JPH0416524A - Production of fluoride optical fiber - Google Patents

Production of fluoride optical fiber

Info

Publication number
JPH0416524A
JPH0416524A JP11899990A JP11899990A JPH0416524A JP H0416524 A JPH0416524 A JP H0416524A JP 11899990 A JP11899990 A JP 11899990A JP 11899990 A JP11899990 A JP 11899990A JP H0416524 A JPH0416524 A JP H0416524A
Authority
JP
Japan
Prior art keywords
fluoride
optical fiber
glass
mol
fluoride glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11899990A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiura
和夫 藤浦
Shiro Takahashi
志郎 高橋
Teruhisa Kanamori
金森 照寿
Yukio Terunuma
照沼 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11899990A priority Critical patent/JPH0416524A/en
Publication of JPH0416524A publication Critical patent/JPH0416524A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Abstract

PURPOSE:To improve the strength of the optical fiber by heat-treating a part or the whole of the fluoride glass preform, fluoride glass rod and fluoride glass pipe in an F-contg. gas and then drawing the preform. CONSTITUTION:A fluoride glass rod having a core composition obtained by casting a molten glass and a fluoride glass tube having a clad composition are etched in a hydrochloric acid soln. of ZrOCl2, washed with water and then vacuum-dried. The glass rod and tube are heat-treated at 0-400 deg.C in the atmosphere of a gaseous mixture of one or >=2 kinds among HF, CF4, NF3, SF6, BF3, F2, etc. The atmosphere is then replaced by gaseous Ar, and the rod and tube are cooled to room temp. to obtain a preform. The preform is inserted into a glass tube in an N2 atmosphere, 'Teflon FEP(R)' is used as the coating material, and the preform is drawn to obtain a fluoride optical fiber having a low loss and high strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はフッ化物光ファイバの製造方法、さらに詳細に
は低損失かつ高強度のフッ化物光ファイバの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a fluoride optical fiber, and more particularly to a method of manufacturing a fluoride optical fiber with low loss and high strength.

(従来の技術) フッ化物光ファイバは石英系を凌ぐ1O−2dB/km
以下の伝送損失が期待されており、長距離無中継が可能
な伝送媒体として有望視されている。
(Conventional technology) Fluoride optical fiber has a 1O-2 dB/km performance that exceeds that of quartz fiber.
The following transmission loss is expected, and it is seen as a promising transmission medium capable of long-distance non-relaying.

しかし、フッ化物ガラスは空気中の水分と反応し、表面
に吸収損失の原因となるOH基が生成しやすく、また線
引き時の加熱によりOH基の脱水縮合により散乱損失の
原因となる酸化物結晶が生成し伝送特性が劣化するとい
う欠点があった。さらに酸化物結晶の生成によりファイ
バの強度が著しく低下するという欠点もあった。
However, fluoride glass reacts with moisture in the air, easily producing OH groups on its surface that cause absorption loss, and oxide crystals that cause scattering loss due to dehydration and condensation of OH groups during heating during drawing. This has the disadvantage that the transmission characteristics are deteriorated due to the generation of Furthermore, there was also the disadvantage that the strength of the fiber was significantly reduced due to the formation of oxide crystals.

これまで母材の表面処理法としては、研磨後の母材をオ
キシ塩化ジルコニウムの塩酸溶液中で表面をケミカルエ
ツチングした後、不活性ガス中で乾燥する方法または乾
燥後に含フッ素ガスを放電ガスとするプラズマ中で表面
処理する方法が取られていた。
Up until now, the surface treatment methods for the base material include chemical etching the surface of the base material after polishing in a hydrochloric acid solution of zirconium oxychloride, and then drying it in an inert gas, or using a fluorine-containing gas as a discharge gas after drying. A method of surface treatment in plasma was used.

(発明が解決する問題点) しかし、不活性ガス中での乾燥では表面OH基を効率よ
く除去することはできず、脱水縮合による酸素不純物の
残留が生じ、その後の線引きでの酸化物結晶の生成を抑
制することはできなかった。
(Problems to be Solved by the Invention) However, drying in an inert gas cannot efficiently remove surface OH groups, and oxygen impurities remain due to dehydration condensation. It was not possible to suppress the production.

