JPH04166148A - Bioprosthetic member - Google Patents

Bioprosthetic member

Info

Publication number
JPH04166148A
JPH04166148A JP29650890A JP29650890A JPH04166148A JP H04166148 A JPH04166148 A JP H04166148A JP 29650890 A JP29650890 A JP 29650890A JP 29650890 A JP29650890 A JP 29650890A JP H04166148 A JPH04166148 A JP H04166148A
Authority
JP
Japan
Prior art keywords
shank
bone
artificial
bioprosthetic
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29650890A
Other languages
Japanese (ja)
Other versions
JP3078310B2 (en
Inventor
Nobuo Matsui
宣夫 松井
Yoichi Taneda
種田 陽一
Hirotaka Iguchi
井口 普敬
Noriyuki Ishida
典之 石田
Katsuhiro Ono
大野 勝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29650890A priority Critical patent/JP3078310B2/en
Publication of JPH04166148A publication Critical patent/JPH04166148A/en
Application granted granted Critical
Publication of JP3078310B2 publication Critical patent/JP3078310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

PURPOSE:To obtain the equal effect in supporting and fasting properties of a bioprosthetic material while eliminating complication of a production process by forming a surface structure with a fine space having an angle theta in a specified range at a surface section contacting a bone tissue in an artificial joint or a bone prosthetic member with a normal of the surface section as reference. CONSTITUTION:An artificial knee joint shank member 1 as bioprosthetic member is set on a shank T and a fine hole H is set on a surface 1a contacting an excised surface Ta of the shank T. The fine hole His at an angle theta ranging from 0 deg. to 60 deg. to a vertical line (x) of the surface 1a contacting a shank surface Ta and some thereof have an opposite inclination individually. Thus, a large resistance force is shown to a load F even when it works on a shank bone member 1. For example, the fine holes H are cut into the surface 1a of the shank member 1 respectively with a diameter of 0.3mm and 0.5mm and a death of 0.4mm and 0.6mm to make a fine space upon which the bone grows to encroach. The theta is set at 10 deg. clockwise and 10 deg. counterclockwise alternately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体の骨欠損部を補綴するための補綴部材あ
るいは、変形した生体の関節部を置換する人工関節など
の表面構造に関するもので、主に骨軟部腫瘍、リウマチ
関節、変形性関節症、骨折などの疾患の治療に用いる人
工骨や人工関節及び人工歯根に用いられるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface structure of a prosthetic member for prosthetizing a bone defect in a living body or an artificial joint for replacing a deformed joint of a living body. It is mainly used for artificial bones, artificial joints, and artificial tooth roots used in the treatment of diseases such as bone and soft tissue tumors, rheumatoid joints, osteoarthritis, and bone fractures.

〔従来の技術〕[Conventional technology]

骨軟部腫瘍などによって切除を余儀なくされた上肢、下
肢などの骨の一部又は全部を代替するものとして人工物
の補綴材が用いられることかある。
Artificial prosthetic materials are sometimes used to replace part or all of bones in upper and lower limbs that have to be removed due to bone and soft tissue tumors.

また、交通事故なとの骨折によって高度な損傷を受けて
しまった場合や、非常に治癒しにくい部位でおこった骨
折、あるいはリウマチ関節、変形性関節症、骨頭壊死な
どの疾患によって変形か起こり正常ではなくなった人体
の関節を人工関節に置換する場合には各種の人工関節か
用いられている。
In addition, deformity may occur due to severe injuries caused by a traffic accident, fractures that occur in areas that are difficult to heal, or diseases such as rheumatoid arthritis, osteoarthritis, or bone head necrosis. Various types of artificial joints are used to replace joints in the human body that are no longer functional.

同じように歯の場合でも抜歯後の代替物として人工歯根
か使用されており、これら人工骨、人工関節、人工歯根
は今後も益々需要か増加していく。
Similarly, in the case of teeth, artificial tooth roots are used as substitutes after tooth extraction, and the demand for these artificial bones, artificial joints, and artificial tooth roots will continue to increase in the future.

