JPH04166099A - Method for determining glucose - Google Patents

Method for determining glucose

Info

Publication number
JPH04166099A
JPH04166099A JP2288303A JP28830390A JPH04166099A JP H04166099 A JPH04166099 A JP H04166099A JP 2288303 A JP2288303 A JP 2288303A JP 28830390 A JP28830390 A JP 28830390A JP H04166099 A JPH04166099 A JP H04166099A
Authority
JP
Japan
Prior art keywords
glucose
enzyme
solution
reaction
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2288303A
Other languages
Japanese (ja)
Other versions
JPH0763399B2 (en
Inventor
Hikari Horimoto
光 堀本
Toru Sakaki
榊 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2288303A priority Critical patent/JPH0763399B2/en
Publication of JPH04166099A publication Critical patent/JPH04166099A/en
Publication of JPH0763399B2 publication Critical patent/JPH0763399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To stably carry out determination of glucose over a long period by adding a specific alkyl alcohol to an solution to be examined at a specific amount when change of a substance by enzymatic reaction of glucose is measured using electrodes. CONSTITUTION:When glucose is determined using electrodes for measuring change of substance by enzymatic reaction of glucose, 0.01-1wt.% 6-8C alkyl alcohol (preferably n-hexyl alcohol) is added to a solution to be examined. A glucose oxidase is used as an enzyme catalyzing reaction of the glucose and simultaneously oxygen electrodes capable of measuring an amount of oxygen reduced or H2O2 electrodes capable of measuring an amount of H2O2 produced are preferably used as the electrodes.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酵素反応を利用してグルコースを定量する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for quantifying glucose using an enzymatic reaction.

(従来の技術及びその問題点) グルコースを酵素反応で定量する方法は種々知られてい
る。例えば、グルコースオキシダーゼの関与する酵素反
応により発生した過酸化水素をパーオキシダーゼと0−
トルイジン等の発色試薬を用−て比色定量する方法、ま
たヘキソキナーゼとグルゴース6リン酸脱水素酵素の共
存下での反応でニコチンアミドアデニンジ文クレオチド
の還元を紫外線吸収で定量する方法などがある。また、
電極を用イタ方法として、グルコースオキシダーゼの関
与する酵素反応により減少した溶存酸素を酸素電極によ
り測定する方法、あるいは発生する過酸化水素を過酸化
水素電極で測定する方法などがある。酵素反応を触媒す
るグルコースオキシダーゼは溶液で添加する方法と固定
化酵素として繰返し使用する方法とがある。
(Prior Art and its Problems) Various methods are known for quantifying glucose by enzymatic reaction. For example, hydrogen peroxide generated by an enzymatic reaction involving glucose oxidase is mixed with peroxidase and 0-
There is a method of colorimetric determination using a coloring reagent such as toluidine, and a method of quantifying the reduction of nicotinamide adenine dinucleotide by ultraviolet absorption in a reaction in the coexistence of hexokinase and glucose 6-phosphate dehydrogenase. . Also,
Examples of methods using electrodes include a method in which dissolved oxygen reduced by an enzyme reaction involving glucose oxidase is measured using an oxygen electrode, and a method in which generated hydrogen peroxide is measured using a hydrogen peroxide electrode. Glucose oxidase, which catalyzes the enzyme reaction, can be added in the form of a solution or repeatedly used as an immobilized enzyme.

いずれにしてもこの電極を用いる方法は、機械化が容易
でありコンピュータによるデータ処理をも含めて自動分
析装置に好適に採用されている。
In any case, the method using this electrode is easy to mechanize and is suitably employed in automatic analyzers, including data processing by computer.

しかしながら、この電極を用いる方法では、長期にわた
って測定した場合には徐々に異常値を示すに至り、つい
には測定不能になるという問題点があった。
However, the method using this electrode has the problem that when measured over a long period of time, it gradually shows an abnormal value and eventually becomes impossible to measure.

c問題点を解決するたぬの手段) 本発明者等は上記問題を解決すべく鋭意研究を重(つて
きた。その結果、測定時に被検体溶液中に炭素数6〜8
のアルキルアルコールを特定量存在させることで一異常
値を示すことなく、長期にわたって使用可能となること
を見出し本発明を完成するに至った。
c) The present inventors have made extensive research in order to solve the above problem.
The present inventors have discovered that by having a specific amount of alkyl alcohol present, the product can be used for a long period of time without exhibiting any abnormal values, and the present invention has been completed.