一方、プラズマ処理では高エネルギの粒子にガラス表面
がさらされるため°、イオンによる表面のスパッタリン
グが生じ表面あれの原因となったり、吸収損失の原因と
なる欠陥が生じるなどの問題があった。
On the other hand, plasma treatment exposes the glass surface to high-energy particles, which causes problems such as sputtering of the surface by ions, which causes surface roughness, and defects that cause absorption loss.

(発明の目的) 本発明の目的は、上記欠点を解決した低損失かつ高強度
のフッ化物光ファイバの製造方法を提供することにある
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a fluoride optical fiber with low loss and high strength, which solves the above-mentioned drawbacks.

(問題点を解決するための手段) 上記問題点を解決するために、本発明にょるフッ化物光
ファイバの製造方法は、フッ化物ガラス母材を線引きし
てフッ化物光ファイバを作製する工程およびフッ化物ガ
ラス母材まなはコア組成のフッ化物ガラスロッドをフッ
化物ガラスまたはテフロンFEPのパイプの中に挿入し
線引きすることによりフッ化物光ファイバを作製する工
程において、該フッ化物ガラス母材、該フッ化物ガラス
ロッド、該フッ化物ガラスパイプの一部または全部を含
フッ素ガス中で加熱処理した後、線引きすることを特徴
とするものである。
(Means for Solving the Problems) In order to solve the above problems, the method for producing a fluoride optical fiber according to the present invention includes a step of drawing a fluoride glass base material to produce a fluoride optical fiber; In the process of producing a fluoride optical fiber by inserting a fluoride glass rod having a fluoride glass base material or core composition into a fluoride glass or Teflon FEP pipe and drawing it, the fluoride glass base material, the The method is characterized in that a part or all of the fluoride glass rod and the fluoride glass pipe are heated in a fluorine-containing gas and then drawn.

すなわち、ケミカルエツチングを施し不活性ガス中また
は減圧下で乾燥した母材またはガラスチューブの表面を
含フッ素ガス中で加熱処理することを特徴とする。
That is, it is characterized in that the surface of the base material or glass tube, which has been chemically etched and dried in an inert gas or under reduced pressure, is heat-treated in a fluorine-containing gas.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

本発明によれば、前述のように、フッ化物ガラス母材、
フッ化物ガラスロッド、フッ化物ガラスパイプの一部又
は全部をフッ化物ガスで加熱処理するものであるが、こ
のフッ化物ガスは表面OH基が除去できるようなフッ化
物ガスであれば、本発明において基本的に限定されるも
のではない。
According to the present invention, as described above, a fluoride glass base material,
A part or all of the fluoride glass rod or fluoride glass pipe is heat-treated with fluoride gas, and in the present invention, as long as the fluoride gas is a fluoride gas that can remove surface OH groups, Basically, it is not limited.

たとえば、含フッ素ガスがフッ素かまたは水素、炭素、
ホウ素、窒素、塩素、臭素、ヨウ素、イオウのうち少な
くともいずれが1つとフッ素の化合物のガスであり、該
含フッ素ガスのいずれが1つまたは2つ以上の混合ガス
であることができる。
For example, if the fluorine-containing gas is fluorine, hydrogen, carbon,
The gas is a compound of fluorine and at least one of boron, nitrogen, chlorine, bromine, iodine, and sulfur, and any one of the fluorine-containing gases can be a mixed gas of two or more.

具体例部しては、たとえばHF、CF4、NF3、SF
b、BF3、F2などの一種以上を挙げることができる
Specific examples include HF, CF4, NF3, SF
b, BF3, F2, and the like.

さらに、含フッ化物ガスでの処理温度は、0〜400℃
であるのが好ましい、0℃未満であると、温度が低すぎ
て含フッ化物ガスが活性化しない恐れがあり、400℃
を越えると処理されるフッ化物ガラスが結晶化する恐れ
がある6 (実施例) 以下、本発明を実施例によって詳細に説明するが、本発
明はこれにより何等限定されるものではない。
Furthermore, the treatment temperature with fluoride-containing gas is 0 to 400°C.
If the temperature is less than 0°C, the fluoride-containing gas may not be activated because the temperature is too low;
If the fluoride glass is exceeded, there is a risk that the fluoride glass to be treated may crystallize.6 (Example) The present invention will be explained in detail below with reference to Examples, but the present invention is not limited thereto in any way.

