current (■) given to the current is changed in steps of n·ΔI.

被試験レーザダイオードlに与える電流1□が数値入力
手段8から入力した境界値■1に等しいか、大きくなる
かすると、中央演算処理装置CP[lは電流I□の変化
ステップをΔIに変更し、電流源2を制御する。
When the current 1□ applied to the laser diode under test l is equal to or larger than the boundary value ■1 input from the numerical input means 8, the central processing unit CP [l changes the change step of the current I□ to ΔI. , controls the current source 2.

このようにして非点灯領域Bと点灯領域Aにおける被測
定レーザダイオードlに与える電流!。
In this way, the current given to the laser diode l to be measured in the non-lighting region B and the lighting region A! .

の変化ステップを変化させ、点灯領域Aにおいて変化ス
テップを密に採るように動作させる。
The change step is changed, and the change step is taken densely in the lighting area A.

被測定レーザダイオード1から出射される光4は受光素
子3に受光され、光4のエネルギに対応した電流I0に
変換される。この電流I0は電流−電圧変換器5で電圧
信号に変換されAD変換器6でディジタル信号に変換さ
れ、中央演算処理装置CPUに取込まれる。
Light 4 emitted from the laser diode 1 to be measured is received by the light receiving element 3 and converted into a current I0 corresponding to the energy of the light 4. This current I0 is converted into a voltage signal by a current-voltage converter 5, converted into a digital signal by an AD converter 6, and taken into the central processing unit CPU.

中央演算処理装置CPUに取込まれた測定データはメモ
リRAMに記憶されると共に、出力ポートOUPから表
示器9に出力されて発光量に対応した値と電流1.の値
を表示する。これらの数値は必要に応してプリンタ10
によって印字させることができる。
The measurement data taken into the central processing unit CPU is stored in the memory RAM, and is also output from the output port OUP to the display 9 to display the value corresponding to the amount of light emitted and the current 1. Display the value of These numbers can be added to the printer 10 as needed.
It can be printed by

「発明の効果」 以上説明したように、この発明によればレーザダイオー
ドlの電流−発光量特性を測定する際に、発光領域Aの
測定ステップを密に採り、非発光領域Bでは測定ステッ
プを粗に採ったから、非発光領域Bにおける測定時間を
短縮することができる。
"Effects of the Invention" As explained above, according to the present invention, when measuring the current-light emission characteristics of the laser diode l, the measurement steps are closely taken in the light-emitting region A, and the measurement steps are not taken in the non-light-emitting region B. Since the samples were taken sparsely, the measurement time in the non-light emitting region B can be shortened.

この結果レーザダイオードの電流−発光量特性を効率よ
く測定することができ、光変調器の光源用に用いること
ができるか否かを短時間に判定することができ、多くの
数のレーザダイオードを効率よく検査することができる
利点が得られる。
As a result, the current-emission characteristics of a laser diode can be efficiently measured, and whether or not it can be used as a light source for an optical modulator can be determined in a short time. This provides the advantage of being able to perform inspections efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による測定方法を説明するためのグラ
フ、第2図はこの発明による測定方法を実行する測定装
置の一例を示すブロック図、第3図及び第4図は従来の
技術を説明するためのグラフである。 A:発光領域、B:非発光領域、P:測定ポイント、1
1 :境界値。
FIG. 1 is a graph for explaining the measuring method according to the present invention, FIG. 2 is a block diagram showing an example of a measuring device for carrying out the measuring method according to the present invention, and FIGS. 3 and 4 are for explaining conventional techniques. This is a graph for A: Light-emitting area, B: Non-light-emitting area, P: Measurement point, 1
1: Boundary value.

Claims (1)

【特許請求の範囲】[Claims] (1)電流の供給によって或る電流値を境に発光領域と
非発光領域とに分かれて動作する発光特性を持つ発光素
子の電流−発光量特性を測定する発光特性測定方法にお
いて、 上記非発光領域では測定ポイントを粗に選定し測定時間
を短縮するようにした発光特性測定方法。
(1) In the method for measuring the light emitting characteristics of a light emitting element having a light emitting characteristic that operates by dividing into a light emitting region and a non-light emitting region at a certain current value by supplying a current, the above-mentioned non-light emitting A luminescence characteristic measurement method that shortens measurement time by roughly selecting measurement points in the area.
JP12223390A 1990-05-11 1990-05-11 Emission characteristics measurement method Expired - Lifetime JP2862331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12223390A JP2862331B2 (en) 1990-05-11 1990-05-11 Emission characteristics measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12223390A JP2862331B2 (en) 1990-05-11 1990-05-11 Emission characteristics measurement method

Publications (2)

Publication Number Publication Date
JPH0416734A true JPH0416734A (en) 1992-01-21
JP2862331B2 JP2862331B2 (en) 1999-03-03

Family

ID=14830869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12223390A Expired - Lifetime JP2862331B2 (en) 1990-05-11 1990-05-11 Emission characteristics measurement method

Country Status (1)

Country Link
JP (1) JP2862331B2 (en)

Also Published As

Publication number Publication date
JP2862331B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US20110057571A1 (en) Device and method for controlling the color point of an led light source
JP5102037B2 (en) Method for driving an illumination device using LEDs
US9271370B2 (en) Method of characterising an LED device
JP5071834B2 (en) Lighting device and adjustment method
EP1701589B1 (en) Electric circuit and method for monitoring a temperature of a light emitting diode
US8193726B2 (en) Fluorescent light temperature sensor
US20100188024A1 (en) Method of calibrating a lighting system, and lighting system
EP1562406B1 (en) Method and apparatus for monitoring the condition of LEDs
US7888890B2 (en) Method for controlling an electrical light source by pulse width modulation
US7359414B2 (en) Excessive current input suppressing semiconductor laser light emitting circuit
KR101659495B1 (en) Light-emitting diode and method for producing a light-emitting diode
CN100507998C (en) Display system and lighting device used therein
CN100498896C (en) Display apparatus employing a field emission device and brightness control device and method therefor
JP2008512005A (en) Method for controlling an electrical light source by pulse width modulation
JPH09185036A (en) Luminance controller for liquid crystal display device
JPH0416734A (en) Method for measuring light emission characteristic
JP2000172986A (en) Fault detector of signal lamp
US10001522B2 (en) Method for predicting failure of a light-emitting diode
JP4633681B2 (en) Light irradiation system and light control device
US8541948B2 (en) Operating device and method for operating at least one Hg low pressure discharge lamp
US10281324B1 (en) Systems and methods for determining ambient illumination having dual sensors controlled by a bypass switch
US11985740B2 (en) Method for operating a light emitting diode arrangement, method for characterizing a light emitting diode, and light emitting diode arrangement
JPH0395977A (en) Led illuminator
KR910007496B1 (en) Method of measuring characteristics of cut - off of floure scendisplay elements
JPS62113390A (en) Constant luminous power controller