JPH04165297A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH04165297A
JPH04165297A JP29008090A JP29008090A JPH04165297A JP H04165297 A JPH04165297 A JP H04165297A JP 29008090 A JP29008090 A JP 29008090A JP 29008090 A JP29008090 A JP 29008090A JP H04165297 A JPH04165297 A JP H04165297A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer surface
transfer body
blade
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29008090A
Other languages
Japanese (ja)
Inventor
Tetsuro Ogushi
哲朗 大串
Kunihiko Kaga
邦彦 加賀
Yoshiaki Tanimura
佳昭 谷村
Kenzo Kurahashi
倉橋 健三
Yoshio Sasaki
佐々木 芳男
Masashi Sakurai
桜井 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29008090A priority Critical patent/JPH04165297A/en
Publication of JPH04165297A publication Critical patent/JPH04165297A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress growth of frost and to prevent a decrease in cooling capacity by reducing a distance between a heat transfer side end of an agitating blade and a heat transfer shorter than a rising point for rising the gradient of a convection heat transfer rate rise upon reduction of the distance. CONSTITUTION:When an agitating blade 21 on a disc 22 is rotated by the rotation of a motor 23, the air is driven by a centrifugal force, fed from an air inlet 24 to flow from the inside toward the outside on a heat transfer surface 1a. A distance between the side end of the blade and the transfer surface is approached from a temperature boundary layer so that the blade crosses the layer. Accordingly, an air flow near the transfer surface is disordered to improve its heat transfer ratio. When the air fed into a heat exchanger is cooled on the transfer surface, if the temperature of the transfer surface is below the freezing point of water, steam in the flowing air is solidified on the transfer surface to form a frost layer. If it is above the freezing point, dew-condensation occurs in response to the moisture of the air. Thereafter, when it is further cooled so that the temperature of the transfer surface becomes below the freezing point, water droplets adhered to the transfer surface are solidified to become ice droplets. These frost, water droplets, ice droplets are scraped by the transfer surface, and discharged from an air diffuser by a centrifugal force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷却された伝熱体と空気との間などで熱交換
を行う熱交換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchange device for exchanging heat between a cooled heat transfer body and air.

(従来の技術〕 第9図はたとえば実公昭58−34338号公報に示さ
れた熱交換装置の伝熱形態を模式的に示した構成図であ
る。
(Prior Art) FIG. 9 is a block diagram schematically showing a heat transfer form of a heat exchange device disclosed in, for example, Japanese Utility Model Publication No. 58-34338.

図においては、(1)は伝熱体、(1a)は伝熱面、(
2)はファン、(3)は伝熱面(1a)上の空気である
。実線矢印は熱の伝達方向、破線矢印は空気の流れを表
す。
In the figure, (1) is the heat transfer body, (1a) is the heat transfer surface, (
2) is a fan, and (3) is air on the heat transfer surface (1a). The solid arrows represent the direction of heat transfer, and the dashed arrows represent the air flow.

ファン(2〉により駆動された空気は図中点線矢印で示
すように、伝熱面(1a)表面上を流れ、伝熱面(la
)と空気(3)間の対流熱伝達により、伝熱面(1a)
の熱が空気(3)へ伝達される。
The air driven by the fan (2) flows over the heat transfer surface (1a) as shown by the dotted arrow in the figure.
) and air (3), the heat transfer surface (1a)
heat is transferred to the air (3).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

次式で定義される伝熱体(1)と空気(3)間の対流熱
伝達率りは空気流速や伝熱体(1)の形状のみから決定
されるが、従来の熱交換装置は以上のように構成されて
いるので、対流熱伝達率が小さく、従って大きな伝熱面
積が必要となるという問題点があった。
The convective heat transfer coefficient between the heat transfer body (1) and the air (3), defined by the following equation, is determined only from the air flow velocity and the shape of the heat transfer body (1), but conventional heat exchange devices Since the structure is as follows, there is a problem in that the convective heat transfer coefficient is low and therefore a large heat transfer area is required.

h=Q/(SxΔT)           (1)Q
:熱交換量 S:伝熱体の伝熱面の面積 ΔT:伝熱面と空気との温度差の絶対値またファンと伝
熱体が離れて設置されているため、装置の容積が大きく
なるという問題点があった。
h=Q/(SxΔT) (1)Q
: Amount of heat exchange S: Area of the heat transfer surface of the heat transfer body ΔT: Absolute value of the temperature difference between the heat transfer surface and the air Also, since the fan and the heat transfer body are installed far apart, the volume of the device increases. There was a problem.