即ち本発明は、グルコースの酵素反応による物質変化を
測定する電極を用いてグルコースを定量する際に一被検
体溶液中に炭素数6〜8のアルキルアルコールヲD、[
]1〜l1ti−%存在させることを特徴とするグルコ
ースの定量方法である。
That is, the present invention provides a method for quantifying glucose using an electrode that measures the substance change of glucose due to an enzyme reaction.
] This is a method for quantifying glucose, characterized in that the glucose is present in an amount of 1 to 11ti-%.

グルコースの反応を触媒する酵素は公知のものが使用可
能である。例えば、グルコースオキシダーゼ、グルコー
スデヒドロゲナーゼ。
Known enzymes that catalyze the glucose reaction can be used. For example, glucose oxidase, glucose dehydrogenase.

ヘキソキナーゼなどである。なかでもグルコースオキシ
ダーゼはグルコースと酸素トの反応を触媒しグルコン酸
と過酸化水素を生成するだめ、酸素あるいは過酸化水素
を検知する電極と共に特に好適に使用される。酵素はグ
ルコースの反応を触媒するために被検体溶液と接触させ
る必要があり、被検体溶液中に酵素を別途添加する方法
−被検体溶液中に固定化酵素を存在させる方法がある。
Hexokinase, etc. Among these, glucose oxidase catalyzes the reaction between glucose and oxygen to produce gluconic acid and hydrogen peroxide, and is therefore particularly suitable for use with an electrode that detects oxygen or hydrogen peroxide. The enzyme needs to be brought into contact with the analyte solution in order to catalyze the glucose reaction, and there are two methods: adding the enzyme separately to the analyte solution and making an immobilized enzyme exist in the analyte solution.

固定化酵素を用いる方法は、酵素が繰返し使用可能であ
るため工業的に特に好適である。酵素の固定化方法は特
に制限なく、多孔膜に酵素を共有結合する方法、あるい
は架橋により酵素を膜内に固定化する方法などの公知の
方法が採用される。
A method using an immobilized enzyme is particularly suitable industrially because the enzyme can be used repeatedly. The method for immobilizing the enzyme is not particularly limited, and known methods such as a method of covalently bonding the enzyme to a porous membrane or a method of immobilizing the enzyme within the membrane by crosslinking are employed.

被検体溶液はグルコースを含有する被検液及び水、好普
しくは緩衝液から構成され、該被検体溶液中に酵素を存
在させて目的の酵素反応を行う。該被検液及び緩衝液は
予め混合しても良いし、酵素の存在する反応容器に別々
に入れた後に混合しても良い。
The analyte solution is composed of a analyte solution containing glucose and water, preferably a buffer solution, and an enzyme is present in the analyte solution to carry out the desired enzymatic reaction. The test solution and buffer may be mixed in advance, or may be mixed after being separately placed in a reaction vessel containing the enzyme.

被検液はグルコースを含有し、酵素反応で測定可能なも
のであれば力かなるものであってもよい。例えば、人あ
るいは動物の血液。
The test liquid may be any type of liquid as long as it contains glucose and can be measured by an enzyme reaction. For example, human or animal blood.

血清、尿、また各種食品や飼料1発酵に使用する発酵液
や培地などが挙げられ、必要に応じて希釈してから測定
f供される。
Examples include serum, urine, and fermentation liquids and culture media used for fermentation of various foods and feeds, which are diluted as necessary before being subjected to measurement.

緩衝液は酵素反応を安定して行うために使用し、酵素反
応を阻害しないものが特に限定されず使用可能である。
The buffer is used to stably perform the enzymatic reaction, and any buffer that does not inhibit the enzymatic reaction can be used without particular limitation.