これまで使用されてきた人工骨、人工関節、人工歯根の
表面構造は、様々な形式のものか存在する。人工骨や人
工関節置換術の術後成績に大きな影響を与える人工物の
生体の骨組織に対する固着性を良好に保つために、補綴
材の表面構造に関する様々な技術か研究され、実際の製
品に応用されている。その代表的なものは、金属素材の
表面に金属の球状粒子(200μ〜500μ程度の粒径
)を焼結させて固定したものや、金属(主にチタン材)
の網状体を加圧・高温処理したものがある。これらの方
法によって補綴部材表面に出来上がった100ミクロン
オーダーの気孔(pore)か骨組織と接触すると、良
好な応力状態のもとては、気孔に骨組織の侵入か起こり
、これか人工補綴物の支持力の向上に大きな効果を発揮
する。
There are various types of surface structures for artificial bones, artificial joints, and artificial tooth roots that have been used so far. In order to maintain good adhesion of prosthetic materials to living bone tissue, which has a major impact on the postoperative results of artificial bones and joint replacement surgery, various techniques related to the surface structure of prosthetic materials have been researched and are being applied to actual products. It is applied. Typical examples are metal spherical particles (approximately 200μ to 500μ particle size) fixed to the surface of a metal material by sintering, and metals (mainly titanium materials).
There is a type of reticular material that is subjected to pressure and high temperature treatment. When pores on the order of 100 microns formed on the surface of the prosthetic component by these methods come into contact with bone tissue, under favorable stress conditions, the bone tissue may invade the pores, or the prosthesis may be damaged. It has a great effect on improving supporting capacity.

また、これとは別な方法として特開平1−265955
に示されるように、骨組織の侵入に適する形状の気孔を
規則正しく設置するために工夫したものもある。
In addition, as a method different from this, JP-A-1-265955
As shown in Figure 2, some methods have been devised to regularly arrange pores with a shape suitable for bone tissue penetration.

この2つの代表例は表面の構造に関するものであり、本
発明もこれらに類するものであるか、骨組織とのいわゆ
る親和性を高める手段としては、素材表面に骨伝導能や
骨誘導能をもって物質のコーティング等の処理を行うも
のも数多くある。
These two typical examples relate to the surface structure, and the present invention is also similar to these, or as a means of increasing the so-called affinity with bone tissue, it is possible to add substances with osteoconductive or osteoinductive properties to the surface of the material. There are many products that undergo treatments such as coating.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

表面構造を改善するために金属粒子を金属素地上で焼結
させる方法は焼結という高温処理がはいるため金属素地
の強度劣化、特に疲労強度の低下は免れず素材状態での
疲労強度の約10〜6096にまで下かってしまう。ま
た、金属粒子か補綴部材の挿込時に表面から脱落して、
関節摺動面に侵入し人工材料の摩擦を引き起こすという
問題点も指摘されている。
The method of sintering metal particles on a metal substrate in order to improve the surface structure involves a high-temperature process called sintering, which leads to deterioration of the strength of the metal substrate, especially a decrease in fatigue strength. It goes down to 10-6096. In addition, metal particles may fall off the surface during insertion of the prosthetic component,
It has also been pointed out that it invades the sliding surfaces of joints and causes friction in artificial materials.

また金属網状体を用いる方法では、金属粒子を焼結させ
る方法はど金属素地の強度劣化はないか、網状体の気孔
の分布は必ずしも均一にはならず改善の余地を残してい
る。
In addition, in the method of using a metal mesh, there is still room for improvement as the method of sintering the metal particles does not deteriorate the strength of the metal base, and the distribution of pores in the mesh does not necessarily become uniform.