さらに、空気が熱交換装置を通過して水の凝固点以下に
冷却されるとき、伝熱面上に着霜がおこり、霜層が厚く
成長した場合、空気の流速の低下と霜の熱抵抗によって
、冷却能力が著しく低下する。そのため、空気の流路が
霜によって塞がれないようにあらかじめ広くとる必要が
ある。したがって装置の容積が大きくなるという問題点
があった。
Furthermore, when air passes through a heat exchange device and is cooled below the freezing point of water, frost forms on the heat transfer surface and if the frost layer grows thick, the reduction in air flow velocity and the thermal resistance of the frost can cause frost formation on the heat transfer surface. , the cooling capacity will be significantly reduced. Therefore, it is necessary to make the air flow path wide in advance so that it is not blocked by frost. Therefore, there was a problem that the volume of the device became large.

また、ある程度以上に霜が成長した段階で、熱交換装置
の運転を中断し、伝熱面を加熱するなどの、除霜運転を
する必要がある。したがって、空気の冷却を連続的に行
なうためには、熱交換装置を複数装備して、交互に運転
しなければならないという問題点があった。
Further, when the frost has grown to a certain extent, it is necessary to interrupt the operation of the heat exchange device and perform a defrosting operation such as heating the heat transfer surface. Therefore, in order to continuously cool the air, there is a problem in that a plurality of heat exchange devices must be installed and operated alternately.

上記の問題に対し、すでに同一出願人が平成2年9月2
0日付の発明「熱交換装置およびその製造方法」を出願
済みであるが、前記発明によっても除霜能力が不十分で
あるという問題があった。
Regarding the above problem, the same applicant has already filed a complaint on September 2, 1990.
Although the invention "Heat exchange device and method for manufacturing the same" has been applied for on date 0, there was a problem that the defrosting ability was insufficient even with the invention.

(課題を解決するための手段) 本発明は、上記のような問題点を解消するためになされ
たもので、霜の成長を抑えて冷却能力の低下を防ぐ機能
を持フだ、除霜運転を必要としない小型軽量の熱交換装
置を得ることを目的とする。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and has the function of suppressing the growth of frost and preventing a decrease in cooling capacity. The objective is to obtain a small and lightweight heat exchange device that does not require

この発明に係る熱交換装置は、伝熱面に撥水処理を施し
た伝熱体と、それに対向し、これにたいして相対的に運
動する攪乱翼とを備えるもので、この攪乱翼の上記伝熱
体側端と上記伝熱体との距離を、この距離の減少に伴う
対流熱伝達率上昇の勾配が立上がる立上がり点より小さ
くしたものであり、 また攪乱翼にブレードワイパーまたは切削刃を取りつけ
たもの、攪乱翼の同人口側の先端を鋭角に加工したもの
、 また、伝熱体あるいは攪乱翼が植設された円板に設けら
れた開口部の先端が鋭角に加工されているもの、 また、伝熱面の温度が水の凝固点以上では凝固点以下の
場合より攪乱翼の回転数を大きくしたもの、 また、伝熱面の温度を水の凝固点以上かつ流入空気の露
点以下に保ったものである。
The heat exchange device according to the present invention includes a heat transfer body whose heat transfer surface has been subjected to a water-repellent treatment, and a stirring blade that opposes the heat transfer body and moves relative to the heat transfer body, and the heat exchange device of the stirring blade has the above-mentioned heat transfer. The distance between the body side edge and the heat transfer body is made smaller than the starting point at which the gradient of convective heat transfer coefficient rises as the distance decreases, and a blade wiper or cutting blade is attached to the stirring blade. , the tip of the disturbance blade on the same population side is processed into an acute angle, and the tip of the opening provided in the heat transfer body or the disc on which the disturbance blade is implanted is processed into an acute angle, and When the temperature of the heat transfer surface is above the freezing point of water, the rotation speed of the stirring blade is higher than when it is below the freezing point, and the temperature of the heat transfer surface is kept above the freezing point of water and below the dew point of the incoming air. .

