JPH04166790A - Scanning optical system - Google Patents

Scanning optical system

Info

Publication number
JPH04166790A
JPH04166790A JP29340590A JP29340590A JPH04166790A JP H04166790 A JPH04166790 A JP H04166790A JP 29340590 A JP29340590 A JP 29340590A JP 29340590 A JP29340590 A JP 29340590A JP H04166790 A JPH04166790 A JP H04166790A
Authority
JP
Japan
Prior art keywords
light
reflected
infrared laser
condenser lens
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29340590A
Other languages
Japanese (ja)
Inventor
Ryoji Musashi
武蔵 良二
Ikuo Ishinabe
郁夫 石鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP29340590A priority Critical patent/JPH04166790A/en
Publication of JPH04166790A publication Critical patent/JPH04166790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To receive a reflection light flux from a reflecting object precisely and efficiently by arranging a light casting system and a light receiving system of a scanning optical system on an axis and emitting parallel light flux through a penetration hole toward the reflecting object. CONSTITUTION:An infrared laser beam is reflected in a reflection prism 29 and is introduced in a condenser lens 30. A penetration hole 35 is formed in the condenser lens 30 with the same axis as the optical axis O of the condenser lens 30. The reflection light flux from a corner cube 2 returns to the condenser lens 30 and is reflected by this condenser lens 30, passes through a noise light elimination filter 33 and is focused on a light receiving element 34. The noise light elimination filter 33 lets the light with the same wave length as the infrared laser beam wave length pass. In this case, since the optical axis of a casting light system 10A and a receiving light system 10B are the same, the infrared laser beam reflected by the corner cube 2 is received efficiently and precisely. Also, the incidence of light with other wave length that the infrared laser beam wave length into the light receiving element 34 is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、反射対象物を垂直方向、水平方向に走査して
、反射対象物に光波測距装置本体を自動追尾させる自動
追尾型光波測距装置に用いるのに好適の走査光学系に関
する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an automatic tracking type light wave measurement device that scans a reflecting object in the vertical and horizontal directions and automatically tracks the main body of the light wave ranging device to the reflecting object. The present invention relates to a scanning optical system suitable for use in a distance measuring device.

(従来の技術) 従来から、走査光学系には、その投光系から走査光束を
出射させて反射対象物を走査し、その反射対象物による
反射光束を受光系により受光する構成のものが知られて
いる。この従来の走査光学系の投光系と受光系とは別々
に構成されている。
(Prior Art) Conventionally, scanning optical systems have been known to have a configuration in which a scanning light beam is emitted from a light projection system to scan a reflective object, and the light beam reflected by the reflection object is received by a light receiving system. It is being The light projecting system and light receiving system of this conventional scanning optical system are constructed separately.

(発明が解決しようとする課題) しかしながら、反射対象物としてのコーナーキューブを
垂直方向、水平方向に走査して、反射対象物に測距装置
本体を自動追尾させる自動追尾型光波測距装置等に走査
光学系を搭載する場合には、走査光学系の投光系と受光
系とが別々に構成されていると、その反射対象物により
反射された反射光束が必ずしも受光系に戻ってくるとは
限らず、反射対象物により反射された反射光束を効率的
に受光できないおそれがある。
(Problem to be Solved by the Invention) However, an automatic tracking type light wave distance measuring device, etc. that scans a corner cube as a reflecting object in the vertical and horizontal directions and automatically tracks the distance measuring device main body to the reflecting object, etc. When equipped with a scanning optical system, if the light emitting system and light receiving system of the scanning optical system are configured separately, the reflected light beam reflected by the object to be reflected will not necessarily return to the light receiving system. However, there is a possibility that the reflected light beam reflected by the object to be reflected may not be efficiently received.

本発明は、上記の事情に鑑みて為されたもので、その目
的とするところは、その反射対象物からの反射光束を確
実にかつ効率よく受光することのできる走査光学系を提
供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a scanning optical system that can reliably and efficiently receive the reflected light beam from the reflecting object. be.