特開平1−265955の発明のものは、気孔の存在す
る部材を補綴材に組み込むという工程か不可欠で、その
工程のために適応できない範囲か発生したり、組込みの
やり方によっては金属腐蝕や強度劣化を起こしうる。
The invention of JP-A-1-265955 requires a process of incorporating a member with pores into a prosthetic material, and this process may result in areas that cannot be applied, and depending on the method of incorporation, metal corrosion or strength deterioration may occur. can cause

以上のいずれの方法においても、補綴部材を製造する通
常の工程に金属粒子の焼結工程なとの工程か追加される
ことになり、当然製造コストの上昇につながる。また品
質保証という面からもより高度な技術か必要になってし
まう。
In any of the above methods, a step such as a sintering step of metal particles is added to the normal steps for manufacturing a prosthetic member, which naturally leads to an increase in manufacturing costs. Also, from the aspect of quality assurance, more advanced technology is required.

本発明は、上述された人工材料の固着性の向上に伴って
発生する製造工程の複雑化を解消し、なおかつ生体補綴
材の支持性や固着性においては同等の効果を与えようと
するものである。
The present invention aims to eliminate the complication of the manufacturing process that occurs with the improvement in the adhesion of artificial materials as described above, and to provide the same effect on the support and adhesion of bioprosthetic materials. be.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、本発明においては補綴部材表
面に、該表面部の法線方向を基準に0゜から60’の範
囲の角度θを存する微小孔あるいは微小溝を穿孔するこ
とにより、多数の方向性をもった微小空間を付与する。
In order to solve the above problems, in the present invention, a large number of microholes or microgrooves are formed on the surface of the prosthetic member at an angle θ in the range of 0° to 60' with respect to the normal direction of the surface. Provides a microscopic space with directionality.

微小孔はドリル等の通常金属を加工する際に用いられる
ものであけることか好ましい。微小孔の孔径は0.2〜
0.5mm程度がよく、深さも孔径と同じ程度かその数
倍でよい。
It is preferable that the microholes be made with a drill or the like that is commonly used for processing metals. The diameter of the micropore is 0.2~
It is preferably about 0.5 mm, and the depth may be about the same as the hole diameter or several times that.

〔作用〕[Effect]

上記のように多数の方向性を有する微小孔かあるいは微
小溝が多数表面に形成された生体補綴材は、その表面に
おいて骨芽細胞の働きによって骨組織の増殖が微小孔あ
るいは微小溝近傍で発生し、微小孔中あるいは微小溝中
に健全な骨組織の侵入が実現することになる。その結果
当然骨組織も微小孔あるいは微小溝と同様に多数の方向
性をもつことになり、骨組織と補綴物との剥離強度は様
々な方向に対して理論上飛躍的に増大する。生体補綴部
材の表面は生体内で圧縮応力、引張応力、せん断応力か
複合的に作用しているか、このような状態ても補綴部材
の固着力を保つことに対して十分な効果を生じせしめる
ことかできる。
As mentioned above, in a bioprosthetic material with many directional micropores or microgrooves formed on its surface, bone tissue proliferation occurs near the micropores or microgrooves due to the action of osteoblasts on the surface. However, healthy bone tissue can penetrate into the micropores or microgrooves. As a result, the bone tissue naturally has many directions, similar to the micropores or microgrooves, and the peel strength between the bone tissue and the prosthesis increases theoretically dramatically in various directions. Whether the surface of the bioprosthetic component is subjected to a combination of compressive stress, tensile stress, and shear stress in the living body, and whether the surface of the bioprosthetic component is sufficiently effective to maintain the adhesion of the prosthetic component even under such conditions. I can do it.

〔実施例〕〔Example〕

実施例について図面を参照して説明する。 Examples will be described with reference to the drawings.