〔作用〕[Effect]

本発明の熱交換装置においては、伝熱面に近接して相対
運動する攪乱翼によって、伝熱面上の温度境界層を横切
ることになるため、伝熱DI11近傍の空気の流れが乱
れて熱伝達率が向上する。また、伝熱面が撥水処理され
ているため、氷点下に冷却された場合、伝熱面との接触
面積の小さい水滴ができて、伝熱面全体に堅い氷層が形
成されるのを防ぐ、水滴は、伝熱面に近接して回転する
攪乱翼により容易に掻き取られる。伝熱面全体に付着す
る比較的柔らかい霜も、攪乱翼により連続的に掻き取ら
れるため、熱伝達率を下げる程度には成長しない。さら
に、掻き取られた水滴及び霜は、遠心力により空気出口
より排出される。したがって、熱交換装置を停止して除
霜運転する必要がない。
In the heat exchange device of the present invention, the disturbance blades that move relatively close to the heat transfer surface cross the temperature boundary layer on the heat transfer surface, so the air flow near the heat transfer DI11 is disturbed and heat is generated. Transmission rate is improved. In addition, the heat transfer surface is water-repellent, so when it is cooled to below freezing, water droplets with a small contact area with the heat transfer surface are formed, preventing the formation of a hard ice layer over the entire heat transfer surface. , the water droplets are easily scraped off by the agitation blades that rotate close to the heat transfer surface. Relatively soft frost that adheres to the entire heat transfer surface is also continuously scraped off by the stirring blades, so it does not grow to the extent that it reduces the heat transfer coefficient. Furthermore, the scraped water droplets and frost are discharged from the air outlet by centrifugal force. Therefore, there is no need to stop the heat exchange device and perform defrosting operation.

また、攪乱翼の全部または一部の側端に、ブレードワイ
パーまたは切削刃を取りつけることにより、より確実に
水滴及び霜を掻き取ることができる。
Further, by attaching a blade wiper or a cutting blade to the side end of all or part of the stirring blade, water droplets and frost can be scraped off more reliably.

また、空気の入口温度か露点温度よりも高い場合、例え
ば、熱交換装置の運転開始時には、空気人口付近の伝熱
面温度を凝固点以上かつ露点以下にして結露させ、後に
高速で攪乱翼を回転させて水分を装置の外に排出する方
法により、堅い氷層の形成を防ぐ。また突気流入口を鋭
角にすることにより、その部分での空気の衝突による着
霜の増大を防ぐ。
In addition, when the inlet temperature of the air is higher than the dew point temperature, for example, when the heat exchange equipment starts operating, the temperature of the heat transfer surface near the air population is set above the freezing point and below the dew point to cause dew condensation, and then the stirring blades are rotated at high speed. This method prevents the formation of a hard ice layer by allowing water to drain out of the device. Also, by making the gust inlet at an acute angle, frost formation due to air collisions at that part is prevented from increasing.

(実施例〕 以下、本発明の実施例を図について説明する。(Example〕 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の熱交換装置を示す縦断面構
成図である。図において、(21)は中央部が開口され
た円板(22)上に放射状にかつ円板(22)に垂直に
複数植設された板状の攪乱翼、(23)は円板(22)
を回転させるためのモータ、(24)は空気流入口で、
この場合は円板(22)の中央部に設けられた開口、(
25)は空気流出口である。(S)は攪乱翼(21)の
伝熱体(1)側端と伝熱体(1)の伝熱面(1a)間の
距離で、上記距離の減少に伴う対流熱伝達率上昇の勾配
が立上がる立上がり点よりも小さく設定される。この場
合は0.1mm程度で、以下に述べる方法により形成さ
れる。なお、攪乱翼(21)の先端部(26)は摩耗が
容易なフッソ樹脂、この場合はKYNAR(米国ペンウ
ォルト社商品名)(PVDF=2フッ化ビニリデン樹脂
)からなっている。また実線矢印は熱の伝達方向、破線
矢印は空気の流れ、二重線矢印は円板即ち攪乱翼の回転
方向を表わす。
FIG. 1 is a vertical cross-sectional configuration diagram showing a heat exchange device according to an embodiment of the present invention. In the figure, (21) is a plurality of plate-shaped disturbance blades installed radially and perpendicularly to a disk (22) with an opening in the center, and (23) is a disk (22) with an opening in the center. )
(24) is the air inlet,
In this case, an opening provided in the center of the disk (22), (
25) is an air outlet. (S) is the distance between the side edge of the heat transfer body (1) of the stirring blade (21) and the heat transfer surface (1a) of the heat transfer body (1), and the gradient of increase in convective heat transfer coefficient as the distance decreases. is set to be smaller than the rising point at which it rises. In this case, the thickness is about 0.1 mm and is formed by the method described below. The distal end portion (26) of the stirring blade (21) is made of fluorocarbon resin which wears easily, in this case KYNAR (trade name of Pennwalt, Inc., USA) (PVDF=vinylidene difluoride resin). Further, the solid line arrows represent the heat transfer direction, the broken line arrows represent the air flow, and the double line arrows represent the rotation direction of the disk, that is, the stirring blade.