(課題を解決するための手段) 本発明に係わる走査光学系は、上記の課題を解決するた
め、反射対象物に向けて平行光束を出射して該反射対象
物を走査する投光系と、前記反射対象物からの反射光束
を受光する受光系とを備え、該受光系には集光レンズが
設けられ、該集光レンズにはその先軸と同軸の貫通孔が
形成され、前記受光系には前記投光系の光軸を前記集光
レンズの光軸と同軸にするための反射部材が設けられ、
前記平行光束は前記貫通孔を通って前記反射対象物に向
けて出射されることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, a scanning optical system according to the present invention includes a light projection system that emits a parallel light beam toward a reflection object to scan the reflection object; a light-receiving system that receives the reflected light flux from the reflective object, the light-receiving system is provided with a condensing lens, the condensing lens has a through hole coaxial with its tip axis, and the light-receiving system is provided with a reflecting member for making the optical axis of the light projection system coaxial with the optical axis of the condensing lens,
The parallel light beam is characterized in that it passes through the through hole and is emitted toward the object to be reflected.

(作用) 本発明に係わる走査光学系によれば、投光系から出射さ
れる平行光束は反射部材により受光系の集光レンズの光
軸と同軸にされる。そして、その集光レンズに形成され
た貫通孔を通って反射対象物に導かれ、その反射対象物
が走査される。その反射対象物からの反射光束は受光系
に受光される。
(Function) According to the scanning optical system according to the present invention, the parallel light beam emitted from the light projecting system is made coaxial with the optical axis of the condensing lens of the light receiving system by the reflecting member. The light is guided to the object to be reflected through the through hole formed in the condenser lens, and the object to be reflected is scanned. The reflected light beam from the reflecting object is received by the light receiving system.

(実施例) 以下に、本発明に係わる走査光学系を自動追尾屋光波測
距装置に適用した実施例を図面を参照しつつ説明する。
(Example) Hereinafter, an example in which a scanning optical system according to the present invention is applied to an automatic tracking optical distance measuring device will be described with reference to the drawings.

第1図において、1は測量台、2は濁点に設置の反射対
象物としてのコーナーキューブである。
In FIG. 1, 1 is a surveying table, and 2 is a corner cube as a reflective object installed at the cloudy point.

測量台1はたとえば船舶の甲板などに設置されている。The surveying platform 1 is installed, for example, on the deck of a ship.

この測量台1には光波測距装置が据え付けられている。A light wave distance measuring device is installed on this survey table 1.

この光波測距装置3は固定台4と水平回動部5とを有す
る。水平回動部5は、第2図に示すように固定台4に対
して矢印A方向に回転され、支持部6を有する。支持部
6には垂直方向回動軸7が設けられ、垂直方向回動軸7
には測距装置本体8が設けられている。測距装置本体8
は、水平回動部5の回転により水平方向に回動されると
共に、垂直方向回動軸7の回転により第1図に矢印Bで
示すように垂直方向に回転される。
This light wave distance measuring device 3 has a fixed base 4 and a horizontal rotating section 5. The horizontal rotation part 5 is rotated in the direction of arrow A with respect to the fixed base 4, as shown in FIG. 2, and has a support part 6. The support part 6 is provided with a vertical rotation axis 7, and the vertical rotation axis 7
A distance measuring device main body 8 is provided. Distance measuring device body 8
is rotated in the horizontal direction by the rotation of the horizontal rotation unit 5, and rotated in the vertical direction as shown by arrow B in FIG. 1 by the rotation of the vertical rotation shaft 7.

その測距装置本体8には、測距光学系9と走査光学系1
0とが設けられている。この測距光学系9は第3図に概
略示すように投光系11と受光系12とを有する。投光
系11はレーザー光源13を有する。受光系12は受光
素子14を有する。
The distance measuring device body 8 includes a distance measuring optical system 9 and a scanning optical system 1.
0 is provided. The distance measuring optical system 9 has a light projecting system 11 and a light receiving system 12, as schematically shown in FIG. The light projection system 11 has a laser light source 13. The light receiving system 12 has a light receiving element 14 .

レーザー光源13は赤外レーザー光波を出射する。The laser light source 13 emits infrared laser light waves.

その赤外レーザー光波はビームスプリッタ15のダイク
ロイックミラー16により対物レンズ17に向けて反射
され、カバーガラス18を介して測距装置本体8から平
面波として出射される。
The infrared laser light wave is reflected by the dichroic mirror 16 of the beam splitter 15 toward the objective lens 17, and is emitted as a plane wave from the distance measuring device main body 8 via the cover glass 18.