一般に好適に使用される緩衝液を例示すハば、リン酸緩
衝液、トリス緩衝液、クエン酸緩衝液などが挙げられる
。緩衝液の、Hは使用する酵素の酵素活性が十分高い範
囲を採用する。特にグルコースオキシダーゼの場合には
pH5から7程度が好適である。反応温度は一定である
ことが好ましく、一般的には20〜50℃の範囲で選択
された特定温度が使用される。特にグルコースオキシダ
ーゼの場合は30〜40℃の範囲での選択が好適である
Examples of buffers that are generally suitably used include Haba, phosphate buffer, Tris buffer, and citrate buffer. In the buffer, H is selected within a range that provides a sufficiently high enzymatic activity of the enzyme used. In particular, in the case of glucose oxidase, a pH of about 5 to 7 is suitable. The reaction temperature is preferably constant, and generally a specific temperature selected in the range of 20 to 50°C is used. Particularly in the case of glucose oxidase, selection in the range of 30 to 40°C is suitable.

酵素反応による物質変化を測定する電極は、該物質変化
が測定可能なものであれば公知のものが使用可能である
。例えば、前述の酵素反応にともなう酸素の減少量を測
定する酸素電極、同じく過酸化水素の生成量を測定する
過酸化水素電極等が挙げられる。電極は酵素反応セル内
に取り付けられ、酵素反応と同時に電極で測定する形態
のものが一般的であるが、酵素反応前後の被検体溶液を
別々に電極で測定しても良い。また、前述の固定化酵素
を電極上に設置し、酵素反応による物質変化を同時かつ
より高感度に検知する形態も好適に使用される。
Any known electrode can be used as the electrode for measuring the change in substance caused by the enzymatic reaction, as long as the change in substance can be measured. Examples include an oxygen electrode that measures the amount of oxygen decreased due to the enzymatic reaction described above, and a hydrogen peroxide electrode that similarly measures the amount of hydrogen peroxide produced. Generally, the electrode is installed in the enzyme reaction cell and the electrode is used to measure the enzyme reaction at the same time, but the analyte solution before and after the enzyme reaction may be measured separately using the electrode. Furthermore, a configuration in which the above-mentioned immobilized enzyme is placed on an electrode and substance changes caused by the enzyme reaction are detected simultaneously and with higher sensitivity is also suitably used.

本発明の測定方法を行う装置としては、市販の装置をそ
のままあるいは一部加工を行って使用することが出来る
。装置の一例を第1図に示す。緩衝液1は緩衝液用シリ
ンジ2により酵素反応セル6に送られる。被検液4はサ
ンプル用プループ5により一定量吸入され酵素反応セル
3に移動しセル中に吐出される。
As an apparatus for carrying out the measuring method of the present invention, a commercially available apparatus can be used as it is or with some modification. An example of the device is shown in FIG. Buffer solution 1 is sent to enzyme reaction cell 6 by buffer solution syringe 2 . A fixed amount of the test liquid 4 is sucked in by the sample probe 5, moved to the enzyme reaction cell 3, and discharged into the cell.

酵素反応セルには攪拌子6及び攪拌用モーター7が装備
され被検液と緩衝液とを混合する。
The enzyme reaction cell is equipped with a stirring bar 6 and a stirring motor 7 to mix the test liquid and the buffer solution.

酵素反応セルにはグルコースオキシダーゼを固定化した
膜を装着した酸素電極8が取り付けられ、その出力はア
ンプ9を経てマイクロプロセッサ10によりグルコース
濃度に換算され、デイスブI/イ11に値が表示される
3、緩衝液1から酵素反応セル3.酸素電極8の部分は
恒温槽12内で温度一定1て保たれて(八る。反応後の
液は廃液ライン15を経て排出さねろ。
An oxygen electrode 8 equipped with a membrane immobilized with glucose oxidase is attached to the enzyme reaction cell, and its output is converted to a glucose concentration by a microprocessor 10 via an amplifier 9, and the value is displayed on a display I/I 11. 3. From buffer solution 1 to enzyme reaction cell 3. The oxygen electrode 8 portion is kept at a constant temperature in a constant temperature bath 12. The liquid after the reaction is discharged through a waste liquid line 15.

