JPH04165999A - Exciter for synchronous machine - Google Patents

Exciter for synchronous machine

Info

Publication number
JPH04165999A
JPH04165999A JP2287043A JP28704390A JPH04165999A JP H04165999 A JPH04165999 A JP H04165999A JP 2287043 A JP2287043 A JP 2287043A JP 28704390 A JP28704390 A JP 28704390A JP H04165999 A JPH04165999 A JP H04165999A
Authority
JP
Japan
Prior art keywords
power
synchronous machine
power system
exciter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2287043A
Other languages
Japanese (ja)
Inventor
Minoru Manjo
萬城 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2287043A priority Critical patent/JPH04165999A/en
Publication of JPH04165999A publication Critical patent/JPH04165999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To ensure safety regardless of operational state change of a system by additionally providing a device for identifying the operational state of a power system and employing the output from the device as an input signal to an exciter for synchronous machine thereby regulating the setting parameters of the exciter dynamically and optimally. CONSTITUTION:An automatic voltage regulator AVR steps down the terminal voltage V1 of a synchronous machine through an instrument transformer PT3 to produce a signal which is then compared with a set value in a voltage setter Vref. Field current If of the synchronous machine is controlled through an exciter so that the stepped down terminal voltage coincides with the set value thus controlling the terminal voltage V1. of generator to coincide with the voltage set value Vref. According to the invention, a power system identifying unit 9 provides input signals to an automatic voltage regulator and a power system stabilizing unit constituting an exciter for synchronous machine thus realizing stabilization of power system robust against large scale modification of constitution or load variation of power system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期機用励磁装置において電力系統同定装置を
追加し、この装置の出力により励磁装置の制御パラメー
タを最適に制御する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of adding a power system identification device to an excitation device for a synchronous machine and optimally controlling the control parameters of the excitation device using the output of this device. be.

〔従来の技術〕[Conventional technology]

従来技術は、あらかじめ最悪潮流条件を想定して設定し
た固定の電力系統に対して励磁系定数の最適値を設定し
、発電機端から系統側を見た系統リアクタンスxeに対
して安定度の変化低感度となるような定数設定を決めて
いた。又は発電機出力Pに対する励磁装置出力V、に対
する位相、ゲイン関係にのみ着目した適応最適化を行っ
ていた。
In the conventional technology, the optimum value of the excitation system constant is set for a fixed power system that is set in advance assuming the worst power flow condition, and the change in stability is calculated based on the system reactance xe viewed from the generator end. I had decided on constant settings that would result in low sensitivity. Alternatively, adaptive optimization has been performed focusing only on the phase and gain relationship between the generator output P and the exciter output V.

このため従来技術では、系統運転状態の大きな変化に対
しては全く無力であった。
For this reason, the conventional technology is completely powerless against large changes in system operating conditions.

〔発明が解決しようとする課題〕 従来技術は電力系統の運転状態の変化に応じて励磁装置
の設定値又はパラメータを動的に最適変更をする点につ
いては配慮されておらず、同期機の連けいする系統切換
、電力消費量の急激な変化等の系統運転状態の大きな変
化があった場合には安定度を失い自励発散する問題があ
った。
[Problem to be solved by the invention] The conventional technology does not take into account dynamically optimally changing the setting values or parameters of the excitation device in response to changes in the operating status of the power system, and When there is a large change in the system operation status, such as a sudden change in power consumption or a sudden change in power consumption, there is a problem that stability is lost and self-excitation diverges.

本発明の目的は、電力系統の運転状態を同定する装置を
新たに付加し、この出力に応じて同期機用励磁装置の設
定値又はパラメータを動的に変えることにより、前述の
電力系統の大きな変化に対しても常に安定な同期機の運
転を実現することにある。
The purpose of the present invention is to add a new device to identify the operating state of the power system, and dynamically change the setting values or parameters of the synchronous machine exciter according to the output of this device, thereby improving the power system's operation status. The goal is to achieve stable synchronous machine operation even in the face of changes.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達するために、電力系統の運転状態を同定す
る装置を新たに設け、この回路の出力を同期機用励磁装
置の入力信号として励磁装置の設定パラメータを動的に
最適調整し系統の運転状態変化にかかわらず安定度を確
保てきるようにしたものである。
In order to achieve the above objectives, a new device has been installed to identify the operating status of the power system, and the output of this circuit is used as an input signal to the excitation device for synchronous machines to dynamically optimally adjust the setting parameters of the excitation device to operate the system. This ensures stability regardless of state changes.

また電力系統安定化のために下記の機能を電力系統同定
安定化装置に持たせたものである。
In addition, the power system identification and stabilization device has the following functions to stabilize the power system.

(1)同期機有効電力P、無効電力Qを同期機端子電圧
の2乗で割った値の変化分の比による発電機端子から系
統側を見たりアクタンスxeの同定回路。
(1) A circuit for identifying actance xe when looking at the system side from the generator terminal based on the ratio of changes in the values obtained by dividing the synchronous machine active power P and reactive power Q by the square of the synchronous machine terminal voltage.

(2)電力系統の主要ポイントの系統電圧、有効電流・
無効電流潮流を入力信号とし取り込み、これらの値から
系統リアクタンス及びローカル負荷量を求め、求めた電
力系統定数に対して最適な励磁定数を設定する。
(2) System voltage, active current, and
Reactive current flow is taken in as an input signal, system reactance and local load amount are determined from these values, and the optimum excitation constant is set for the determined power system constant.

(3)該当同期機に係るモデル系統を記憶しておき、系
統主要ポイントの電圧・有効電流・無効電流及び系統遮
断器の開閉情報を初期条件として潮流計算を行う。この
同定した潮流状態を入力信号として励磁装置定数の最適
化を行う。
(3) Store the model system related to the relevant synchronous machine, and perform power flow calculations using the voltages, active currents, reactive currents at main points of the system, and opening/closing information of system breakers as initial conditions. Using this identified power flow state as an input signal, the excitation device constants are optimized.

〔作用〕[Effect]

電力系統同定装置は連けいする同期機の電力系統の運用
状態を同定し く1)電力系統インピーダンス (2)推定潮流フロー (3)各系統しゃ断器の開閉 を励磁装置に入力するように動作する。このため実電力
系統に大きな構成、負荷量、負荷点、連けい系統の変更
があっても必要な情報を励磁系にiiえることができる
ため、常に安定な同期機の運転を行うことができる。
The power system identification device operates to identify the operational state of the power system of the connected synchronous machines and inputs 1) power system impedance, 2) estimated power flow, and 3) opening/closing of each system breaker to the excitation device. Therefore, even if there is a change in the configuration, load amount, load point, or interconnection system in the actual power system, the necessary information can be sent to the excitation system, so that the synchronous machine can always be operated stably.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

自動電圧調整装置(AVR)は同期機の端子電圧v1を
計器用変成器PT3を介して降圧し、この信号を電圧設
定器Vref(90R)と比較し、これらの値が一致す
るよう(即ち偏差εが零となるよう)に励磁機を介して
同期機の界磁電流工、を制御することにより発電機端子
電圧■工と電圧設定値(V r e i)と一致するよ
うに制御を行う。
The automatic voltage regulator (AVR) steps down the terminal voltage v1 of the synchronous machine via the instrument transformer PT3, and compares this signal with the voltage setter Vref (90R) so that these values match (i.e., the deviation is By controlling the field current of the synchronous machine via the exciter so that ε becomes zero, the generator terminal voltage is controlled to match the voltage setting value (V r e i). .

本発明は電力系統同定装置9を新たに同期機用励磁装置
を構成するAVR(自動電圧調整装置)、pss (電
力系統安定化装置)への入力信号とすることで電力系統
の大きな構成変化、負荷変化などにロバスI・な電力系
統の安定化を行うことができる。電力系統運転状態同定
装置9とAVR及びPSSとの信号インターフェイスは
、同定装置9の出力信号に基づきAVR及びPSSの設
定定数を動的に変える方法及び同定装M9のアナログ出
力を直接制御しても良い。
The present invention eliminates major configuration changes in the power system by newly using the power system identification device 9 as an input signal to the AVR (automatic voltage regulator) and PSS (power system stabilization device) that constitute the synchronous machine excitation device. It is possible to stabilize the power system robustly against load changes, etc. The signal interface between the power system operating state identification device 9 and the AVR and PSS includes a method of dynamically changing the setting constants of the AVR and PSS based on the output signal of the identification device 9, and a method of directly controlling the analog output of the identification device M9. good.

次に電力系統同定装置の実施例について第2図〜第4図
を用いて説明する。
Next, an embodiment of the power system identification device will be described using FIGS. 2 to 4.

第2図の如く一機無限大系統と見なせる場合は同期機の
みの有効電力P、無効電力Qを入力信号とし系統リアク
タンスxe を同定することができる。同図において V I V 2 p 1 = −s j nδ xe  e が成立するから、これらよりδを消却するとPl、Ql
の変化分を求めると −Q が求まる。従ってΔQ/ΔPを測定することにより上式
より系統リアクタンスxe を同定することを求めるこ
とによりxe を同定することが出来る。
If the system can be regarded as infinite in one machine as shown in FIG. 2, the system reactance xe can be identified using the active power P and reactive power Q of only the synchronous machine as input signals. In the same figure, V I V 2 p 1 = −s j nδ xe e holds true, so by canceling δ from these, Pl, Ql
By finding the change in , -Q is found. Therefore, xe can be identified by determining the system reactance xe from the above equation by measuring ΔQ/ΔP.

次に第3図の如く一機無限大系を見なすことができない
大きなローカル負荷(PL 、 QL )を有する電力
系統の場合は、第4図の如く線路抵抗Rc qと線路リ
アクタンスxeqに縮約して考えることができる。
Next, in the case of a power system with large local loads (PL, QL) that cannot be considered as a single machine infinite system as shown in Fig. 3, it can be reduced to line resistance Rc q and line reactance xeq as shown in Fig. 4. You can think about it.

第4図においては、 が成り立つから aPl   aQx aV12 aVzz を測定することにより が定まり、系統リアクタンスZe を同定することが出
来る。ここで、z=、/’iτ75璽「3己=1− α
=eq 以上、第2図〜第4図の系統にて実際の系統の大部分を
カバーすることが出来るが、さらに多機系統についてよ
り高度な同定が必要な場合は、対象発電機の近傍系統を
同定回路9に組み込むことにより、同様にして系統状態
の同定を行うことが出来る。
In FIG. 4, since the following holds true, it is determined by measuring aPlaQx aV12 aVzz, and the system reactance Ze can be identified. Here, z=, /'iτ75 璽``3self=1- α
= eq As described above, the systems shown in Figures 2 to 4 can cover most of the actual system, but if more advanced identification is required for a multi-machine system, it is possible to cover the system near the target generator. By incorporating this into the identification circuit 9, the system status can be similarly identified.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電力系統の運転状態の大きな変化に対
してもこれを同定することにより励磁装置の設定パラメ
ータを動的に制御することで常に安定な運転を継続する
ことができるので電力系統の安定度を大幅に向上させる
ことができる。
According to the present invention, stable operation can be maintained at all times by dynamically controlling the setting parameters of the excitation device by identifying large changes in the operating status of the power system. can significantly improve stability.

また電力系統の運転状態変化検出回路を同期機及び発電
所内運転情報にのみでも広範囲の系統運転状態を同定で
きるため、特に電力系統の情報を系統側からもられなく
ても電力系統の安定度を向−ヒすることができ、新たな
系統聞伝送線路の設置を省略することもできる。
In addition, since it is possible to identify a wide range of system operating conditions using only the operating information of synchronous machines and power plants using the power system operating state change detection circuit, it is possible to identify the stability of the power system even if power system information cannot be obtained from the power grid side. It is also possible to omit the installation of a new transmission line between the grids.

尚、本発明は超電導コイルに有するSMES(Supe
r Magnetic Enargy Storage
 System)及び超電導同期機へも適用可能である
Note that the present invention is based on the SMES (Supe
r Magnetic Energy Storage
It is also applicable to superconducting synchronous machines (System) and superconducting synchronous machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図、第3図、第
4図は電力系統同定装置の実施例を示す図である。 9・電力系統同定装置、11・・・励磁機。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2, 3, and 4 are diagrams showing embodiments of a power system identification device. 9. Power system identification device, 11... Exciter.

Claims (1)

【特許請求の範囲】 1、該当同期機の出力信号、所内該当機外同期機の出力
信号及び電力系統の運転状態信号のいずれか又はどれか
の信号の組合せ信号を入力信号とする電力系統運転状態
同定装置を設け、この回路出力信号を用いて同期機の励
磁装置定数パラメータを動的に変えることを特徴とした
同期機用励磁装置。 2、請求項1記載の系統運転状同定装置において有効電
力Pと無効電力Qのそれぞれの変化分より、系統運転状
態のひとつである発電機端子から系統側を見ることを特
徴とする系統運転状態同定装置。 3、電力系統の重要ポイントの系統電圧、有効電力、無
効電力潮流を取り込み、これらの値から系統リアクタン
スxe、ローカル負荷の大きさを同定することを特徴と
した電力系統運転状態同定装置。 4、同期機の連けいする電力系統で当該機と特に強く係
る部分をモデル系統として記憶しておき、系統重要ポイ
ントの電圧、有効電力、無効電力、系統遮断器の閉開信
号などをもとにモデル系統の潮流条件を決定し実際の運
用を推定することを特徴とした電力系統運転状態同定装
置。 5、同期機が異なる種類の電力系統に連けいする運転モ
ードがある場合、連けいする電力系統の種類により設定
定数を切替え、安定度を確保することを特徴とした同期
機用励磁装置。 6、電力系統の重要ポイントに運転状態監視装置を設け
、この装置から各連けい発電所への系統出力情報を用い
て励磁定数設定定数を切換え、安定度を確保することを
特徴とした同期機用励磁装置。 7、同期機端子電圧Vに対する有効電力P及び無効電力
Qの変化率∂P/∂V、∂Q/∂Vを検出し、これらの
値から電力系統の系統リアクタンスxe及びローカル負
荷Rを推定することを特徴とした電力系統運転状態同定
装置。
[Claims] 1. Power system operation using as an input signal any one or a combination of the output signal of the relevant synchronous machine, the output signal of the relevant internal and external synchronous machine, and the power system operating status signal. An excitation device for a synchronous machine, characterized in that it is provided with a state identification device and dynamically changes excitation device constant parameters of the synchronous machine using this circuit output signal. 2. In the system operation state identification device according to claim 1, the system operation state is characterized in that the system side is viewed from the generator terminal, which is one of the system operation states, from the respective changes in the active power P and the reactive power Q. Identification device. 3. A power system operating state identification device characterized by capturing system voltage, active power, and reactive power flow at important points in the power system, and identifying system reactance xe and local load size from these values. 4. In the power system connected to the synchronous machine, store the part that is particularly strongly related to the machine as a model system, and use it based on the voltage, active power, reactive power, closing/opening signal of the system breaker, etc. of important points in the system. A power system operating state identification device characterized by determining power flow conditions of a model system and estimating actual operation. 5. An excitation device for a synchronous machine, characterized in that when there is an operation mode in which the synchronous machine is connected to different types of power systems, the setting constant is switched depending on the type of power system to be connected to ensure stability. 6. For synchronous machines characterized by installing an operating status monitoring device at important points in the power system, and switching the excitation constant setting constant using the system output information from this device to each linked power plant to ensure stability. Excitation device. 7. Detect the rate of change of active power P and reactive power Q with respect to synchronous machine terminal voltage V, ∂P/∂V, ∂Q/∂V, and estimate the system reactance xe and local load R of the power system from these values. A power system operating state identification device characterized by:
JP2287043A 1990-10-26 1990-10-26 Exciter for synchronous machine Pending JPH04165999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287043A JPH04165999A (en) 1990-10-26 1990-10-26 Exciter for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287043A JPH04165999A (en) 1990-10-26 1990-10-26 Exciter for synchronous machine

Publications (1)

Publication Number Publication Date
JPH04165999A true JPH04165999A (en) 1992-06-11

Family

ID=17712313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287043A Pending JPH04165999A (en) 1990-10-26 1990-10-26 Exciter for synchronous machine

Country Status (1)

Country Link
JP (1) JPH04165999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981011A (en) * 2019-04-03 2019-07-05 中国水利水电科学研究院 A kind of generator parameter identification method
JP2021005940A (en) * 2019-06-26 2021-01-14 三菱電機株式会社 Control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981011A (en) * 2019-04-03 2019-07-05 中国水利水电科学研究院 A kind of generator parameter identification method
JP2021005940A (en) * 2019-06-26 2021-01-14 三菱電機株式会社 Control system

Similar Documents

Publication Publication Date Title
RU2743377C1 (en) Wind-driven power plant or wind farm for electric power input
US8234015B2 (en) Method for controlling a grid voltage
US9997922B2 (en) Method for feeding electrical power into an electrical supply network
JP3133386B2 (en) Control device for current source converter for supplying to AC bus
RU2605083C2 (en) Method of electric generator controlling
KR100393528B1 (en) Control device for power transmission and distribution system
Machowski et al. Excitation control system for use with synchronous generators
CN104426155B (en) System and method for voltage control of wind generators
US8058958B2 (en) Device and method for eliminating transformer excitation losses
KR20210011727A (en) System and Method for Controlling Inertial of Energy Storage System
Zhang et al. Adaptable energy storage system control for microgrid stability enhancement
Zeni et al. Control of VSC-HVDC in offshore AC islands with wind power plants: Comparison of two alternatives
JPH04165999A (en) Exciter for synchronous machine
US20120147506A1 (en) Method of detecting an unintentional island condition of a distributed resource of a utility grid, and protective apparatus and controller including the same
Reeve et al. Robust adaptive control of HVDC systems
CN110249496A (en) Method for being fed into electrical power in power supply network
US4376295A (en) System for predicting desynchronization of a synchronous machine
WO2018069390A1 (en) Method for operating an electrical power supply grid, computer program, power electronics device and power supply grid
Xie et al. Parameter optimization for current controller in HVDC control system
CN112564169B (en) Thermal power generation primary frequency modulation system and method based on load feedback
US11522478B2 (en) Systems and methods for predictive load response
KR102234527B1 (en) SoC Management System and Method using Frequency Control at ESS Interfacing Generation Plant
Park et al. Deadbeat control of three phase voltage source active power filter using sinusoidal tracking model
RU2043686C1 (en) System of uninterrupted power supply
AU2022361111A1 (en) Air conditioner and control system