赤外レーザー光波はコーナーキューブ2により反射され
、カバーガラス18を介して対物レンズ17に戻り、ビ
ームスプリッタ15のダイクロイックミラー19により
反射され、受光素子14に収束される。その受光索子1
4の受光出力は、図示を略す公知の計測回路に入力され
、コーナーキューブ2までの距離が測距される。この測
距光学系9は結像レンズ20、レチクル板21を有して
おり、可視光は対物レンズ17、ダイクロイックミラー
16.19を通過して、結像レンズ20に至り、レチク
ル板21に収束され、測定者は接眼レンズ22を介して
コーナーキューブ2を含めて測点箇所を視認できる。
The infrared laser light wave is reflected by the corner cube 2, returns to the objective lens 17 via the cover glass 18, is reflected by the dichroic mirror 19 of the beam splitter 15, and is focused on the light receiving element 14. The light-receiving probe 1
The received light output of 4 is input to a known measuring circuit (not shown), and the distance to the corner cube 2 is measured. This distance measuring optical system 9 has an imaging lens 20 and a reticle plate 21, and visible light passes through an objective lens 17 and a dichroic mirror 16, 19, reaches the imaging lens 20, and is converged on the reticle plate 21. The measurement person can visually recognize the measurement point location including the corner cube 2 through the eyepiece lens 22.

走査光学系10は第4図に示すようにレーザーダイオー
ド23、コリメータレンズ24、水平方向偏向素子25
、垂直方向偏向素子26、反射プリズム27.28.2
9、集光レンズ30.  カバーガラス31、反射プリ
ズム32、ノイズ光除去用フィルタ33、受光素子34
を有する。レーザーダイオード23、コリメータレンズ
24、水平方向偏向素子25、垂直方向偏向素子26、
反射プリズム27.28.29は投光系10Aを大略構
成している。また、集光レンズ30、反射プリズム32
、ノイズ光除去用フィルタ33、受光素子34は受光系
10Eを大略構成している。水平方向偏向素子25、垂
直方向偏向素子26は例えば音響光学素子から構成され
ている。
As shown in FIG. 4, the scanning optical system 10 includes a laser diode 23, a collimator lens 24, and a horizontal deflection element 25.
, vertical deflection element 26, reflection prism 27.28.2
9. Condensing lens 30. Cover glass 31, reflective prism 32, noise light removal filter 33, light receiving element 34
has. laser diode 23, collimator lens 24, horizontal deflection element 25, vertical deflection element 26,
The reflecting prisms 27, 28, and 29 roughly constitute the projection system 10A. In addition, a condensing lens 30 and a reflecting prism 32
, the noise light removal filter 33, and the light receiving element 34 generally constitute the light receiving system 10E. The horizontal deflection element 25 and the vertical deflection element 26 are composed of, for example, an acousto-optic element.

レーザーダイオード23は測距光学系9の測距光波とは
異なる波長の赤外レーザー光を出射する。
The laser diode 23 emits an infrared laser beam having a wavelength different from that of the distance measuring light wave of the distance measuring optical system 9.

その赤外レーザー光は、コリメータレンズ24により平
行光束にされ、水平方向偏向素子25に導かれる。この
水平方向偏向素子25は第5図に示すように赤外レーザ
ー光を水平方向Hに偏向させる機能を有する。垂直方向
偏向素子26は赤外レーザー光を垂直方向■に偏向させ
る機能を有する。
The infrared laser beam is made into a parallel beam by a collimator lens 24 and guided to a horizontal deflection element 25 . This horizontal deflection element 25 has a function of deflecting the infrared laser beam in the horizontal direction H, as shown in FIG. The vertical deflection element 26 has a function of deflecting the infrared laser beam in the vertical direction (2).

その赤外レーザー光は水平方向偏向素子25、垂直方向
偏向素子26により水平方向H1垂直方向Vに偏向され
て反射プリズム27に導かれ、この反射プリズム27に
より反射され、反射プリズム28を経由して反射プリズ
ム29に導かれる。
The infrared laser beam is deflected in the horizontal direction H1 and the vertical direction V by the horizontal deflection element 25 and the vertical deflection element 26, guided to the reflection prism 27, reflected by the reflection prism 27, and passed through the reflection prism 28. It is guided to a reflecting prism 29.