本発明の最大の特徴は、グルコースを定量する際に前記
被検体溶液中に炭素数6乃至8のアルキルアルコールを
存在させる点にある。
The greatest feature of the present invention is that an alkyl alcohol having 6 to 8 carbon atoms is present in the sample solution when glucose is determined.

本発明で使用するアルキルアルコールは炭素数6乃至8
のアルキルアルコールであれは直鎖状又は分岐状の公知
のものが好適に使用できる。本発明で特に効果的なアル
キルアルコールを具体的に例示すれば、n〜ヘキシルア
ルコール、n−ヘプチルアルコール、n−オクチルアル
コールの炭素数6〜8のn−アルキルアルコールである
。炭素数5以下のアルキルアルコールは、効果が弱く、
炭素数6以上のアルキルアルコールが有する効果と同等
な作用を発現するのにはより高濃度の添加が要求される
。このようなアルコールの多量の添加は酵素活性の低下
のため好ましくない。
The alkyl alcohol used in the present invention has 6 to 8 carbon atoms.
As the alkyl alcohol, known linear or branched alkyl alcohols can be suitably used. Specific examples of alkyl alcohols that are particularly effective in the present invention include n-alkyl alcohols having 6 to 8 carbon atoms, such as n-hexyl alcohol, n-heptyl alcohol, and n-octyl alcohol. Alkyl alcohols with less than 5 carbon atoms are less effective.
A higher concentration is required to exhibit an effect equivalent to that of an alkyl alcohol having 6 or more carbon atoms. Addition of such a large amount of alcohol is not preferable because it reduces enzyme activity.

一方、炭素数9以上のアルキルアルコールは、水に溶解
しないために効果的でない。
On the other hand, alkyl alcohols having 9 or more carbon atoms are not effective because they do not dissolve in water.

該アルキルアルコールの添加量は、被検体溶液中に0.
01乃至1重量%の範囲で好適に使用される。0.01
重量%未満では効果が十分でなく、また1重量%を越え
ると被検体溶液中に均一に溶解することが困難でかつ酵
素活性の低下のため好ましくな込。
The amount of the alkyl alcohol added is 0.
It is preferably used in a range of 0.01 to 1% by weight. 0.01
If the amount is less than 1% by weight, the effect will not be sufficient, and if it exceeds 1% by weight, it will be difficult to dissolve uniformly in the analyte solution and enzyme activity will decrease, which is undesirable.

本発明におけるアルキルアルコールを被検体溶液中に存
在させる態様については特に限定されず、酵素反応時に
被検体溶液中に該アルキルアルコールを添加することも
出来る。
There are no particular limitations on the mode in which the alkyl alcohol is present in the analyte solution in the present invention, and the alkyl alcohol can also be added to the analyte solution during the enzyme reaction.

しかし、一般には、一定濃度のアルキルアルコールを被
検液及び/又は緩衝液に予め含有させる態様が好ましい
However, it is generally preferable to pre-contain a certain concentration of alkyl alcohol in the test solution and/or buffer solution.

(作用効果) 本発明を採用することにより、被検液中のグルコース濃
度の定量が長期間にわたって安定して実施できる。又そ
れにともない、電極の取り換え一装置の洗浄等の費用が
合理化出来、測定コストを減少させることが出来る。
(Effects) By employing the present invention, the glucose concentration in the test liquid can be stably quantified over a long period of time. In addition, the cost of replacing electrodes, cleaning the device, etc. can be streamlined, and measurement costs can be reduced.

しかしながら、本発明の効果がいかなる作用でもたらさ
れるのかその機構は明らかでない。アルコール類が一般
に殺菌作用を有することは知られているが、本発明で使
用する炭素数6〜8のアルキルアルコールが単に殺菌作
用だけによって本発明の効果をもたらすものでないこと
は、例えば殺菌作用を有することが公知なホルマリンを
本発明のアルキルアルコールに代って使用しても本発明
の効果が得られない点から推測されうる。このことから
本発明者等は特定のアルキルアルコールが被検液又は緩
衝液に含まれる種々の有機物に対して不活性化する作用
を呈するため、定量の妨害となる作用が抑制され、その
結果長期にわたる定量が可能になるものと推定している
However, the mechanism by which the effects of the present invention are brought about is not clear. Although it is generally known that alcohols have a bactericidal effect, the fact that the alkyl alcohol having 6 to 8 carbon atoms used in the present invention does not bring about the effects of the present invention solely due to its bactericidal effect, for example, This can be inferred from the fact that the effects of the present invention cannot be obtained even if formalin, which is known to have the same content, is used in place of the alkyl alcohol of the present invention. Based on this, the present inventors have discovered that specific alkyl alcohols have the effect of inactivating various organic substances contained in the test solution or buffer solution, so that the effect that interferes with quantitative determination is suppressed, and as a result, long-term We estimate that it will be possible to quantify over a wide range of areas.