第1図(イ)には脛骨Tに、生体補綴部材である人工膝
関節脛骨部材1が設置された状態か示されている。第1
図(ロ)には、該人工膝関節脛骨部材Jの、脛骨Tの切
除面Taと接する面1aに微小孔Hを設置した図を示し
ている。第1図(ハ)は面1aの一部の拡大とその断面
を表しているか、本発明の微小孔Hは脛骨面Taと接す
る面1aの垂線Xに対して角度θをなしており、これに
は、それぞれ逆方向の傾きをもつものかある。これによ
って、第1図(イ)に示すような荷重Fが脛骨部材1に
かかったとしてもこれに対して大きな抵抗力を示すこと
かできる。
FIG. 1(a) shows a state in which an artificial knee joint tibial member 1, which is a bioprosthetic member, is installed on the tibia T. 1st
Figure (b) shows a view of the artificial knee joint tibial component J in which a small hole H is installed in the surface 1a that is in contact with the resection surface Ta of the tibia T. FIG. 1(C) shows an enlarged view of a part of the surface 1a and its cross section, and the microhole H of the present invention forms an angle θ with respect to the perpendicular X of the surface 1a in contact with the tibial surface Ta. Some have slopes in opposite directions. As a result, even if a load F as shown in FIG. 1(a) is applied to the tibial component 1, it can exhibit a large resistance force against it.

実際に試作した脛骨部材1の面1aには、直径0.3 
mm (300μ)と直径0.5 mm (500μ)
で穴深さはそれぞれ0.4mmと0.6mmの微小孔H
か穿孔され、骨か増生侵入する微小空間を成している。
The surface 1a of the tibial component 1 that was actually prototyped had a diameter of 0.3 mm.
mm (300μ) and diameter 0.5 mm (500μ)
The hole depth is 0.4 mm and 0.6 mm, respectively.
The bone is perforated, forming a microspace into which bone can grow.

θはlOoで時計回りの10″と反時計回りのIOoを
それぞれ互い違いに設置した。
θ was lOo, and 10″ clockwise and IOo counterclockwise were installed alternately.

微小孔Hの配置は、試作では単純な格子状としたか、最
密充填を考慮したものや、微小孔Hの占拠率をあらかじ
め設定した上で算出された中心間距離を選択することも
できる。試作の格子の寸法は、直径0.3mmのものは
0.6mmとし、直径0.5mmのものは1.0mmと
した。
The arrangement of the micropores H can be a simple lattice-like arrangement in the prototype, one that takes close-packing into consideration, or a center-to-center distance calculated after setting the occupancy rate of the micropores H in advance. . The dimensions of the prototype grid were 0.6 mm for those with a diameter of 0.3 mm, and 1.0 mm for those with a diameter of 0.5 mm.

また、微小孔Hは同一の脛骨切除面に同じ直径の微小孔
Hだけが配置される必要はなく、異なる直径の微小孔H
が同時に同一の脛骨切除面、あるいは骨組織との接触面
に配置される事の方か望ましい場合もある。
In addition, it is not necessary to arrange only microholes H with the same diameter on the same tibial resection surface, but with microholes H with different diameters.
In some cases, it may be desirable to simultaneously place both on the same tibial resection surface or on the contact surface with bone tissue.

また、微小孔Hを穿孔する材料、すなわち補綴部材の材
料はいわゆる生体材料として現在使用されているもので
あれば全く問題なく採用できる。
Furthermore, the material for making the microhole H, that is, the material for the prosthetic member, can be any material currently used as a so-called biomaterial without any problem.

たとえば、チタン合金、コバルトクロム合金なとの金属
材料、アルミナ、ジルコニア、アパタイトなとのセラミ
ックス材料、超高分子量ポリエチレンなとの有機材料か
あげられる。また、これらの複合材料やコーティング材
料も含まれる。
Examples include metal materials such as titanium alloys and cobalt chromium alloys, ceramic materials such as alumina, zirconia, and apatite, and organic materials such as ultra-high molecular weight polyethylene. It also includes composite materials and coating materials.