反射プリズム29は、投光系10Aの光軸を集光レンズ
30の光軸と同軸にするための反射部材として機能し、
赤外レーザー光はその反射プリズム29により反射され
て集光レンズ30に導かれる。
The reflective prism 29 functions as a reflective member to make the optical axis of the light projection system 10A coaxial with the optical axis of the condensing lens 30,
The infrared laser beam is reflected by the reflecting prism 29 and guided to the condenser lens 30.

集光レンズ30には貫通孔35がその集光レンズ3oの
光軸○と同軸に形成されている0反射プリズム29によ
り反射された赤外レーザー光Pはその貫通孔35を通っ
て測距装置本体8の外部に出射され、コーナーキューブ
2の走査が行われる。
The condensing lens 30 has a through hole 35 formed coaxially with the optical axis ○ of the condensing lens 3o.The infrared laser beam P reflected by the 0 reflection prism 29 passes through the through hole 35 to the distance measuring device. The light is emitted to the outside of the main body 8, and the corner cube 2 is scanned.

コーナーキューブ2の走査は、第6図に示すように水平
方向Hにまず走査を行い、次に、垂直方向■に偏向させ
ながら水平方向Hに走査するという手順によって行われ
る。この第6図において、符号36はその赤外レーザー
光Pのコーナーキューブ2を含む面内でのビームスポッ
トである。このビームスポット36は第7図に示すよう
にその強度分布I(36)がガウシアン分布となってい
るため、コーナーキューブ2が第6図に示すように走査
線りと走査線り一との間に位置するような場合には、そ
の反射光束がほとんど得られないおそれがあり、そこで
、この実施例では、第8図に示すように、ビームスポッ
ト36が垂直方向■の偏向に対して互いに重なり合うよ
うに垂直方向偏向素子26を制御するものとなっている
The scanning of the corner cube 2 is performed by first scanning in the horizontal direction H as shown in FIG. 6, and then scanning in the horizontal direction H while deflecting the corner cube 2 in the vertical direction. In FIG. 6, reference numeral 36 indicates a beam spot of the infrared laser beam P within a plane including the corner cube 2. In FIG. This beam spot 36 has a Gaussian intensity distribution I (36) as shown in FIG. If the beam spot 36 is located at The vertical deflection element 26 is controlled in this manner.

今、第7図に示すように、ビームスポット36の直径を
2ω、垂直方向Vの走査線りの間隔(垂直方向のスキャ
ニングステップ)をSとすると、ビームスポット36に
よる強度I (38L  ビームスポット37による強
度I (37L  ビームスポット36とビームスポッ
ト37との重なり合い部38の強度I(38)は、それ
ぞれ、I (36)=I@EXP (−2ρ2/ω2)
I (37) −It+EXP (−2(ρ−8)2/
ω2)I (38)=IsEXP (−82/2ω2)
で表される。
Now, as shown in FIG. 7, if the diameter of the beam spot 36 is 2ω and the interval between scanning lines in the vertical direction V (vertical scanning step) is S, then the intensity I due to the beam spot 36 (38L) The intensity I (37L) of the overlapping part 38 of the beam spot 36 and the beam spot 37 is I (36)=I@EXP (-2ρ2/ω2), respectively.
I (37) -It+EXP (-2(ρ-8)2/
ω2) I (38) = IsEXP (-82/2ω2)
It is expressed as

なお、Illはビームスポットのピーク強度である。Note that Ill is the peak intensity of the beam spot.

従って、強度I(38)を1例えば後述の意味を有する
係数Kを用いて、強度I (38)5強度(1/K)X
Isを満足するようにスキャニングステップSを設計す
るときには、 I sE X P (S 2/ 2ω2)≧(1/K)
XIeの不等式を自然対数変換して、 ln[: I s EXP(−82/ 2 ω2)]≧
ln[(1/ K ) X I @]を計算する。
Therefore, by setting the intensity I (38) to 1, for example, using a coefficient K having the meaning described later, intensity I (38) 5 intensity (1/K)
When designing the scanning step S to satisfy Is, IsE X P (S 2/2ω2)≧(1/K)
By natural logarithm transformation of the inequality of XIe, ln[: I s EXP(-82/2 ω2)]≧
Calculate ln[(1/K)XI@].

この式を変形すると、 1nIs+(S2/ 2 (132)≧in (1/ 
K) +lr+4 sよって、S2/2ω2≦1nK 従って、 (S−ωX (21nK)−”2)(S+ ωX (2
1nK)−172)≦0この式から、S≦ωX (21
nK) −172という関係式が求められ、スキャニン
グステップSを決定することができる。なお、係数には
、をピーク強度■0に対する重なり合い部38のピーク
強度を決定するための定数で、K≦3以内であれば十分
である。これによって、ビームスポット36とビームス
ポット37との重なり合い部38の強度■(38)をピ
ーク強度IOの1/3以上に確保できる。
Transforming this formula, 1nIs+(S2/ 2 (132)≧in (1/
K) +lr+4 s Therefore, S2/2ω2≦1nK Therefore, (S−ωX (21nK)−”2)(S+ ωX (2
1nK)-172)≦0From this equation, S≦ωX (21
nK) -172 is obtained, and the scanning step S can be determined. Note that the coefficient is a constant for determining the peak intensity of the overlapping portion 38 with respect to the peak intensity (2) 0, and it is sufficient if K≦3. As a result, the intensity (38) of the overlapping portion 38 between the beam spot 36 and the beam spot 37 can be ensured to be 1/3 or more of the peak intensity IO.

コーナーキューブ2からの反射光束は、集光レンズ30
に戻り、この集光レンズ30により収束され、反射プリ
ズム32により反射され、ノイズ光除去用フィルター3
3を通過して受光素子34に結像される。ノイズ光除去
用フィルター33は赤外レーザー光の波長と同一波長の
光を透過させる機能を有する。
The reflected light flux from the corner cube 2 is passed through the condenser lens 30
, is converged by the condenser lens 30, reflected by the reflection prism 32, and passed through the noise light removal filter 3.
3 and is imaged on the light receiving element 34. The noise light removal filter 33 has a function of transmitting light having the same wavelength as the infrared laser light.

この走査光学系10によれば、投光系10Aと受光系1
0Bとの光軸が同軸であるので、コーナーキューブ2に
より反射された赤外レーザー光を効率よく確実に受光で
きるメリットがある。また、ノイズ光除去用フィルター
33を設けであるので、赤外レーザー光の波長以外の波
長の光が受光素子34に入射するのを防止できる。
According to this scanning optical system 10, the light projecting system 10A and the light receiving system 1
Since the optical axis with 0B is coaxial, there is an advantage that the infrared laser beam reflected by the corner cube 2 can be efficiently and reliably received. Further, since the noise light removal filter 33 is provided, it is possible to prevent light having a wavelength other than the wavelength of the infrared laser light from entering the light receiving element 34.

(発明の効果) 本発明に係わる走査光学系は、以上説明したように、走
査光学系の投光系と受光系とを同軸に形成したので、そ
の反射対象物からの反射光束を確実にかつ効率よく受光
することができる効果を奏する。
(Effects of the Invention) As explained above, in the scanning optical system according to the present invention, since the light projecting system and the light receiving system of the scanning optical system are formed coaxially, the reflected light beam from the object to be reflected can be reliably and This has the effect of efficiently receiving light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる走査光学系を適用した自動追尾
型光波測距装置の概略構成を示す側面図、第2図は本発
明に係わる走査光学系を適用した自動追尾型光波測距装
置の概略構成を示す平面図第3図は第1図に示す測距光
学系の概略構成を示す光学図、 第4図は第1図に示す走査光学系の詳細構成図、第5図
は第4図に示す走査光学系による偏向を模式的に説明す
るための説明図、 第6図は本発明に係わる走査光学系の走査の一例を示す
模式図、 第7図はビームスポットの垂直方向の重なりを説明する
ための模式図、 第8図は垂直方向にビームスポットを重なり合わせて走
査を行う場合の説明図、 である。 2・・・コーナーキューブ(反射対象物)10・・・走
査光学系、IOA・・・投光系10B・・・受光系、2
9・・・反射プリズム(反射部材)30・・・集光レン
ズ、35・・・貫通孔0・・・光軸、P・・・赤外レー
ザー光(平行光束)龜ム
FIG. 1 is a side view showing a schematic configuration of an automatic tracking type light wave distance measuring device to which a scanning optical system according to the present invention is applied, and FIG. 2 is a side view showing a schematic configuration of an automatic tracking type light wave ranging device to which a scanning optical system according to the present invention is applied. FIG. 3 is an optical diagram showing the schematic configuration of the distance measuring optical system shown in FIG. 1, FIG. 4 is a detailed configuration diagram of the scanning optical system shown in FIG. 1, and FIG. Figure 4 is an explanatory diagram for schematically explaining the deflection by the scanning optical system, Figure 6 is a schematic diagram showing an example of scanning by the scanning optical system according to the present invention, and Figure 7 is a diagram showing the vertical direction of the beam spot. FIG. 8 is a schematic diagram for explaining overlapping. FIG. 8 is an explanatory diagram when scanning is performed by overlapping beam spots in the vertical direction. 2... Corner cube (reflecting object) 10... Scanning optical system, IOA... Light projecting system 10B... Light receiving system, 2
9...Reflection prism (reflection member) 30...Condenser lens, 35...Through hole 0...Optical axis, P...Infrared laser beam (parallel beam) mirror

Claims (1)

【特許請求の範囲】[Claims] 反射対象物に向けて平行光束を出射して該反射対象物を
走査する投光系と、前記反射対象物からの反射光束を受
光する受光系とを備え、該受光系には集光レンズが設け
られ、該集光レンズにはその光軸と同軸の貫通孔が形成
され、前記受光系には前記投光系の光軸を前記集光レン
ズの光軸と同軸にするための反射部材が設けられ、前記
平行光束は前記貫通孔を通つて前記反射対象物に向けて
出射されることを特徴とする走査光学系。
The light receiving system includes a light projecting system that emits a parallel light beam toward a reflective object to scan the reflective object, and a light receiving system that receives the reflected light beam from the reflective object, and the light receiving system includes a condenser lens. a through hole coaxial with the optical axis of the condensing lens is formed, and a reflecting member is provided in the light receiving system for making the optical axis of the light projecting system coaxial with the optical axis of the condensing lens. A scanning optical system, wherein the parallel light beam is emitted toward the reflection target through the through hole.
JP29340590A 1990-10-29 1990-10-29 Scanning optical system Pending JPH04166790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29340590A JPH04166790A (en) 1990-10-29 1990-10-29 Scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29340590A JPH04166790A (en) 1990-10-29 1990-10-29 Scanning optical system

Publications (1)

Publication Number Publication Date
JPH04166790A true JPH04166790A (en) 1992-06-12

Family

ID=17794348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29340590A Pending JPH04166790A (en) 1990-10-29 1990-10-29 Scanning optical system

Country Status (1)

Country Link
JP (1) JPH04166790A (en)

Similar Documents

Publication Publication Date Title
JP4255682B2 (en) Reflector automatic tracking device
JP2004519697A (en) Optical ranging device
EP1422499A2 (en) Automatic reflector tracking apparatus
US5892622A (en) Automatic focusing method and apparatus
JP2793740B2 (en) Surveying instrument
US7826039B2 (en) Target acquisition device
EP0278929B1 (en) Alignment means for a light source emitting invisible laser light
US5033845A (en) Multi-direction distance measuring method and apparatus
JP2000329517A (en) Distance-measuring apparatus
JPH04166789A (en) Surveying instrument
JP3120885B2 (en) Mirror surface measuring device
JPH04166790A (en) Scanning optical system
JP3609901B2 (en) Ranging device
US6897421B2 (en) Optical inspection system having an internal rangefinder
JPH0783657A (en) Surveying instrument
JPS5483853A (en) Measuring device
JP3387961B2 (en) Automatic tracking surveying instrument
JP6867736B2 (en) Light wave distance measuring device
WO2020072484A1 (en) An auxiliary focus measurement for a laser radar 3d scanner
US4673294A (en) Film thickness measuring apparatus employing microprojector of spectral reflection measurement
JPH04166786A (en) Optical device for emitting and receiving light
JP3507262B2 (en) Surface inspection equipment
JP2936825B2 (en) Distance measuring device
JP2611411B2 (en) Light irradiation position detector
JPH08261734A (en) Shape measuring apparatus