(実施例) 本発明をさらに詳細に説明するため以下実施例及び比較
例を挙げて説明するが、本発明はこれらの実施例に限定
されるものではない。
(Examples) In order to explain the present invention in more detail, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples.

実施例 1 装置はアナリテイカル・インスツルメンツ社製のグルコ
ローダ−E(グルコースオキシダーゼを固定化した膜を
装着した酸素電極使用)を使用した。緩衝液にはリン酸
緩衝液(0,1M 、 pH=6.9 )を用い、その
まま又はn−ヘキシルアルコールな0,1重量%加えて
測定に使用した。試料液として馬血清(日本バイオテス
ト社製)50μtを用い一緩衝液1.8−とともに酵素
反応セルに注入してグルコース含有量を測定した。10
0試料毎に0ray/ltt及び200可/ 111の
グルコース標準液で較正した。装置は毎日10時間づつ
連続して作動させた。結果を第1表に示す。
Example 1 The apparatus used was Glucoloder-E manufactured by Analytical Instruments (using an oxygen electrode equipped with a membrane on which glucose oxidase was immobilized). Phosphate buffer (0.1M, pH=6.9) was used as the buffer solution, and used for the measurement as it was or with 0.1% by weight of n-hexyl alcohol added thereto. 50 μt of horse serum (manufactured by Nippon Biotest Co., Ltd.) was used as a sample solution, and the glucose content was measured by injecting it into an enzyme reaction cell together with a 1.8-mL buffer solution. 10
Each sample was calibrated with a glucose standard solution of 0 ray/ltt and 200/111. The apparatus was operated continuously for 10 hours each day. The results are shown in Table 1.

第1表 実施例 2 実施例1と同様てして、第2表に示すアルキルアルコー
ルを緩衝液に加え測定した。結果を合わせて第2表に示
す。  、 実施例 3 実施例1で用いた装置を改造して電極にグルコースオキ
シダーゼを固定化した膜を装着■〜だ過酸化水素電極を
用いた以外は、実施例1と同様にして測定した。結果を
第3表に示す。
Table 1 Example 2 In the same manner as in Example 1, the alkyl alcohols shown in Table 2 were added to the buffer solution and measured. The results are shown in Table 2. , Example 3 The apparatus used in Example 1 was modified and a membrane on which glucose oxidase was immobilized was attached to the electrode. Measurements were carried out in the same manner as in Example 1, except that a hydrogen peroxide electrode was used. The results are shown in Table 3.

第3表 比較f川 1 緩衝液、!= 1.て−n−ヘキシルアルコールに替え
てホルマリン0.1iE量%を用いた以外は、実施例1
と同様にして測定1−だ。結果を第4表に示す。
Table 3 Comparison f River 1 Buffer,! = 1. Example 1 except that 0.1 iE amount % of formalin was used instead of -n-hexyl alcohol.
Measure 1- in the same manner as . The results are shown in Table 4.

第4表 比較例 2 n−ヘキシルアルコールの濃度を変えた以外は、実施例
1と同様にして測定した。結果を第5表に示す。
Table 4 Comparative Example 2 Measurement was carried out in the same manner as in Example 1 except that the concentration of n-hexyl alcohol was changed. The results are shown in Table 5.

第5表Table 5

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、グルコースを分析する装置の概略図である。 1緩衝液、2緩衝液用シリンジ、3酵素反応セル、4被
検液、5サンプル用プルーブ。 6攪拌子、7攪拌用モーター、8酵素を固定化した膜を
装着した酸素電極、9アンプ 。 10マイクロプロセツサ、11デイスプレイ。 12恒温槽、13廃液ライン
FIG. 1 is a schematic diagram of an apparatus for analyzing glucose. 1 buffer solution, 2 syringe for buffer solution, 3 enzyme reaction cell, 4 test solution, 5 probe for sample. 6 stirring bars, 7 stirring motors, 8 oxygen electrodes equipped with enzyme-immobilized membranes, 9 amplifiers. 10 microprocessors, 11 displays. 12 constant temperature bath, 13 waste liquid line

Claims (1)

【特許請求の範囲】[Claims] グルコースの酵素反応による物質変化を測定する電極を
用いてグルコースを定量する際に、被検体溶液中に炭素
数6〜8のアルキルアルコールを0.01〜1重量%存
在させることを特徴とするグルコースの定量方法。
Glucose characterized by the presence of 0.01 to 1% by weight of an alkyl alcohol having 6 to 8 carbon atoms in a sample solution when quantifying glucose using an electrode that measures substance change due to an enzymatic reaction of glucose. Quantification method.
JP2288303A 1990-10-29 1990-10-29 Method for quantifying glucose Expired - Lifetime JPH0763399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288303A JPH0763399B2 (en) 1990-10-29 1990-10-29 Method for quantifying glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288303A JPH0763399B2 (en) 1990-10-29 1990-10-29 Method for quantifying glucose

Publications (2)

Publication Number Publication Date
JPH04166099A true JPH04166099A (en) 1992-06-11
JPH0763399B2 JPH0763399B2 (en) 1995-07-12

Family

ID=17728426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288303A Expired - Lifetime JPH0763399B2 (en) 1990-10-29 1990-10-29 Method for quantifying glucose

Country Status (1)

Country Link
JP (1) JPH0763399B2 (en)

Also Published As

Publication number Publication date
JPH0763399B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
Vadgama Enzyme electrodes as practical biosensors
Wu et al. Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane
EP0020623B1 (en) Analytical process and means for measuring the amount of hydrogen peroxide in aqueous media and of organic substrates generating hydrogen peroxide by enzymatic oxidation
Akyilmaz et al. A biosensor based on urate oxidase–peroxidase coupled enzyme system for uric acid determination in urine
Campanella et al. New biosensor for superoxide radical used to evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties
Wangsa et al. Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide
Belghith et al. An enzyme electrode for on‐line determination of ethanol and methanol
JP2539225B2 (en) Stabilized liquid enzyme composition for glucose quantification, reagent kit using the same, and quantification method
Morin et al. Single Glucose Oxidase—Peroxidase Reagent for two-minute determination of serum glucose
Akyilmaz et al. Development of a catalase based biosensor for alcohol determination in beer samples
JPH0262958A (en) Method of measuring concentration of phosphoric acid
JP2003525053A (en) Enzyme-electrochemical measurement device
Igarashi et al. Luminol chemiluminescent determination of glucose or glucose oxidase activity using an inverted micellar system
Racek et al. Biosensor for lactate determination in biological fluids. I. Construction and properties of the biosensor
Winartasaputra et al. Amperometric enzymic determination of triglycerides in serum
CN108007922B (en) A kind of kit detecting glucose using luminol chemiluminescence analysis
CN109541238A (en) Direct bilirubin detecting method and kit
Tsuchida et al. Application of l‐(+)‐lactate electrode for clinical analysis and monitoring of tissue culture medium
JPH04166099A (en) Method for determining glucose
Campanella et al. Determination of inorganic phosphate in drug formulations and biological fluids using a plant tissue electrode
Vig et al. Development and characterization of a FIA system for selective assay of l-ascorbic acid in food samples
Torriero et al. Milk lactate determination with a rotating bioreactor based on an electron transfer mediated by osmium complexes incorporating a continuous-flow/stopped-flow system
Cheng et al. Rapid assay of galactose in blood serum and urine by amperometric measurement of enzyme-catalyzed oxygen consumption
Karakuş et al. Potentiometric glucose determination in human serum samples with glucose oxidase biosensor based on Iodide electrode
JP4544598B2 (en) Liquid reagent and storage method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 15