本発明の実施例として、素材としてチタン合金(Ti−
6A!−4V)を用いた。また、微小孔の効果を確認す
るために次のような実験を実施した。
As an embodiment of the present invention, titanium alloy (Ti-
6A! -4V) was used. In addition, the following experiment was conducted to confirm the effect of micropores.

板状(IOX 15X 2 mm)のチタン合金(Ti
−6Al −4V)を作製し、1010X15の平面(
2面)に微小孔を穿孔した。
Plate-shaped (IOX 15X 2 mm) titanium alloy (Ti
-6Al -4V) was prepared, and a 1010x15 plane (
Microholes were drilled on 2 sides).

すなわち、テストピースAには、微小孔直径0.3mm
、孔深さ0.4mm格子間距離0.6 mm、テストピ
ースBには、微小孔直径0.5mm、孔深さ0.6mm
、格子間距離1.0mmの微小孔か両面にあけられてい
る。微小孔の角度は10°である。
That is, test piece A has a micropore diameter of 0.3 mm.
, hole depth 0.4 mm, interlattice distance 0.6 mm, test piece B has micro hole diameter 0.5 mm, hole depth 0.6 mm.
, micro holes with an interstitial distance of 1.0 mm were drilled on both sides. The angle of the micropores is 10°.

以上のテストピースA、Bを各々3ケずつ、成熟家兎脛
骨近位に挿入し、術後8週て骨とともに摘出した。次に
テストピースは骨との固着性を評価するため、摘出した
骨、テストピース複合体について引き剥がし試験を行っ
た。
Three of each of the above test pieces A and B were inserted into the proximal tibia of an adult rabbit, and removed together with the bone 8 weeks after the operation. Next, in order to evaluate the adhesion of the test piece to the bone, a peel test was performed on the extracted bone and the test piece composite.

測定結果は、テストピースAで2.53Kg±0.71
Kg、テストピースBては、3.28Kg±0.65K
gであった。
The measurement result is 2.53Kg±0.71 for test piece A.
Kg, test piece B is 3.28Kg±0.65K
It was g.

これに対し対象として埋入した、微小孔Hかないコント
ロールのテストピースCては、引き剥がし力は0.53
Kg±0.29Kgであり、これを基準にすると、平均
値でテストピースAは4.8倍、テストピースBは6.
2倍となり、微小孔Hの効果か確認された。
On the other hand, the peeling force of control test piece C without micropores H was 0.53.
Kg±0.29Kg, and based on this, test piece A is 4.8 times the average value, and test piece B is 6.
It doubled, confirming the effect of micropores H.

第2図には、細長い微小溝Mである場合か図示しである
。人工関節や補綴部材の表面は平面でよりも曲面で構成
されることがあり、このような複雑な表面に対応するた
めには、微小孔Hのみならず、微小溝Mを形成したもの
も必要である。
FIG. 2 shows a case where the groove is a long and narrow microgroove M. The surfaces of artificial joints and prosthetic components are sometimes composed of curved surfaces rather than flat surfaces, and in order to accommodate such complex surfaces, it is necessary to have not only micro holes H but also micro grooves M. It is.

また、微小孔Hに対して微小溝Mでは細長い形状であり
、侵入する骨組織の量か増加するので、骨組織との結合
強度の向上につながる。
Further, the microgroove M has an elongated shape compared to the micropore H, and the amount of invading bone tissue increases, leading to an improvement in the bonding strength with the bone tissue.

第2図には第1図(ロ)の面1aを拡大した図で、微小
溝Mは脛骨面Taと対接する面iaの垂線Xに対して角
度θをなしており、これには、それぞれ逆方向の傾きを
もった微小溝Mか複数個形成しである。
FIG. 2 is an enlarged view of the surface 1a in FIG. A plurality of micro grooves M having inclinations in opposite directions are formed.