第2図(a)は第1図の攪乱翼(21)を植設した円板
(22)を伝熱体側から見た平面図、同図(b)は同側
面図である。
FIG. 2(a) is a plan view of the disk (22) on which the stirring blades (21) of FIG. 1 are installed, viewed from the heat transfer body side, and FIG. 2(b) is a side view of the same.

まず、攪乱翼(21)の伝熱体側端と伝熱面(1)間の
隙間Sを形成する製造方法について説明する。
First, a manufacturing method for forming the gap S between the heat transfer body side end of the stirring blade (21) and the heat transfer surface (1) will be described.

第3図の模式説明図に示すように、伝熱面(1)に攪乱
翼(21)を当接させた状態に円板(22)を装着し、
この円板(22)を回転させて攪乱翼(21)と伝熱面
(1)との当接部を擦りあわせると、攪乱翼(21)の
先端部(26)が摩耗しやすい材料から成フているため
摩耗し、その結果攪乱翼(21)の伝熱体(1)側端と
伝熱面(la)間に隙間Sが形成される。
As shown in the schematic explanatory diagram of FIG. 3, the disk (22) is attached with the stirring blade (21) in contact with the heat transfer surface (1),
When this disk (22) is rotated and the abutting portion of the stirring blade (21) and the heat transfer surface (1) are rubbed together, the tip (26) of the stirring blade (21) is made of a material that is easily worn. As a result, a gap S is formed between the side end of the heat transfer body (1) of the stirring blade (21) and the heat transfer surface (la).

次にこの実施例の熱交換器の動作について説明する。v
J1図においてモーター(23)の回転により円板(2
2)上の攪乱翼(21)が回転すると、遠心力により空
気は駆動され、図中点線矢印に示すように空気流入口(
24)から流入し内側から外側へ向けて伝熱面(1a)
上を流れる。攪乱翼側端と伝熱面との距離が温度境界層
よりも近づけることにより、攪乱翼が温度境界層を横切
るため、伝熱面近傍の空気流が乱れて熱伝達率が向上す
る。また、熱交換器に流入した空気が伝熱面上で冷却さ
れる場合、伝熱面の温度により現象が異なる。すなわち
伝熱面温度が水の凝固点温度以下である場合には、流入
空気中の水蒸気は、伝熱面上で凝固して霜層を形成する
。伝熱面温度が水の凝固点温度以上である場合には、空
気の湿度に応じて結露が起こるが、その後、さらに冷却
されて伝熱面温度が凝固点以下に達すると、伝熱面に付
着していた水滴は凝固し水滴となる。
Next, the operation of the heat exchanger of this embodiment will be explained. v
In figure J1, the rotation of the motor (23) causes the disc (2
2) When the upper stirring blade (21) rotates, the air is driven by centrifugal force, and the air inlet (21) is driven as shown by the dotted arrow in the figure.
24) and heat transfer surface (1a) from the inside to the outside.
flowing above. By making the distance between the side edge of the stirring blade and the heat transfer surface closer than the temperature boundary layer, the stirring blade crosses the temperature boundary layer, which disturbs the airflow near the heat transfer surface and improves the heat transfer coefficient. Furthermore, when air flowing into a heat exchanger is cooled on a heat transfer surface, the phenomenon differs depending on the temperature of the heat transfer surface. That is, when the heat transfer surface temperature is below the freezing point temperature of water, water vapor in the incoming air solidifies on the heat transfer surface to form a frost layer. When the temperature of the heat transfer surface is above the freezing point of water, condensation occurs depending on the humidity of the air, but when the heat transfer surface temperature reaches below the freezing point due to further cooling, condensation forms on the heat transfer surface. The water droplets solidify and become water droplets.

これらの霜、水滴、水滴は、回転する攪乱翼によって伝
熱面より掻き取られ、遠心力により空気吹き出し口より
排出される。
These frost, water droplets, and water droplets are scraped off from the heat transfer surface by rotating agitation blades and discharged from the air outlet by centrifugal force.

この時第3図に示すように、伝熱面にはっ水性をもつテ
フロンなどの膜(31)を塗布すると、空気が氷点下に
冷却された場合、伝熱面との接触面積が小さい水滴(3
2)が生じ、伝熱面全体に堅い氷層が形成されるのを防
ぎ、水滴は伝熱面に近接して回転する攪乱翼により容易
に掻き取られる効果がある。伝熱面全体に付着する比較
的柔らかい霜も、攪乱翼により連続的に掻き取られるた
め、熱伝達率を下げる程度には成長しない。さらに掻き
取られた水滴および霜は遠心力により空気出口より排出
される。したがって熱交換装置を停止して除霜運転をす
る必要がない。
At this time, as shown in Figure 3, if a water-repellent film (31) such as Teflon or the like is applied to the heat transfer surface, when the air is cooled to below freezing point, water droplets (31) with a small contact area with the heat transfer surface ( 3
2) occurs, which prevents the formation of a hard ice layer over the entire heat transfer surface, and has the effect that water droplets are easily scraped off by the stirring blades that rotate close to the heat transfer surface. Relatively soft frost that adheres to the entire heat transfer surface is also continuously scraped off by the stirring blades, so it does not grow to the extent that it reduces the heat transfer coefficient. Further, the scraped water droplets and frost are discharged from the air outlet by centrifugal force. Therefore, there is no need to stop the heat exchanger and perform defrosting operation.

また、第4図、第5図に示すように切削刃(4J)また
はプレードワイパ(42)を攪乱翼(2I)に装着し回
転させると水滴もしくは霜の掻きとっか容易になるとい
う効果も得られる。
Furthermore, as shown in Figures 4 and 5, if a cutting blade (4J) or blade wiper (42) is attached to the stirring blade (2I) and rotated, the effect of easily scraping off water droplets or frost can be obtained. .

また、第6図に示すように、回転円板(22)に設けら
れた空気流入口(24)となる開口部(51)や空気が
流入して衝突する攪乱翼の先端(52)を鋭角に加工す
ることにより、攪乱翼では掻きとれない開口部(51)
や攪乱翼の先端(52)部分への着霜を防止することが
できる。
In addition, as shown in Fig. 6, the opening (51) that serves as the air inlet (24) provided in the rotating disk (22) and the tip (52) of the stirring blade where air flows in and collides with each other are arranged at an acute angle. By machining it, the opening that cannot be scraped off by the agitating blade (51)
It is possible to prevent frost from forming on the tips (52) of the stirring blades.

次にこの実施例の熱交換器の運転方法について説明する
Next, a method of operating the heat exchanger of this embodiment will be explained.

熱交換器の伝熱面温度を制御し、かつ攪乱翼の回転数を
制御することによって、さらに除霜性能を向上すること
が可能である。たとえば、熱交換器運転開始時には、流
入空気温度は常温付近であって絶対湿度が高い。また伝
熱面の温度も水の凝固点以上である。したがって、伝熱
面に比較的多量の結露が起こるため、そのまま伝熱面が
さらに冷却されると、この大量の水分が堅い氷膜を形成
する。これを防ぐため、人口空気温度が凝固点付近に下
降するまで一時的に、攪乱翼の回転数を大きくすること
により遠心力で水滴を吹き飛ばず。この間、伝熱面温度
は凝固点以上に保つ。
Defrosting performance can be further improved by controlling the heat transfer surface temperature of the heat exchanger and controlling the rotation speed of the stirring blades. For example, when the heat exchanger starts operating, the incoming air temperature is around normal temperature and the absolute humidity is high. Further, the temperature of the heat transfer surface is also higher than the freezing point of water. Therefore, a relatively large amount of dew condensation occurs on the heat transfer surface, and when the heat transfer surface is further cooled, this large amount of moisture forms a hard ice film. To prevent this, the rotational speed of the stirring blades is temporarily increased until the artificial air temperature drops to near the freezing point, thereby preventing water droplets from being blown away by centrifugal force. During this time, the temperature of the heat transfer surface is maintained above the freezing point.