(実施例1) ガラス融液を円筒状の鋳型にキャスティングし急冷する
ことにより作製したコア組成(49モル%ZrF4−2
5モル%BaF2−3.5モル%LaF3−2モル%Y
F3−2.5モル%AlF3−18モル%LiF)を有
するガラスロッド(直径6mm、150mm長)および
ローテイシラナルキャスティング法(D、C,Tran
 et、 at。
(Example 1) Core composition (49 mol% ZrF4-2) produced by casting a glass melt into a cylindrical mold and rapidly cooling it
5 mol% BaF2-3.5 mol%LaF3-2 mol%Y
A glass rod (diameter 6 mm, 150 mm length) with F3-2.5 mol% AlF3-18 mol% LiF) and a rotary silanal casting method (D, C, Tran
et, at.

Electron、 Lett vol 1g、 P、
 59. (1982) )で作製したクラッド組成(
47,5モル%ZrF4−23.5モル%BaF2−2
.5モル%LaF3−2モル%YF3−4.5モル%A
IF−20モル%LiF)を有するガラスチューブ(外
径12mm、内径6mm、150mm長)をオキシ塩化
ジルコニウムの塩酸溶液でエツチングし水洗後減圧乾燥
した。これらのロッドおよびガラスチューブをHF (
50vo 1%)  He (50vo 1%)雰囲気
(11/m1n)で200℃に加熱し10時間保持した
。その後、雰囲気をArガスに置換し室温まで炉冷した
。このようにして処理した母材を窒素雰囲気下でガラス
チューブ内に挿入しテフロンFEPを被覆材に用い線引
きし、700mのフッ化物光ファイバを得た。得られた
ファイバの伝送損失特性の測定結果を第1図に示す。な
お、比較のために、HFガス処理を行わなかった以外は
、本実施例と同様の方法で作製したフッ化物光ファイバ
の損失特性も併記した。この図で明らかなように、従来
法で作製したファイバには2.9μm付近にOH基によ
る大きい吸収ピークが見られ、また波長に依存しない散
乱損失が顕著である。
Electron, Lett vol 1g, P,
59. (1982)) cladding composition (
47.5 mol% ZrF4-23.5 mol% BaF2-2
.. 5 mol%LaF3-2 mol%YF3-4.5 mol%A
A glass tube (outer diameter 12 mm, inner diameter 6 mm, length 150 mm) containing IF-20 mol % LiF) was etched with a hydrochloric acid solution of zirconium oxychloride, washed with water, and then dried under reduced pressure. These rods and glass tubes were heated in HF (
50vo 1%) He (50vo 1%) atmosphere (11/m1n) was heated to 200° C. and held for 10 hours. Thereafter, the atmosphere was replaced with Ar gas and the furnace was cooled to room temperature. The base material treated in this manner was inserted into a glass tube under a nitrogen atmosphere, and was drawn using Teflon FEP as a coating material to obtain a 700 m fluoride optical fiber. Figure 1 shows the measurement results of the transmission loss characteristics of the obtained fiber. For comparison, the loss characteristics of a fluoride optical fiber produced in the same manner as in this example except that no HF gas treatment was performed are also shown. As is clear from this figure, the fiber produced by the conventional method has a large absorption peak due to OH groups near 2.9 μm, and also has significant wavelength-independent scattering loss.