さらに第3図(イ)及び(c7)には、本発明による表
面構造を全人工股関節に用いられる人工補綴部材として
の金属製大腿骨側部材Sに適用した例を示す。微小孔H
か付与されている範囲は機械的なロッキングか難しい部
分であるか、この様な部分に本発明の微小孔Hを設ける
と大腿骨と金属製大腿骨側部材Sとの支持力か向上する
Furthermore, FIGS. 3(a) and 3(c7) show an example in which the surface structure according to the present invention is applied to a metal femoral side member S as an artificial prosthetic member used in a total hip joint prosthesis. Micropore H
The area in which this is provided is a difficult area for mechanical locking, and providing the microhole H of the present invention in such an area improves the supporting force between the femur and the metal femoral side member S.

同様に、第4図には生体補綴材の中で大腿骨近位補綴材
Pを選び微小孔Hをその髄腔挿込部材P。
Similarly, in FIG. 4, a proximal femoral prosthetic material P is selected from among the bioprosthetic materials, and the microhole H is inserted into the medullary canal insertion member P.

と骨切除付近P2の補綴部に適用した例を示す。An example of application to a prosthetic part near bone resection P2 is shown.

また、第5図には本発明に係る微小孔Hをもった生体補
綴部材を人工歯根りに応用した例を示し、顎骨との結合
強度の大きいものが得られた。
Furthermore, FIG. 5 shows an example in which the bioprosthetic member having micropores H according to the present invention was applied to an artificial tooth root, and a product with high bonding strength to the jawbone was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されているので以下の
ような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

生体補綴材、人工関節、人工歯根の骨組織に接するある
いは埋入される部分、またはその近傍に本発明の微小孔
を施すことによって、健全な骨組織か微小孔内に増生侵
入し、骨と補綴物との界面の固定力を増大させ、微小な
動きの発生をも防止することか可能となる。特に平面を
引き剥がすような力、すなわち引張力やせん断力に対す
る強度を上げることかできる。
By forming the micropores of the present invention in the parts of bioprosthetic materials, artificial joints, and artificial tooth roots that contact bone tissue or are implanted, or in the vicinity thereof, healthy bone tissue grows into the micropores and connects with the bone. It becomes possible to increase the fixing force at the interface with the prosthesis and prevent even minute movements from occurring. In particular, it is possible to increase the strength against forces that would tear apart a flat surface, that is, tensile force and shear force.

また、補綴部材を製造する過程において、余分な熱処理
が不要であるため、素材の強度劣化、特に疲労強度の劣
化に悩まされることはない。したかって、比較的細い丸
棒状の補綴部材て疲労破損の危険のあるものにても応用
することかできる。
Further, in the process of manufacturing the prosthetic member, no extra heat treatment is required, so there is no problem with deterioration in the strength of the material, especially deterioration in fatigue strength. Therefore, the present invention can be applied even to relatively thin round bar-shaped prosthetic members that are at risk of fatigue failure.

また、穿孔された微小孔あるいは微小溝の寸法形状は均
一であり、孔径すなわち気孔径のコントロールは極めて
容易であることから、骨組織に適切とされる200μ〜
400μ程度の気孔をどの面にも規則正しくあけること
かでき、補綴部材を骨組織か包囲して両者間のゆるみを
長期間にわたって防止することができる。
In addition, the size and shape of the drilled micropores or microgrooves are uniform, and the pore diameter, that is, the pore diameter, is extremely easy to control.
Pores of about 400 microns can be made regularly on any surface, and the prosthetic member can be surrounded by bone tissue to prevent loosening between the two for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明に係る生体補綴部材としての人工
膝関節脛骨部材を脛骨近位端に装着した状態を示す正面
図であり、第1図(ロ)、(ハ)はそれぞれ脛骨部材l
に微小孔Hか形成された実施例と微小孔Hか形成された
表面の部分拡大断面図である。 第2図は第1図(ハ)に相当する部位の他の実施例を示
す斜視立体拡大図である。 第3図、第4図、第5図はともに本発明実施例に係る生
体補綴部材をそれぞれ人工股関節のステム、大腿骨近位
の補綴材、人工歯根に応用した例を示す側面図である。
FIG. 1(A) is a front view showing a state in which an artificial knee joint tibial component as a bioprosthetic component according to the present invention is attached to the proximal end of the tibia, and FIGS. 1(B) and (C) are respectively Part l
FIG. 2 is a partially enlarged sectional view of an embodiment in which micropores H are formed and a surface on which micropores H are formed. FIG. 2 is a perspective three-dimensional enlarged view showing another embodiment of a portion corresponding to FIG. 1(C). 3, 4, and 5 are side views showing examples in which the bioprosthetic member according to the embodiment of the present invention is applied to a stem of an artificial hip joint, a prosthetic material for a proximal femur, and an artificial tooth root, respectively.