また、伝熱面の中央部を水の凝固点以上かつ流入空気の
露点以下に、外周部を凝固点以下に保つことにより以下
の効果が得られる。即ち空気が流入する中央部では水滴
を生じることにより、空気中の水分の除去が行なわれる
ため、攪乱翼で容易に水滴を吹飛ばすことができ、その
後外周部で所定の温度まで冷却しても多量の水滴が生じ
ることがないという効果が得られる。
Furthermore, by keeping the central portion of the heat transfer surface at a temperature above the freezing point of water and below the dew point of incoming air, and by keeping the outer peripheral portion at a temperature below the freezing point, the following effects can be obtained. In other words, the moisture in the air is removed by forming water droplets in the center where the air flows in, so the water droplets can be easily blown away by the agitating blades, and then the outer periphery can be cooled to a predetermined temperature. The effect is that large amounts of water droplets are not generated.

なお上記実施例では攪乱翼(21)が中央部が開口され
た円板(22)に植設された場合について示したが第7
図に示すように、伝熱体(1)の中央部が開口された場
合も同様な効果が得られるのは勿論である。
In the above embodiment, the case where the disturbance blade (21) is installed in the disk (22) with an opening in the center is shown, but the seventh embodiment
Of course, the same effect can be obtained when the center of the heat transfer body (1) is opened as shown in the figure.

また第8図に示すように、攪乱翼(21)および伝熱体
(1)が駆動軸方向に多段に配設されていても同様な効
果が得られるのは勿論である。
Furthermore, as shown in FIG. 8, the same effect can of course be obtained even if the stirring blades (21) and the heat transfer body (1) are arranged in multiple stages in the direction of the drive shaft.

〔発明の効果〕〔Effect of the invention〕

本発明の熱交換装置は以上説明したように構成されてい
るので、以下に記載されるような効果を有する。
Since the heat exchange device of the present invention is configured as described above, it has the effects described below.

伝熱面に近接して相対運動する攪乱翼により空気が駆動
され、伝熱面近傍の乱れが大きくなり対流熱伝達率が増
大する。したがって、伝熱面積が小さくてすみ、またフ
ァンも不要なため、小型、計量化が図れる。
The air is driven by a disturbance blade that moves relatively close to the heat transfer surface, increasing the turbulence near the heat transfer surface and increasing the convective heat transfer coefficient. Therefore, the heat transfer area is small and no fan is required, so it can be made smaller and weighed.

また、伝熱面に対向して回転する攪乱翼によって伝熱面
に付着した水滴、水滴、及び霜を掻き取り、遠心力によ
って空気吹き出し口から排出することにより、風量の低
−トと熱抵抗の増加に起因する冷却能力の低下を防ぐ。
In addition, water droplets, water droplets, and frost adhering to the heat transfer surface are scraped off by the agitating blades that rotate in opposition to the heat transfer surface, and are discharged from the air outlet using centrifugal force, resulting in a low air volume and thermal resistance. Prevents a decrease in cooling capacity due to an increase in

したがって、除霜運転の必要がなくなり連続運転が可能
となる。また、霜により空気流路が塞がれるのを防ぐた
めに流路あらかじめ広くとる必要がないため、装置のコ
ンパクト化が可能となる。
Therefore, there is no need for defrosting operation, and continuous operation becomes possible. Furthermore, since there is no need to widen the air flow path in advance to prevent the air flow path from being blocked by frost, the device can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱交換装置の構成を示す縦
断面構成図、第2図(a)、(b)は第1図の攪乱翼を
植設した円板を示す図て、(a)は平面図、(b)は側
面図、第3図は伝熱面に撥水処理を施した場合の断面模
式図、第4図は攪乱翼に切削刃を取りつけた場合の断面
模式図、第5図は攪乱翼にブレードワイパーを取りつけ
た場合の断面模式図、第6図は開口先端部及び攪乱翼を
鋭角に加工したことを示す断面模式図、第7図は伝熱体
を開口したことを示す断面模式図、第8図は攪乱翼と伝
熱体を多段にしたことを示す断面模式図、第9図は従来
の熱交換装置の構成図である。 (1)は伝熱体、(Ia)は伝熱面、(21)は攪乱翼
、(22)は円板、(23)はモーター、(24)は空
気流入口、(25)は空気出口、(31)は撥水処理層
、(41)は切削刃、り42)はブレードワイパー、(
51)は開口部、(52)は攪乱翼先端である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a vertical cross-sectional configuration diagram showing the configuration of a heat exchange device according to an embodiment of the present invention, and FIGS. 2(a) and (b) are diagrams showing a disk on which the stirring blades of FIG. 1 are installed. , (a) is a plan view, (b) is a side view, Fig. 3 is a schematic cross-sectional view when water-repellent treatment is applied to the heat transfer surface, and Fig. 4 is a cross-sectional view when a cutting blade is attached to the stirring blade. Schematic diagram, Figure 5 is a cross-sectional schematic diagram when a blade wiper is attached to a stirring blade, Figure 6 is a cross-sectional diagram showing that the opening tip and the stirring blade are machined at an acute angle, and Figure 7 is a heat transfer body. FIG. 8 is a schematic cross-sectional view showing that the stirring blades and heat transfer bodies are arranged in multiple stages, and FIG. 9 is a configuration diagram of a conventional heat exchange device. (1) is the heat transfer body, (Ia) is the heat transfer surface, (21) is the stirring blade, (22) is the disk, (23) is the motor, (24) is the air inlet, (25) is the air outlet , (31) is a water repellent layer, (41) is a cutting blade, 42) is a blade wiper, (
51) is the opening, and (52) is the tip of the stirring blade. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (6)

【特許請求の範囲】[Claims] (1)伝熱体、およびこの伝熱体と対向して設けられ、
これに相対運動する攪乱翼を備え、この攪乱翼の上記伝
熱体側端と上記伝熱体の伝熱面間との距離を、この距離
の減少に伴う熱伝達率上昇の勾配が立上がる立上がり点
より小さくした熱交換装置において、伝熱面にはっ水処
理を施したことを特徴とする熱交換装置。
(1) A heat transfer body, and provided opposite to this heat transfer body,
A disturbance blade that moves relative to this is provided, and the distance between the side end of the heat transfer body of the disturbance blade and the heat transfer surface of the heat transfer body is determined by the slope of the increase in heat transfer coefficient as the distance decreases. A heat exchange device smaller than a point, characterized in that a heat transfer surface is treated with water repellency.
(2)伝熱体、およびこの伝熱体と対向して設けられ、
これに相対運動する攪乱翼を備え、この攪乱翼の上記伝
熱体側端と上記伝熱体の伝熱面間との距離を、この距離
の減少に伴う熱伝達率上昇の勾配が立上がる立上がり点
より小さくした熱交換装置において、上記攪乱翼に取付
たブレードワイパーまたは切削刃を上記伝熱体と相対運
動させることを特徴とする熱交換装置。
(2) a heat transfer body, and provided opposite to this heat transfer body,
A disturbance blade that moves relative to this is provided, and the distance between the side end of the heat transfer body of the disturbance blade and the heat transfer surface of the heat transfer body is determined by the slope of the increase in heat transfer coefficient as the distance decreases. A heat exchange device smaller than a point, characterized in that a blade wiper or a cutting blade attached to the stirring blade is moved relative to the heat transfer body.
(3)伝熱体、およびこの伝熱体と対向して設けられ、
これに相対運動する攪乱翼を備え、この攪乱翼の上記伝
熱体側端と上記伝熱体の伝熱面間との距離を、この距離
の減少に伴う熱伝達率上昇の勾配が立上がる立上がり点
より小さくした熱交換装置において、攪乱翼の風入口側
の先端を鋭角に加工したことを特徴とする熱交換装置。
(3) a heat transfer body, and provided opposite to this heat transfer body,
A disturbance blade that moves relative to this is provided, and the distance between the side end of the heat transfer body of the disturbance blade and the heat transfer surface of the heat transfer body is determined by the slope of the increase in heat transfer coefficient as the distance decreases. 1. A heat exchange device smaller than a point, characterized in that a tip of a stirring blade on an air inlet side is machined at an acute angle.
(4)伝熱体、およびこの伝熱体と対向して設けられ、
これに相対運動する攪乱翼を備え、この攪乱翼の上記伝
熱体側端と上記伝熱体の伝熱面間との距離を、この距離
の減少に伴う熱伝達率上昇の勾配が立上がる立上がり点
より小さくした熱交換装置において、伝熱体あるいは攪
乱翼が植設された円板に設けられた開口部の先端が鋭角
に加工されたことを特徴とする熱交換装置。
(4) a heat transfer body, and provided opposite to this heat transfer body,
A disturbance blade that moves relative to this is provided, and the distance between the side end of the heat transfer body of the disturbance blade and the heat transfer surface of the heat transfer body is determined by the slope of the increase in heat transfer coefficient as the distance decreases. 1. A heat exchange device smaller than a point, characterized in that the tip of an opening provided in a disk in which a heat transfer body or a stirring blade is embedded is machined into an acute angle.
(5)伝熱体、およびこの伝熱体と対向して設けられ、
これに相対運動する攪乱翼を備え、この攪乱翼の上記伝
熱体側端と上記伝熱体の伝熱面間との距離を、この距離
の減少に伴う熱伝達率上昇の勾配が立上がる立上がり点
より小さくした熱交換装置において、伝熱面の温度が水
の凝固点以上では凝固点以下の場合より攪乱翼の回転数
を大きくしたことを特徴とする熱交換装置。
(5) a heat transfer body, and provided opposite to the heat transfer body,
A disturbance blade that moves relative to this is provided, and the distance between the side end of the heat transfer body of the disturbance blade and the heat transfer surface of the heat transfer body is determined by the slope of the increase in heat transfer coefficient as the distance decreases. 1. A heat exchange device smaller than a point, characterized in that when the temperature of the heat transfer surface is above the freezing point of water, the rotational speed of the stirring blade is made higher than when the temperature is below the freezing point of water.
(6)伝熱体、およびこの伝熱体と対向して設けられ、
これに相対運動する攪乱翼を備え、この攪乱翼の上記伝
熱体側端と上記伝熱体の伝熱面間との距離を、この距離
の減少に伴う熱伝達率上昇の勾配が立上がる立上がり点
より小さくした熱交換装置において、伝熱面中央部の温
度を水の凝固点以上かつ流入空気の露点以下にしたこと
を特徴とする熱交換装置。
(6) a heat transfer body, and provided opposite to the heat transfer body,
A disturbance blade that moves relative to this is provided, and the distance between the side end of the heat transfer body of the disturbance blade and the heat transfer surface of the heat transfer body is determined by the slope of the increase in heat transfer coefficient as the distance decreases. 1. A heat exchange device smaller than a point, characterized in that the temperature of the central portion of the heat transfer surface is set to be above the freezing point of water and below the dew point of incoming air.
JP29008090A 1990-10-26 1990-10-26 Heat exchanger Pending JPH04165297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29008090A JPH04165297A (en) 1990-10-26 1990-10-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29008090A JPH04165297A (en) 1990-10-26 1990-10-26 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH04165297A true JPH04165297A (en) 1992-06-11

Family

ID=17751541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29008090A Pending JPH04165297A (en) 1990-10-26 1990-10-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH04165297A (en)

Similar Documents

Publication Publication Date Title
JP2666547B2 (en) Heat exchange device and method of manufacturing the same
JP2604950B2 (en) Condenser cooling fan
DE60200605T2 (en) Turbo molecular pump
EP0152844A1 (en) Die for hot die face cutting thermoplastic polymers
JP3979389B2 (en) Motor rotor cooling structure
US11352908B1 (en) Turbine stator blade and steam turbine
JPH04165297A (en) Heat exchanger
CA2404670C (en) Fan blade for agricultural combine cooling system
KR20180057487A (en) Heat exchanger
JP2015145767A (en) Outdoor machine of air conditioner
JP2007154685A (en) Turbo fan and air conditioner using the same
WO1986007411A1 (en) Air turbine
JPH0949443A (en) Throttle valve control device
JPH07190570A (en) Heat exchanger
JPH09310940A (en) Heat exchange device
KR19980048744A (en) Axial flow fan for HSM cooling
JPS585404A (en) Gas turbine blade cooled by liquid
JPH04281122A (en) Air conditioner
JP3933401B2 (en) Cooling tower operation method and cooling tower and air flow control method in cooling tower
JP3465342B2 (en) Temperature sensitive fluid type fan coupling device
JP2005098293A5 (en)
SU1216576A1 (en) Arrangement for heat-and-moisture treatment of air
JP2001214889A (en) Air blower
JPH05245331A (en) Dehumidifier
JPS61211634A (en) Drain treating device of air conditioner