このOH基はコアロッド表面およびガラスチューブ内面
に吸着しているOH基が残留した結果であり、また波長
に依存しない散乱損失はこれらOH基の一部が脱水縮合
して生成した酸化物結晶によるものである0本実施例で
作製したファイバは、OH基による吸収ピークが大幅に
低減されており、さらに波長に依存しない散乱損失も低
減されていることから、HFガス処理により表面に吸着
している水、OH基などの酸素不純物が除去できること
がわかる。さらに、得られたファイバをゲージ長1m、
引っ張り速度59m、m/m i n、試料数50本で
引っ張り試験を行った。引っ張り強度の平均値は1.0
GPaで、従来法で作製したファイバの400MPaに
比べ大幅に向上した。
This OH group is the result of residual OH groups adsorbed on the core rod surface and the inner surface of the glass tube, and the wavelength-independent scattering loss is due to oxide crystals generated by dehydration and condensation of some of these OH groups. In the fiber produced in this example, the absorption peak due to OH groups is significantly reduced, and the wavelength-independent scattering loss is also reduced. It can be seen that oxygen impurities such as water and OH groups can be removed. Furthermore, the obtained fiber was given a gauge length of 1 m,
A tensile test was conducted at a tensile speed of 59 m, m/min, and 50 samples. The average value of tensile strength is 1.0
The GPa was significantly improved compared to the 400 MPa of the fiber produced using the conventional method.

この方法において、HFガスの代わりにCF4、NF3
、SF6、BF3を用いてもHFガスと同様の効果が得
られた。
In this method, CF4, NF3 is used instead of HF gas.
, SF6, and BF3 also produced similar effects to those of HF gas.

(実施例2) コア/クラッド構造を有する(コア組成=49モル%Z
rF4−25モル%BaF2−3.5モル%LaF3−
2モル%YF3−2.5モル%AlF3−18モル%L
iF、クラッド組成=47.5モル%ZrF4−23.
5モル%Ba、F2−2.5モル%LaF3−2モル%
YF3−4.5モル%AlF3−20モル%NaF)直
径6mm、150mm長の母材を用い、含フッ素ガスと
してArで希釈したF2ガス(F2 (50VO1%)
−Ar (50vo 1%))を用い、処理温度を冷却
により0℃とした以外は実施例1と同様の方法でフッ化
物光ファイバを作製した0作製したファイバの伝送損失
特性を第2図に示す0作製したファイバは最低損失0.
7dB/kmであり、フッ素処理により酸素不純物の除
去が可能であることが明らかになった。引っ張り試験に
より得られた平均値は1.IGPaでありこの方法によ
り高強度のファイバが得られた。
(Example 2) Having a core/clad structure (core composition = 49 mol% Z
rF4-25 mol% BaF2-3.5 mol% LaF3-
2 mol% YF3-2.5 mol% AlF3-18 mol%L
iF, cladding composition = 47.5 mol% ZrF4-23.
5 mol%Ba, F2-2.5 mol%LaF3-2 mol%
Using a base material with a diameter of 6 mm and a length of 150 mm, F2 gas (F2 (50 VO 1%) diluted with Ar as a fluorine-containing gas) was used.
A fluoride optical fiber was fabricated in the same manner as in Example 1, except that the treatment temperature was 0°C by cooling. The transmission loss characteristics of the fabricated fiber are shown in Figure 2. The fabricated fiber shown below has a minimum loss of 0.
7 dB/km, indicating that oxygen impurities can be removed by fluorine treatment. The average value obtained by the tensile test was 1. IGPa, and a high-strength fiber was obtained by this method.

(実施例3) 53モル%ZrF4−20モル%BaF2−4モル%L
aF3−3モル%AIF−20モル%NaFの組成の直
径8mmのガラスロッドをコア、テフロンFEPをクラ
ッドとし、含フッ素ガスとしてHF (50vo 1%
)   F2(50vo1%)、処理温度として100
℃とした以外は実施例1の方法と同様の方法で300m
のフッ化物光ファイバを作製した0作製したファイバの
伝送損失特性を第3図に示す、この図から明らかなよう
に、2.9μm付近のOH基の吸収が大幅に低減できた
。また、HFとF2を混合することにより、単独のガス
で処理する場合に比べ低温でも効率よく酸素不純物を除
去できた。
(Example 3) 53 mol% ZrF4-20 mol%BaF2-4 mol%L
aF3-3 mol% AIF-20 mol% NaF glass rod with a diameter of 8 mm was used as the core, Teflon FEP was used as the cladding, and HF (50vo 1%) was used as the fluorine-containing gas.
) F2 (50vo1%), 100 as processing temperature
300 m in the same manner as in Example 1 except that the temperature was
Figure 3 shows the transmission loss characteristics of the fabricated fluoride optical fiber.As is clear from this figure, the absorption of OH groups around 2.9 μm was significantly reduced. Furthermore, by mixing HF and F2, oxygen impurities could be removed more efficiently even at lower temperatures than when treating with a single gas.