Claims (1)

【特許請求の範囲】[Claims]  人工関節あるいは骨補綴部材において骨組織と接する
表面部に、該表面部の法線方向を基準に0゜から60゜
の範囲の角度θを有する微小空間を有する表面構造を特
徴とする生体補綴部材。
A bioprosthetic member characterized by a surface structure having a microspace having an angle θ in the range of 0° to 60° with respect to the normal direction of the surface on the surface in contact with bone tissue in an artificial joint or a bone prosthetic member. .
JP29650890A 1990-10-31 1990-10-31 Bioprosthetic members Expired - Fee Related JP3078310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29650890A JP3078310B2 (en) 1990-10-31 1990-10-31 Bioprosthetic members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29650890A JP3078310B2 (en) 1990-10-31 1990-10-31 Bioprosthetic members

Publications (2)

Publication Number Publication Date
JPH04166148A true JPH04166148A (en) 1992-06-12
JP3078310B2 JP3078310B2 (en) 2000-08-21

Family

ID=17834450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29650890A Expired - Fee Related JP3078310B2 (en) 1990-10-31 1990-10-31 Bioprosthetic members

Country Status (1)

Country Link
JP (1) JP3078310B2 (en)

Also Published As

Publication number Publication date
JP3078310B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
EP1527757B1 (en) Manufacturing process for a prosthetic implant
US20060041262A1 (en) Interlaced wire for implants
JP5511692B2 (en) Press-fit prosthesis
Aherwar et al. Current and future biocompatibility aspects of biomaterials for hip prosthesis.
Morscher Cementless total hip arthroplasty.
EP1365711B1 (en) Orthopedic implants having ordered microgeometric surface patterns
US9456905B2 (en) Continuous phase composite for musculoskeletal repair
JP6916290B2 (en) Modular augmentation component
US6974482B2 (en) Implantable orthopedic prosthesis with textured polymeric surfaces
EP0621018B1 (en) A prosthesis and a method of making the same
US20230071537A1 (en) Anisotropic Materials in Medical Devices
US9370427B2 (en) Bone-compliant femoral stem
EP3058896A1 (en) Prosthesis
KR20100106997A (en) Intervertebral implant
CN111936087A (en) Surface texture of three-dimensional porous structure for bone ingrowth and method of making
JP2006528515A (en) Spongy structure
EP1997521A1 (en) Medical material
US20190184058A1 (en) Porous Metal Devices
US9895229B2 (en) Method for manufacturing implant having porous layer on surface thereof
CN112584798A (en) Artificial joint and method for manufacturing same
JPH04166148A (en) Bioprosthetic member
CN116546932A (en) Perforated bone anchor
Mielniczuk et al. Modelling of the needle-palisade fixation system for the total hip resurfacing arthroplasty endoprosthesis
Mielniczuk et al. The 12 th International Conference on Problems of Material Engineering, Mechanics and Design
PL229149B1 (en) Bone scaffold-implant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees