JPH04165118A - Damper bearing - Google Patents

Damper bearing

Info

Publication number
JPH04165118A
JPH04165118A JP2287021A JP28702190A JPH04165118A JP H04165118 A JPH04165118 A JP H04165118A JP 2287021 A JP2287021 A JP 2287021A JP 28702190 A JP28702190 A JP 28702190A JP H04165118 A JPH04165118 A JP H04165118A
Authority
JP
Japan
Prior art keywords
plate
electrodes
spring
bearing
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2287021A
Other languages
Japanese (ja)
Inventor
Doshu Ida
道秋 井田
Osami Matsushita
松下 修巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2287021A priority Critical patent/JPH04165118A/en
Publication of JPH04165118A publication Critical patent/JPH04165118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To actively control vibration through nonlubricated simple structure by giving vibration to a spring to support a bearing, severally sticking piezo-elec tric ceramics plates to both the sides of the spring to form electrodes on the surfaces of the above plate, and connecting the electrodes to a resistance to form a circuit for converting the vibration into electricity. CONSTITUTION:A plate spring 3 is given vibration through a bearing 2 to support a rotary shaft 1, and piezo-electric ceramics plates 5 are severally stuck to both the faces of a square section-shaped rib 4 composing the spring 3. An electrode is formed on the surface of the plate 5, and as the one side of the plate 5 elongates, its opposite side contracts to make piezo electric effect generate positive and negative voltages in the electrodes on the plate 5 according to the elongation and contraction of the plate 5. Potential difference therefore occurs between the two electrodes to flow electric current through a resistance 6 connected between the electrodes to generate heat in the resistance 6. Thus vibrational energy is converted into electrical energy and then thermal energy to generate damping effect for producing a nonlubricated damper bearing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転軸を支持する軸受において高い減衰作用を
もつダンパ軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a damper bearing that supports a rotating shaft and has a high damping effect.

〔従来の技術〕[Conventional technology]

従来、ダンパ軸受は、油膜(オイルフィルム)を用いて
そのスクイズ効果による減衰作用を利用するものが多い
。それは、軸受と、油膜を形成するための細隙間と、振
動したとき軸受を隙間の中心に戻すためのセンタリング
ばねとで、構成されている。この減衰の大きさは、油の
粘度と細隙間の形状に大きく作用される。一般に、細隙
間は軸受の外周部に設けられるため、軸受としての外形
が大きくなる。また、油膜を形成するため、油を供給す
る必要があり、この油が軸受の外部に洩れないようにシ
ールの必要もある。この結果、より一層軸受としての外
形が大きくなっている。なお、この種の軸受として関連
するものには、例えば。
Conventionally, many damper bearings use an oil film to utilize the damping effect due to the squeeze effect. It consists of a bearing, a narrow gap for forming an oil film, and a centering spring that returns the bearing to the center of the gap when it vibrates. The magnitude of this attenuation is largely influenced by the viscosity of the oil and the shape of the narrow gap. Generally, the narrow gap is provided at the outer periphery of the bearing, which increases the external size of the bearing. Furthermore, in order to form an oil film, it is necessary to supply oil, and a seal is also required to prevent this oil from leaking to the outside of the bearing. As a result, the outer shape of the bearing becomes even larger. Note that related bearings of this type include, for example.

特願昭56−6412号明細書が挙げられる。The specification of Japanese Patent Application No. 56-6412 is mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、油膜を用いているため油に対する考慮
が必要となり、また、その構造上、軸受として外形が大
きくなる問題があった。また、減衰作用の大きさは1、
油の粘度と細隙間の形状に大きく作用される。このため
、減衰の最大効果を得るには、油の粘度や隙間の大きさ
などのコントロールが必要となり、頻雑であった。
Since the above-mentioned conventional technology uses an oil film, it is necessary to take oil into consideration, and due to its structure, there is a problem in that the external size of the bearing becomes large. Also, the magnitude of the damping effect is 1,
It is greatly affected by the viscosity of the oil and the shape of the narrow gap. Therefore, in order to obtain the maximum damping effect, it is necessary to control the viscosity of the oil, the size of the gap, etc., which is complicated.

また、この減衰作用は受動的であり能動的に振動を抑制
することはできない。
Further, this damping effect is passive and vibration cannot be actively suppressed.

本発明の目的は、油を利用しない小形のダンパ軸受を提
供することにある。
An object of the present invention is to provide a compact damper bearing that does not use oil.

〔課題を解決するための手段〕[Means to solve the problem]

]−起重的を達成するために、本発明は油膜を用いたス
クイズ効果による減衰作用の代わりに、振動エネルギを
圧電セラミックスの板を用いて電気エネルギに変換し、
さらに抵抗で熱エネルギに変換して消費する構成とした
] - In order to achieve this effect, the present invention converts vibration energy into electrical energy using a piezoelectric ceramic plate instead of the damping effect due to the squeeze effect using an oil film.
Furthermore, it was configured to use a resistor to convert heat energy for consumption.

また、圧電セラミックスの板に発生している曲がりと逆
位相の曲がりを、圧電セラミックスに電圧を加えること
で発生させ、振動を抑制する構成とした。
In addition, by applying a voltage to the piezoelectric ceramic, a bend in phase opposite to the bend occurring in the piezoelectric ceramic plate is generated, thereby suppressing vibration.

〔作用〕[Effect]

同転軸を支持する軸受を介して、これを支持するばねに
振動が与えられる。このばねは、四角断面形状をしてお
り、その裏表両面には圧電セラミックスの板が貼り付け
られている。また、それぞれの板の表面には電極が形成
され、そわらは抵抗に接続されて回路を形成している。
Vibrations are applied to the springs that support the co-rotating shafts via bearings that support them. This spring has a square cross-section, and piezoelectric ceramic plates are attached to both the front and back sides of the spring. Additionally, electrodes are formed on the surface of each plate, and the plates are connected to resistors to form a circuit.

ばねが振動により曲がると、その表面の圧電セラミック
スの抜は、片側は面内方向に伸び、反対側は面内方向に
縮む。この結果、圧電セラミックスの持つ圧電効果によ
り、この板の電極には伸縮の大きさに応じて電圧が生じ
る。この際、伸びた板の電極に正の電圧が発生した場合
は、縮んだ側の板の電極には負の電圧が発生する。従っ
て、二枚の電極の間には電位差が生じ、電極の間に接続
した抵抗には電流が流れて発熱する。
When the spring bends due to vibration, the piezoelectric ceramic on its surface expands in the in-plane direction on one side and contracts in the in-plane direction on the other side. As a result, due to the piezoelectric effect of piezoelectric ceramics, a voltage is generated in the electrodes of this plate depending on the magnitude of expansion and contraction. At this time, if a positive voltage is generated at the electrode of the expanded plate, a negative voltage is generated at the electrode of the contracted plate. Therefore, a potential difference occurs between the two electrodes, and current flows through the resistor connected between the electrodes, generating heat.

また、抵抗の代わりに電源を接続して電圧を加え、上記
とは逆に曲がりを圧電セラミックスの板に発生させ、そ
の曲がりが回転軸の振動による曲がりと逆位相となるよ
うに制御することで振動を抑制する。
In addition, by connecting a power source instead of a resistor and applying voltage, a bend is generated in the piezoelectric ceramic plate in the opposite way to the above, and the bending is controlled so that it is in the opposite phase to the bending caused by the vibration of the rotating shaft. Suppress vibration.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

第1図は縦断面図を示し、その構成は、回転軸1とこれ
を支持する軸受2、さらに、これらをケーシング等から
支持する四角断面形状のばね3、およびこのばね裏表の
両面に貼り付けられた圧電セラミックスの板5とこの板
上の電極と接続されて回路を形成する抵抗6からなる。
Fig. 1 shows a vertical cross-sectional view, and its configuration includes a rotating shaft 1, a bearing 2 that supports it, a spring 3 with a square cross section that supports these from a casing, etc., and a spring 3 that is attached to both the front and back sides of this spring. It consists of a piezoelectric ceramic plate 5 and a resistor 6 connected to an electrode on this plate to form a circuit.

この図ではケーシング等は省略し図示していない。また
、抵抗6の取り付は位置はただその存在を示すだけのも
のである。
In this figure, the casing and the like are omitted and not shown. Furthermore, the mounting position of the resistor 6 merely indicates its presence.

本実施例では、軸受2として無潤滑ころがり軸受な使用
し、油然レダンパ軸受を達成するものとする。回転軸1
を支持する軸受2を介して、これを支持するばねとして
軸対称性が良いとの観点で選んだかご型形状ばね3に振
動が伝えられる。このばねを構成する四角断面形状のリ
ブ4の裏表両面に貼り付けられている圧電セラミックス
の板5の表面には電極が形成され、それらは抵抗6に接
続されて回路を形成している6リブ4が振動により曲が
ると、その表面の圧電セラミックスの板5は、片側は面
内方向に伸び、反対側は面内方向に縮む。この結果、圧
電セラミックスの持つ圧電効果により、この板の電極に
は伸縮の大きさに応じて電圧が生じる。この際、伸びた
板の電極に正の電圧が発生した場合は、縮んだ側の板の
電極には負の電圧が発生する。従pて、二枚の電極の間
には電位差が生じ、電極の間に接続した抵抗には電流が
流れ、発熱することになる。このように、振動エネルギ
を電戴エネルギに変換し続いて熱エネルギに変換するこ
とで、振動エネルギの消費を行い減衰効果を達成する。
In this embodiment, a non-lubricated rolling bearing is used as the bearing 2 to achieve an oil-based redamper bearing. Rotating axis 1
Vibrations are transmitted to a squirrel-cage spring 3, which was selected from the viewpoint of good axial symmetry, as a spring that supports this, through a bearing 2 that supports the bearing 2. Electrodes are formed on the surface of a piezoelectric ceramic plate 5 attached to both the front and back surfaces of ribs 4 with a square cross section that constitute this spring, and electrodes are formed on the surface of the piezoelectric ceramic plate 5, which is connected to a resistor 6 to form a circuit. When 4 bends due to vibration, the piezoelectric ceramic plate 5 on its surface expands in the in-plane direction on one side and contracts in the in-plane direction on the other side. As a result, due to the piezoelectric effect of piezoelectric ceramics, a voltage is generated in the electrodes of this plate depending on the magnitude of expansion and contraction. At this time, if a positive voltage is generated at the electrode of the expanded plate, a negative voltage is generated at the electrode of the contracted plate. Therefore, a potential difference occurs between the two electrodes, and current flows through the resistor connected between the electrodes, generating heat. In this way, by converting vibration energy into electrical energy and then into thermal energy, vibration energy is consumed and a damping effect is achieved.

本実施例によれば、油無しのダンパ軸受が達成でき、油
を嫌う機器の回転軸系に減衰を付与できる効果がある。
According to this embodiment, an oil-free damper bearing can be achieved, and there is an effect that damping can be applied to the rotating shaft system of equipment that does not like oil.

また、電位差の変動周期から振動周波数を知ることが可
能となる。
Moreover, it becomes possible to know the vibration frequency from the fluctuation period of the potential difference.

第3図に示す実施例は、振動周波数計測用の補助電極を
新たに設け、抵抗6にかえた位相反転器7と増幅器8に
より、振動周波数計測用の補助電極からの出力を位相反
転器7と増幅器8を介して電極に接続することで1発生
している振動を積極的に抑制する。ここでは、位相反転
器や増幅器への電源は省略している。
In the embodiment shown in FIG. 3, an auxiliary electrode for vibration frequency measurement is newly provided, and the output from the auxiliary electrode for vibration frequency measurement is transferred to the phase inverter 7 by a phase inverter 7 and an amplifier 8 in place of the resistor 6. By connecting the electrode to the electrode via the amplifier 8, the vibrations occurring in the first part are actively suppressed. Here, power supplies to the phase inverter and amplifier are omitted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、油無しのダンパ軸受が提供できる効果
がある。この結果、油使用のため、無理であった機器に
利用することができる。また、油を使わないため、軸受
全体の構成が簡単となる。
According to the present invention, an oil-free damper bearing can be provided. As a result, it can be used in equipment that would otherwise be impossible due to the use of oil. Additionally, since no oil is used, the entire bearing structure is simplified.

そして、従来の受動的とは異なり、能動的に振動の抑制
が可能となる。
Unlike the conventional passive method, vibration can be actively suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は第1図
のばね部を書き出した説明図である。 第3図は本発明の他の実施例において第1図と異なる部
分のみ書き出した説明図である。 1・・・回転軸、2・・・軸受、3・・・ばね、4・・
・リブ、5・・・圧電やセラミックスの板、6・・抵抗
、7・・・位相反転器、8・・・増幅器。
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, and FIG. 2 is an explanatory diagram of the spring portion of FIG. 1. FIG. 3 is an explanatory diagram in which only the different parts from FIG. 1 are drawn in another embodiment of the present invention. 1... Rotating shaft, 2... Bearing, 3... Spring, 4...
・Rib, 5... Piezoelectric or ceramic plate, 6... Resistor, 7... Phase inverter, 8... Amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1.回転軸を支持する軸受装置において、軸受を支持す
る四角断面形状のばねと、前記ばねの裏表両面に圧電セ
ラミツクスの板を貼り付け、その表面に形成した電極を
外部の抵抗に接続して回転を構成しダンパを設けたこと
を特徴とするダンパ軸受。
1. In a bearing device that supports a rotating shaft, a spring with a rectangular cross section that supports the bearing, a piezoelectric ceramic plate attached to both the front and back sides of the spring, and an electrode formed on the surface connected to an external resistor to control rotation. A damper bearing characterized in that it has a damper structure and a damper.
JP2287021A 1990-10-26 1990-10-26 Damper bearing Pending JPH04165118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287021A JPH04165118A (en) 1990-10-26 1990-10-26 Damper bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287021A JPH04165118A (en) 1990-10-26 1990-10-26 Damper bearing

Publications (1)

Publication Number Publication Date
JPH04165118A true JPH04165118A (en) 1992-06-10

Family

ID=17712015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287021A Pending JPH04165118A (en) 1990-10-26 1990-10-26 Damper bearing

Country Status (1)

Country Link
JP (1) JPH04165118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002967A1 (en) * 2003-06-26 2005-01-13 Honeywell International, Inc. Piezodynamic vibration damping system
EP2339131A1 (en) * 2009-12-21 2011-06-29 Rolls-Royce plc Bearing assembly with damper
EP2339130A1 (en) * 2009-12-21 2011-06-29 Rolls-Royce plc Bearing assembly with piezoelectric element
CN103715942A (en) * 2014-01-13 2014-04-09 天津大学 Vibration damping device for recycling bend torsion composite energy in piezoelectric mode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002967A1 (en) * 2003-06-26 2005-01-13 Honeywell International, Inc. Piezodynamic vibration damping system
EP2339131A1 (en) * 2009-12-21 2011-06-29 Rolls-Royce plc Bearing assembly with damper
EP2339130A1 (en) * 2009-12-21 2011-06-29 Rolls-Royce plc Bearing assembly with piezoelectric element
US8662756B2 (en) 2009-12-21 2014-03-04 Rolls-Royce Plc Bearing assembly
US8684602B2 (en) 2009-12-21 2014-04-01 Rolls-Royce Plc Bearing assembly
CN103715942A (en) * 2014-01-13 2014-04-09 天津大学 Vibration damping device for recycling bend torsion composite energy in piezoelectric mode

Similar Documents

Publication Publication Date Title
Williams et al. Analysis of a micro-electric generator for microsystems
Peters et al. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems
Koc et al. A piezoelectric motor using two orthogonal bending modes of a hollow cylinder
Mizuno et al. Investigation of a resonance microgenerator
Koc et al. Piezoelectric micromotor using a metal-ceramic composite structure
JP2005532516A (en) Thrust load relaxation device for rotor bearing system using permanent magnet
JP3615883B2 (en) Giant magnetostrictive actuator and giant magnetostrictive speaker using the same
Liang et al. Broadband pendulum energy harvester
JP5961868B2 (en) Vibration power generation element
WO2011056524A2 (en) Nonlinear oscillator for vibration energy harvesting
Dabbagh et al. Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source
JPH04165118A (en) Damper bearing
CN107592089B (en) Low thermoelastic damping cantilever micro-beam resonator with through hole structure
CA2561679C (en) Magnetohydrodynamic (mhd) actuator sensor
JP2018023214A (en) Vibration power generator
US3359045A (en) Squeeze film bearing
Lensvelt et al. Design and numerical analysis of an electrostatic energy harvester with impact for frequency up-conversion
Krishnasamy et al. Distributed parameter modeling for autonomous charge extraction of various multilevel segmented piezoelectric energy harvesters
US3725986A (en) Method of making power transducers
JP2001186781A (en) Vibration actuator
WO2017090727A1 (en) Electrostatic induction type power generation element
JPH0491668A (en) Supersonic motor
JP3470920B2 (en) converter
JP2010139024A (en) Power generation type damper
JPH07310743A (en) Pre-load adjusting device for bearing