この方法において、コアガラスをHfF4−BaF2を
主成分とするフッ化物ガラスとしても上記実施例と同様
にOH基による吸収損失、酸化物による散乱損失および
強度低下を大幅に低減することができた。
In this method, absorption loss due to OH groups, scattering loss due to oxides, and strength reduction were able to be significantly reduced even when the core glass was a fluoride glass mainly composed of HfF4-BaF2, as in the above example.

(実施例4) 組成22モル%BaF2−22モル%CaF2−16モ
ル%YF3−40モル%AlF3の直径8mmのガラス
ロッドをコア、テフロンFEPをクラッドとし、含フッ
素ガスとしてSF6、処理温度として400℃とした以
外は実施例1と同様の方法でフッ化物光ファイバを作製
した。作製したファイバの伝送特性を第4図に示す。こ
の図から明らかなように、2.9μm付近のOH基によ
る吸収が大幅に低減でき、波長に依存しない散乱損失も
低減されていることがわかる。このファイバの引っ張り
強度は1.0GPaであり、本実施例の方法により低損
失かつ高強度のフッ化物光ファイバが得られた。
(Example 4) Composition 22 mol% BaF2 - 22 mol% CaF2 - 16 mol% YF3 - 40 mol% AlF3 glass rod with a diameter of 8 mm was used as the core, Teflon FEP was used as the cladding, SF6 was used as the fluorine-containing gas, and the processing temperature was 400°C. A fluoride optical fiber was produced in the same manner as in Example 1 except that the temperature was changed to .degree. Figure 4 shows the transmission characteristics of the fabricated fiber. As is clear from this figure, absorption by OH groups near 2.9 μm can be significantly reduced, and scattering loss independent of wavelength is also reduced. The tensile strength of this fiber was 1.0 GPa, and a low-loss, high-strength fluoride optical fiber was obtained by the method of this example.

(発明の効果) 以上の実施例に示したように、本発明の方法を用いるこ
とにより、母材表面およびジャケットとして使用するガ
ラスチューブ表面に吸着した酸素不純物を除去すること
ができるため従来は困難であった低損失かつ高強度のフ
ッ化物光ファイバを作製できる利点がある。
(Effects of the Invention) As shown in the above examples, by using the method of the present invention, oxygen impurities adsorbed on the surface of the base material and the surface of the glass tube used as a jacket can be removed, which is difficult to do in the past. This method has the advantage of being able to produce a fluoride optical fiber with low loss and high strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で作製したフ・ン化物光ファイバの伝
送損失特性、第2図は実施例2で作製したフッ化物光フ
ァイバの伝送損失特性、第3図は実施例3で作製したフ
ッ化物光ファイバの伝送損失特性、第4図は実施例4で
作製したフ・ン化物光ファイバの伝送損失特性である。
Figure 1 shows the transmission loss characteristics of the fluoride optical fiber manufactured in Example 1, Figure 2 shows the transmission loss characteristics of the fluoride optical fiber manufactured in Example 2, and Figure 3 shows the transmission loss characteristics of the fluoride optical fiber manufactured in Example 3. Transmission Loss Characteristics of Fluoride Optical Fiber FIG. 4 shows the transmission loss characteristics of the fluoride optical fiber produced in Example 4.

Claims (3)

【特許請求の範囲】[Claims] (1)フッ化物ガラス母材を線引きしてフッ化物光ファ
イバを作製する工程およびフッ化物ガラス母材またはコ
ア組成のフッ化物ガラスロッドをフッ化物ガラスまたは
テフロンFEPのパイプの中に挿入し線引きすることに
よりフッ化物光ファイバを作製する工程において、該フ
ッ化物ガラス母材、該フッ化物ガラスロッド、該フッ化
物ガラスパイプの一部または全部を含フッ素ガス中で加
熱処理した後、線引きすることを特徴とするフッ化物光
ファイバの製造方法。
(1) Step of drawing a fluoride glass base material to produce a fluoride optical fiber, and inserting a fluoride glass base material or a fluoride glass rod having a core composition into a fluoride glass or Teflon FEP pipe and drawing it. In the step of producing a fluoride optical fiber, a part or all of the fluoride glass base material, the fluoride glass rod, and the fluoride glass pipe are heated in a fluorine-containing gas and then drawn. A method for manufacturing a fluoride optical fiber.
(2)含フッ素ガスがフッ素かまたは水素、炭素、ホウ
素、窒素、塩素、臭素、ヨウ素、イオウのうち少なくと
もいずれか1つとフッ素の化合物のガスであり、該含フ
ッ素ガスのいずれか1つまたは2つ以上の混合ガスであ
ることを特徴とする特許請求の範囲第1項記載のフッ化
物光ファイバの製造方法。
(2) The fluorine-containing gas is fluorine or a gas of a compound of fluorine and at least one of hydrogen, carbon, boron, nitrogen, chlorine, bromine, iodine, and sulfur, and any one of the fluorine-containing gases or The method for manufacturing a fluoride optical fiber according to claim 1, characterized in that the mixed gas is a mixture of two or more gases.
(3)加熱処理温度が0℃から400℃の範囲であるこ
とを特徴とする特許請求の範囲第1項または第2項に記
載のフッ化物光ファイバの製造方法。
(3) The method for manufacturing a fluoride optical fiber according to claim 1 or 2, wherein the heat treatment temperature is in the range of 0°C to 400°C.
JP11899990A 1990-05-09 1990-05-09 Production of fluoride optical fiber Pending JPH0416524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11899990A JPH0416524A (en) 1990-05-09 1990-05-09 Production of fluoride optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11899990A JPH0416524A (en) 1990-05-09 1990-05-09 Production of fluoride optical fiber

Publications (1)

Publication Number Publication Date
JPH0416524A true JPH0416524A (en) 1992-01-21

Family

ID=14750496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11899990A Pending JPH0416524A (en) 1990-05-09 1990-05-09 Production of fluoride optical fiber

Country Status (1)

Country Link
JP (1) JPH0416524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672628A1 (en) * 1994-03-16 1995-09-20 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method for the fabrication of fluoride glass single mode optical fibres
CN115650575A (en) * 2022-09-26 2023-01-31 中国科学院上海光学精密机械研究所 Preparation method of fluoride optical fiber precursor glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672628A1 (en) * 1994-03-16 1995-09-20 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method for the fabrication of fluoride glass single mode optical fibres
CN115650575A (en) * 2022-09-26 2023-01-31 中国科学院上海光学精密机械研究所 Preparation method of fluoride optical fiber precursor glass

Similar Documents

Publication Publication Date Title
US4082420A (en) An optical transmission fiber containing fluorine
DK158940B (en) PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS
JPS61247633A (en) Production of glass base material for optical fiber
JPH04119939A (en) Production of base material for optical fiber
US4295869A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
US4902325A (en) Method for producing glass preform for optical fiber
JPS62275035A (en) Production of base material for optical fiber
EP0968972B1 (en) Process for fabricating optical fiber
JPH0416524A (en) Production of fluoride optical fiber
KR890001124B1 (en) Method for producing glass preform
WO2022209515A1 (en) Fluorine-containing silica glass powder and method for producing fluorine-containing silica glass powder
JPS6144820B2 (en)
JPS5879835A (en) Surface-treating method for optical fiber preform
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JPS63190734A (en) Production of optical fiber base material
JPS6351978B2 (en)
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JP2004238277A (en) Method of manufacturing optical fiber preform, optical fiber preform and optical fiber
JP2985966B2 (en) Equipment for producing raw materials for low loss fluoride optical fiber
KR830001241B1 (en) Manufacturing method of optical transmission material
JP2799730B2 (en) Method and apparatus for drawing fluoride optical fiber
US5201920A (en) Method for producing an optical fiber of halide glass, particularly an infrared permeable fiber of fluoride glass
Yoshida Halide Fiber Progress in Japan
JPS6051628A (en) Treatment of glass material for optical fiber