JPH0416473B2 - - Google Patents

Info

Publication number
JPH0416473B2
JPH0416473B2 JP5073883A JP5073883A JPH0416473B2 JP H0416473 B2 JPH0416473 B2 JP H0416473B2 JP 5073883 A JP5073883 A JP 5073883A JP 5073883 A JP5073883 A JP 5073883A JP H0416473 B2 JPH0416473 B2 JP H0416473B2
Authority
JP
Japan
Prior art keywords
compound
liver
group
parts
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5073883A
Other languages
Japanese (ja)
Other versions
JPS59175485A (en
Inventor
Hitoshi Kurono
Kuniaki Yanaka
Minoru Kato
Tatsuyoshi Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Nohyaku Co Ltd
Original Assignee
Nihon Nohyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Nohyaku Co Ltd filed Critical Nihon Nohyaku Co Ltd
Priority to JP5073883A priority Critical patent/JPS59175485A/en
Publication of JPS59175485A publication Critical patent/JPS59175485A/en
Publication of JPH0416473B2 publication Critical patent/JPH0416473B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、肝機胜賊掻䜜甚を有する新芏化合物
−ゞヒドロキシ−−ゞチオラン−
−むリデンマロン酞誘導䜓の補法に関するもので
ある。 曎に詳しくは、本発明は、䞀般匏 匏䞭、R1およびR2は同䞀かたたは異぀お、ア
ルキル基、シクロヘキシル基、ベンゞル基、アル
ケニル基、アルキニル基たたはアルコキシアルキ
ル基を衚わし、 はアルカリ金属原子たたはアンモニりム基を
衚わす。 で衚わされる化合物ず次匏 で衚わされるグリオキサヌルずを酞の存圚䞋で反
応させるこずを特城ずする䞀般匏 匏䞭、R1およびR2は前蚘に同じ。 で衚わされる−ゞヒドロキシ−−ゞ
チオラン−−むリデンマロン酞誘導䜓の補法を
提䟛するものである。 すなわち、本発明によれば、䞀般匏で衚
わされる−ゞヒドロキシ−−ゞチオ
ラン−−むリデンマロン酞誘導䜓は、䞀般匏
で衚わされる化合物を酞の存圚䞋、䞍掻性
溶媒䞭でグリオキサヌルず反応させるこずによ぀
お埗るこずができる。次に、本発明方法の反応経
路を図匏的に瀺す。 匏䞭、R1およびR2は前蚘に同じ、はアルカ
リ金属原子たたはアンモニりム基を衚わす。 本発明方法においお、䜿甚しうる酞ずしおは䟋
えば硫酞、塩酞等の無機酞、酢酞等の有機酞を挙
げるこずができるが、特に酢酞が有利である。 溶媒ずしおは氎を䜿甚するこずもできるが、䞀
般には䞍掻性有機溶媒の䜿甚が望たしい。 䞍掻性有機溶媒ずしおは、この皮の反応に支障
を及がさないものであればよく、䟋えばベンれ
ン、トル゚ン等の芳銙族炭化氎玠類四塩化炭
玠、クロロホルム、ゞクロルメタン等のハロゲン
化炭化氎玠類ゞ゚チル゚ヌテル、テトラヒドロ
フラン、ゞオキサン等の゚ヌテル類酢酞゚チル
等の゚ステル類アセトン等のケトン類ゞメチ
ルホルムアミド、ゞメチルスルホキシド等を挙げ
るこずができる。 反応枩床は50℃以䞋が望たしく、特に15℃付近
の䜎枩が奜たしい。 反応モル比は䞀般匏で衚わされる化合物
に察し、グリオキサヌルを等モルないし、やや過
剰モルの範囲から適宜に遞択するこずが望たし
い。 ここで本発明で甚いる䞀般匏で衚わされ
る化合物は、次の図匏に埓぀お合成するこずがで
きる。 匏䞭、R1、R2およびは前蚘に同じ。 すなわち、䞀般匏で衚わされるマロン酞
゚ステルず二硫化炭玠ずを塩基の存圚䞋に反応さ
せるこずにより、䞀般匏で衚わされる化合
物を埗るこずができる。ここで塩基の皮類ずしお
は氎酞化ナトリりム、氎酞化カリりム等のアルカ
リ金属氎酞化物、アンモニア氎等を挙げるこずが
できる。 本発明によ぀お合成される䞀般匏で衚わ
される化合物は文献未蚘茉の新芏化合物で䟋えば
肝機胜賊掻䜜甚を有するので人間たたは動物の肝
機胜賊掻剀、肝臓倱患治療剀ずしお有甚である。 䞀般匏で衚わされる化合物の代衚䟋を瀺
せば、次のようである。 䞀般匏
The present invention discloses a novel compound 4,5-dihydroxy-1,3-dithiolane-2 which has liver function-activating effect.
-This invention relates to a method for producing ylidene malonic acid derivatives. More specifically, the present invention relates to the general formula (): (In the formula, R 1 and R 2 are the same or different and represent an alkyl group, a cyclohexyl group, a benzyl group, an alkenyl group, an alkynyl group, or an alkoxyalkyl group, and M represents an alkali metal atom or an ammonium group.) The compound represented and the following formula: General formula () characterized by reacting glyoxal represented by in the presence of an acid: The present invention provides a method for producing a 4,5-dihydroxy-1,3-dithiolan-2-ylidenemalonic acid derivative represented by the formula (wherein R 1 and R 2 are the same as above). That is, according to the present invention, the 4,5-dihydroxy-1,3-dithiolan-2-ylidenemalonic acid derivative represented by the general formula () is obtained by inactivating the compound represented by the general formula () in the presence of an acid. It can be obtained by reaction with glyoxal in a solvent. Next, the reaction route of the method of the present invention is schematically shown. (In the formula, R 1 and R 2 are the same as above, and M represents an alkali metal atom or an ammonium group.) In the method of the present invention, examples of acids that can be used include inorganic acids such as sulfuric acid and hydrochloric acid, and organic acids such as acetic acid. Mention may be made of acids, of which acetic acid is particularly preferred. Although water can be used as the solvent, it is generally preferable to use an inert organic solvent. Any inert organic solvent may be used as long as it does not interfere with this type of reaction, such as aromatic hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, and dichloromethane; diethyl Examples include ethers such as ether, tetrahydrofuran and dioxane; esters such as ethyl acetate; ketones such as acetone; dimethylformamide and dimethyl sulfoxide. The reaction temperature is preferably 50°C or lower, particularly preferably a low temperature around 15°C. The reaction molar ratio is desirably selected from the range of equimolar to slightly excess molar of glyoxal to the compound represented by the general formula (). The compound represented by the general formula () used in the present invention can be synthesized according to the following scheme. (In the formula, R 1 , R 2 and M are the same as above.) That is, by reacting the malonic acid ester represented by the general formula () with carbon disulfide in the presence of a base, The represented compounds can be obtained. Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, aqueous ammonia, and the like. The compound represented by the general formula () synthesized by the present invention is a new compound that has not been described in any literature, and has, for example, a liver function-activating effect, and is therefore useful as a liver function-activating agent for humans or animals, or as a therapeutic agent for liver failure. . Representative examples of the compound represented by the general formula () are as follows. General formula ():

【匏】 においお【formula】 in

【衚】 䞀般匏で衚わされる化合物は枩血動物に
察する毒性が䜎く、ラツト♂急性経口毒性
LD50倀は䟋えば化合物No.で1000−3000mgKg、
化合物No.で3000−5000mgKg、化合物No.で
500mgKg以䞊、化合物No.で5000mgKg以䞊、
化合物No.12で1000−3000mgKgである。 䞀般匏で衚わされる化合物はずりわけ肝
臓疟患治療剀ずしお有甚である。䟋えば四塩化炭
玠等皮々の薬物を健康な被隓動物に投䞎しお動物
に肝障害を実隓的に生じさせうるこずが知られお
いる䟋えば特公昭56−18579号。 たたヒトの臚床でみられる胆汁りツ滞の疟患モ
デルずしおは、肝倖性胆汁りツ滞に察する総胆管
結玮術が、肝内性胆汁りツ滞に察しおはα−ナフ
チルむ゜チオシアネヌトによる胆管炎が確実に䜜
られるこずがよく知られおおり日本臚牀30巻
号216ペヌゞ1972、圢態孊的にもヒトでの胆
汁りツ滞の肝の所芋ず極めお類䌌しおいるず蚀わ
れおいる薬物性肝障害の臚床山本祐倫線234ペ
ヌゞ。 埓぀おα−ナフチルむ゜チオシアネヌトによる
肝障害を病態のモデルずしお甚い抑制䜜甚を有す
る化合物を探玢するこずは、将来的にはヒト臚床
においお䜿甚しうる薬物の評䟡の䞀環ずなる。 䞀般匏で衚わされる化合物は、実隓的に
぀くられた皮々病態モデルの肝障害をも぀た被隓
動物に察しお経口的にたたは非経口的に䟋えば
泚射投䞎するこずにより顕著な肝機胜の䜎䞋抑
制或は改善効果をもたらすこずが刀明した。 埓぀お、䞀般匏で衚わされる化合物は肝
臓疟患の治療若しくは予防のための人間及び動物
甚医薬ずしお有甚である。すなわち、皮々の原因
によ぀お生ずる人間や動物の急性若しくは慢性の
肝臓疟患䟋えば脂肪肝、アルコヌル性肝炎、肝
炎、䞭毒性肝障害、う぀血肝、胆汁う぀滞性肝障
害あるいはそれらの終末像である肝硬倉の治療剀
ずしお䜿甚するこずができる。䞀般匏で衚
わされる化合物はそのたたの状態で肝臓疟患治療
剀ずなり埗るしたた補薬䞊の慣䟋に埓぀お補薬的
に蚱容し埗る垌釈剀及びたたは他の薬理䜜甚
物質ずの混合物ずしお組成するこずもできるし、
たた投薬量単䜍圢に組成するこずもよい。医薬ず
しお採りうる圢態には次の圢態が含たれる散
剀、顆粒、錠剀、糖衣錠、カプセル、ピル、懞濁
剀、液剀、乳剀、アンプル、泚射液、等匵液、な
ど。 特に本発明方法によ぀お埗られる化合物は氎溶
解床が高く、䟋えば化合物No.23は2000ppm20
℃、化合物No.12は2200ppm20℃、化合物No.
はアラビアゎム溶液に溶けるので、泚射
液、点滎の圢態で䜿甚する堎合、有利である。 本発明方法によ぀お埗られる化合物を医薬に調
補する堎合に甚いられる垌釈剀は、補薬䞊蚱容し
埗るものであるが、ここで垌釈剀ずは、䞀般匏
で衚わされる化合物以倖の玠材を意味し、
固䜓、半固䜓、液䜓あるいは摂取し埗るカプセル
であ぀おもよく、皮々のものが挙げられる䟋え
ば賊圢剀、増量剀、結合剀、湿最化剀、厩壊剀、
界面掻性剀、滑沢剀、分散剀、緩衝剀、矯味剀、
矯臭剀、色玠、銙料、保存剀、溶解補助剀、溶
剀、被芆剀、糖衣剀などなど。しかしながらこれ
に限定されるものではない。又これらは皮叉は
これ以䞊の混合物ずしお䜿甚される。このような
補薬䞊蚱容し埗る垌釈剀は他の薬理䜜甚物質ずの
混合物ずしお䜿甚される堎合もある。 本発明方法によ぀お埗られる化合物による医薬
は、既知のいかなる方法で補造しおもよい。䟋え
ば、掻性成分を垌釈剀ず混合しお、䟋えば顆粒ず
し、次いでその組成物を成圢しお、䟋えば錠剀ず
する。非経口投䞎剀は無菌ずすべきである。又必
芁な堎合には血液ず等匵ずすべきである。 䞀般匏で衚わされる化合物はそれ自䜓肝
臓疟患治療剀ずなり埗るので、組成物䞭に掻性成
分は䞀般に0.01〜100重量含たれる。 投薬量単䜍の補薬ずする堎合、圓該補剀を圢成
する個々の補剀郚分は互に異な぀た圢態にあ぀お
もよいし、同じであ぀おもよく、䟋えば次の圢態
がしばしば採甚される錠剀、顆粒、ピル、散
剀、糖衣錠、カプセル、アンプルなど。 本発明方法によ぀お埗られる化合物による肝臓
疟患治療剀は肝臓疟患の治療のために人間及び動
物に、その分野で通垞の方法によ぀お適甚され埗
る。それは経口的に又は非経口的に投䞎される。
経口的投䞎は舌䞋投䞎を包含する。非経口的投䞎
は泚射䟋えば皮䞋、筋肉、静脈泚射、点滎を含
むによる投䞎を包含する。 本発明方法によ぀お埗られる化合物の医薬の投
䞎量は、察象が動物であるか、人間であるか感受
性差、幎什、性別、䜓重、投䞎方法、投䞎の時
期、間隔、病状、䜓調、医薬補剀の性質、調剀の
皮類、有効成分の皮類など皮々の原因によ぀お倉
動する。 埓぀お䞋蚘に瀺す薬量の最䞋量より少ない量で
十分な堎合もあり、たたある堎合には、䞋蚘の䞊
限薬量を超えお投䞎する必芁の生ずるこずもあ
る。 なお倧量投䞎の堎合、日数回に分けお投䞎す
るのが奜たしい。 動物を察象ずしお有効結果を埗るためには、掻
性成分ずしお経口的投䞎の堎合䜓重Kg圓り日
に0.1〜500mg、奜たしくは0.1〜25mgの範囲、非
経口的投䞎の堎合、䜓重Kg圓り日に0.01〜
250mg、奜たしくは0.1〜25mgの範囲が有利であ
る。 人間を察象ずする堎合の有効結果を埗るための
薬量は、動物での有効薬量から感受性差䞊びに安
党性等を考慮しお、䟋えば次の薬量範囲が有利で
ある。経口的投䞎の堎合、䜓重Kg圓り日に
0.1〜250mg、奜たしくは0.5〜50mg、非経口的投
䞎の堎合、䜓重Kg圓り、日0.01〜100mg、奜
たしくは0.1〜25mgである。 次に本発明の実斜䟋を瀺す。 実斜䟋  ゞむ゜プロピル−−ゞヒドロキシ−
−ゞチオラン−−むリデン−マロネヌト
化合物No.23の合成。 マロン酞ゞむ゜プロピル56.80.3モルず
二硫化炭玠22.80.3モルの混合物を冷氎で
冷华し、撹拌する。別に調補した40カ性カリ氎
溶液84KOH33.6を氎50.4にずかしたを
枩床が20℃を越えないように、この混合物に適䞋
し、ゞポタツシナりム−ビスむ゜プロポ
キシカルボニル゚チレン−−ゞチオレヌ
トの氎溶液を埗る。このゞチオレヌト氎溶液を40
グリオキサヌル44、酢酞36、ベンれン200
mgから成る混合物に適䞋し反応させる。この間反
応内容物をよく撹拌し、反応枩床を15℃以䞋に保
぀よう適䞋を調補する。適䞋終了埌宀枩で撹拌を
続けるず反応混合物は赀耐色から淡黄色ぞず倉化
し、時間で反応が完結する。ベンれン局を分液
し、氎掗埌ベンれンを留去するず粗結晶を埗る。
也燥埌゚ヌテル、−ヘキサンの混合溶媒より再
結晶する。収量58収率60、mp.132.6℃、
NMRÎŽCDCl3 TMS ppm2.2512H、、Hz、
3.802H、broad 、5.102H、、Hz、
5.702H、。 実斜䟋  ゞ゚チル−ゞヒドロキシ−−ゞチ
オラン−−むリデン−マロネヌト化合物No.
の合成。 マロン酞ゞ゚チル160.1モル、二硫化炭玠
7.6の混合物を氷氎で冷华し撹拌する。この混
合物に45KOH氎溶液24.9を、反応枩床が20
℃を越えないように泚意し぀぀滎䞋し反応させる
ず、−ビス゚トキシカルボニル゚チレ
ン−−ゞチオレヌトのカリりム塩氎溶液が
埗られる。このゞチオレヌト氎溶液を40グリオ
キサヌル14.5、酢酞12、ベンれン60mlから成
る混合物に滎䞋し反応させる。この間反応内容物
をよく撹拌し、反応枩床を15℃以䞋に保぀よう滎
䞋を調節する。滎䞋終了埌宀枩で撹拌を続けるず
反応混合物は赀耐色から淡黄色ぞず倉化し、時
間反応が完結する。ベンれン局を分液し、氎掗埌
ベンれンを留去するず粗結晶を埗る。也燥埌酢酞
゚チル、ゞクロロメタン、−ヘキサンより成る
混合溶媒より再結晶する。収量17.8、収率60.5
。 m.p.87.3℃。 実斜䟋  ゞアリル−ゞヒドロキシ−−ゞチ
オラン−−むリデンマロネヌト化合物No.
12の合成 マロン酞ゞアリル6.14より実斜䟋ず同様に
しお45KOH氎溶液を甚いおゞチオレヌト塩氎
溶液を調補する。これを40グリオキサヌル4.8
、酢酞4.0、ベンれン30mlから成る混合物に
滎䞋し、実斜䟋ず同様に反応させお、埌凊理を
行い、ゞクロロメタン−−ヘキサンで再結晶す
るずmp.81.2℃の結晶5.22〔収率49〕が埗ら
れる。 実斜䟋  ビス−メトキシプロパン−−むル
−ゞヒドロキシ−−ゞチオラン−−
むリデンマロネヌト化合物No.15の合成 マロン酞ビス−メトキシプロパン−−む
ル8.28より実斜䟋ず同様にしお合成するず
油状の目的物を埗る。これをシリカゲルを甚いる
也匏カラムクロマトで粟補展開溶媒酢酞゚チ
ル−−ヘキサンしnD 201.5490の油
状物3.5を埗る。収率27.4。 以䞋の配合䟋で郚はすべお重量郚である。配合
成分の皮類及び割合は皮々倉化させるこずができ
る。 配合䟋  化合物22 10郚 重質酞化マグネシりム 10郚 ä¹³ 糖 80郚 を均䞀に混合しお粉末又は现粒状ずしお散剀ずす
る。 配合䟋  化合物10 10郚 合成ケむ酞アルミニりム 10郚 リン酞氎玠カルシりム 郚 ä¹³ 糖 75郚 を甚いお、配合䟋に準じお散剀ずする。 配合䟋  化合物 50郚 柱 粉 10郚 ä¹³ 糖 15郚 結晶セルロヌス 20郚 ポリビニルアルコヌル 郚 æ°Ž 30郚 を均䞀に混合〓和埌、砎砕造粒しお也燥し篩別し
お顆粒剀ずする。 配合䟋  配合䟋で埗られた顆粒剀99郚にステアリン酞
カルシりム郚を混合し、圧瞮成圢しお盎埄10mm
の錠剀ずする。 配合䟋  化合物 95郚 ポリビニルアルコヌル 郚 æ°Ž 30郚 を甚いお配合䟋ず同様にしお顆粒剀ずする。埗
られた顆粒の90郚に結晶セルロヌス10郚を加えお
圧瞮成圢しお、盎埄mmの錠剀ずする。曎にこの
錠剀に適圓量のシロツプれラチン、沈降性炭酞カ
ルシりムの混合懞濁液及び色玠を䜿甚しお糖衣錠
ずする。 配合䟋  化号物21 0.5郚 非むオン界面掻性剀 2.5郚 生理食塩氎 97郚 を加枩混合埌枛菌しお泚射剀ずする。 配合䟋  配合䟋で埗た酞剀を垂販のカプセル容噚に充
填しおカプセルずする。 詊隓䟋  四塩化炭玠肝障害抑制効果 詊隓方法 䟛詊化合物をオリヌブ油に溶解たたは懞濁させ
おマりス週間dd系♂に250mgKgの割合で
経口投䞎し、その時間埌に四塩化炭玠を0.05
mlKgの割合で経口投䞎し、四塩化炭玠投䞎の24
時間埌に屠殺し、肉県芳察によ぀お肝障害の皋床
を調べた。 䞀方屠殺時採血し、遠沈によ぀お血挿を埗、血
挿グルタミツク−ピルビツクトランスアミナヌれ
GPT掻性をラむトマン−フランケル
Reitman−Frankel法に埓぀お枬定し、掻性
をカヌメン単䜍K.Uで衚わした。肝障害指数
は次の通りである。 肝障害指数 肝の症状  健党肝  わずかに圱響のあるもの  明らかに障害を認めるもの  激しい障害 矀頭のマりスを䜿甚したがその平均倀を瀺
す。又GPT掻性は1000単䜍以䞊のものはそれ以
䞊の枬定を行わなか぀たが平均倀は䟿宜䞊1000単
䜍ずしお蚈算した。 結果を第衚に瀺す。
[Table] The compound represented by the general formula () has low toxicity to warm-blooded animals, and acute oral toxicity to rats (male).
For example, the LD 50 value is 1000-3000 mg/Kg for compound No. 1,
3000-5000mg/Kg for compound No. 2, compound No. 3
500mg/Kg or more, 5000mg/Kg or more for compound No. 8,
Compound No. 12 is 1000-3000mg/Kg. The compound represented by the general formula () is particularly useful as a therapeutic agent for liver diseases. For example, it is known that various drugs such as carbon tetrachloride can be administered to healthy test animals to experimentally induce liver damage in the animals (for example, Japanese Patent Publication No. 18579/1983). In addition, as disease models of cholestasis seen in human clinical practice, common bile duct ligation is used for extrahepatic cholestasis, and cholangitis induced by α-naphthyl isothiocyanate is used for intrahepatic cholestasis. It is well known that it is made (Nippon Rinsai, Volume 30, 1).
No. 216 (1972)), and morphologically it is said to be extremely similar to the liver findings of cholestasis in humans (Clinical Studies of Drug-induced Liver Injury, edited by Yuo Yamamoto, p. 234). Therefore, using α-naphthyl isothiocyanate-induced liver damage as a pathological model to search for compounds that have an inhibitory effect will be part of the evaluation of drugs that can be used in human clinical practice in the future. The compound represented by the general formula () can be administered orally or parenterally (e.g., by injection) to test animals with various experimentally created pathological models of liver damage, resulting in significant liver function. It has been found that this has the effect of suppressing or improving the decrease in Therefore, the compounds represented by the general formula () are useful as human and veterinary medicines for the treatment or prevention of liver diseases. In other words, acute or chronic liver diseases in humans and animals caused by various causes, such as fatty liver, alcoholic hepatitis, hepatitis, toxic liver disease, hemorrhagic liver disease, cholestatic liver disease, or their terminal symptoms. It can be used as a treatment for certain liver cirrhosis. The compound represented by the general formula () can be used as a treatment for liver diseases as it is, or it can be formulated as a mixture with a pharmaceutically acceptable diluent and/or other pharmacologically active substances in accordance with pharmaceutical practice. You can also
They may also be formulated in dosage unit form. Possible pharmaceutical forms include the following forms: powders, granules, tablets, dragees, capsules, pills, suspensions, solutions, emulsions, ampoules, injections, isotonic solutions, and the like. In particular, the compounds obtained by the method of the present invention have high water solubility; for example, compound No. 23 has a water solubility of 2000 ppm (200 ppm).
℃), Compound No. 12 is 2200 ppm (20℃), Compound No. 1
Since it is 2% soluble in a 2% gum arabic solution, it is advantageous when used in the form of an injection or drip. The diluent used when preparing a drug from the compound obtained by the method of the present invention is one that is pharmaceutically acceptable. means,
The capsules may be solid, semi-solid, liquid or ingestible and include a variety of agents, such as excipients, fillers, binders, wetting agents, disintegrants, etc.
Surfactants, lubricants, dispersants, buffers, flavoring agents,
Flavoring agents, pigments, fragrances, preservatives, solubilizing agents, solvents, coating agents, sugar coating agents, etc. However, it is not limited to this. Moreover, these may be used alone or as a mixture of more than one. Such pharmaceutically acceptable diluents may also be used in mixtures with other pharmacologically active substances. A medicament based on a compound obtained by the method of the present invention may be produced by any known method. For example, the active ingredient is mixed with a diluent, eg, into granules, and the composition is then shaped, eg, into tablets. Parenterally administered preparations should be sterile. It should also be made isotonic with blood if necessary. Since the compound represented by the general formula () can itself be a therapeutic agent for liver diseases, the active ingredient is generally contained in the composition in an amount of 0.01 to 100% (by weight). In the case of pharmaceutical dosage units, the individual formulation parts forming the formulation may be in mutually different forms or may be the same; for example, the following forms are often employed: tablets, Granules, pills, powders, dragees, capsules, ampoules, etc. The therapeutic agent for liver diseases using the compound obtained by the method of the present invention can be applied to humans and animals for the treatment of liver diseases by methods commonly used in the field. It is administered orally or parenterally.
Oral administration includes sublingual administration. Parenteral administration includes administration by injection (including, for example, subcutaneous, intramuscular, intravenous, and infusion). The pharmaceutical dosage of the compound obtained by the method of the present invention depends on whether the subject is an animal or a human, sensitivity differences, age, sex, body weight, administration method, administration timing, interval, medical condition, physical condition, etc. It varies depending on various factors such as the nature of the pharmaceutical preparation, the type of preparation, and the type of active ingredient. Therefore, in some cases, it may be sufficient to use a dose lower than the lowest dose shown below, and in some cases, it may be necessary to administer a dose exceeding the upper limit dose shown below. In addition, in the case of large-dose administration, it is preferable to divide the administration into several times a day. In order to obtain effective results in animals, the active ingredient should be administered orally in the range of 0.1 to 500 mg per kilogram of body weight per day, preferably in the range of 0.1 to 25 mg per kilogram of body weight per day in the case of parenteral administration. 0.01
A range of 250 mg, preferably 0.1 to 25 mg is advantageous. Regarding the dosage for obtaining an effective result in humans, the following dosage range is advantageous, for example, taking into account sensitivity differences, safety, etc. from the effective dosage in animals. For oral administration, per kilogram of body weight per day
0.1 to 250 mg, preferably 0.5 to 50 mg, and in the case of parenteral administration, 0.01 to 100 mg per kg of body weight per day, preferably 0.1 to 25 mg. Next, examples of the present invention will be shown. Example 1 Diisopropyl-4,5-dihydroxy-1,
Synthesis of 3-dithiolane-2-ylidene-malonate (Compound No. 23). A mixture of 56.8 g (0.3 mol) of diisopropyl malonate and 22.8 g (0.3 mol) of carbon disulfide is cooled with cold water and stirred. 84 g of a separately prepared 40% caustic potassium aqueous solution (33.6 g of KOH dissolved in 50.4 g of water) was added to this mixture so that the temperature did not exceed 20°C. ) Obtain an aqueous solution of ethylene-1,1-dithiolate. 40% of this dithiolate aqueous solution
% glyoxal 44g, acetic acid 36g, benzene 200
of the mixture and react. During this time, stir the reaction contents well and prepare a solution to keep the reaction temperature below 15°C. After the addition of the mixture was completed, stirring was continued at room temperature, and the color of the reaction mixture changed from reddish brown to light yellow, and the reaction was completed in 1 hour. The benzene layer is separated, washed with water, and the benzene is distilled off to obtain crude crystals.
After drying, it is recrystallized from a mixed solvent of ether and n-hexane. Yield 58g (yield 60%), mp.132.6℃,
NMRÎŽ CDCl3 TMS ppm: 2.25 (12H, d, J=7Hz),
3.80 (2H, broad s), 5.10 (2H, m, J=7Hz),
5.70 (2H, s). Example 2 Diethyl 4,5-dihydroxy-1,3-dithiolane-2-ylidene-malonate (Compound No.
2) Synthesis. Diethyl malonate 16g (0.1mol), carbon disulfide
Cool 7.6 g of the mixture with ice water and stir. Add 24.9 g of 45% KOH aqueous solution to this mixture and set the reaction temperature to 20
When the mixture is added dropwise and reacted while being careful not to exceed the temperature, an aqueous potassium salt solution of 2,2-bis(ethoxycarbonyl)ethylene-1,1-dithiolate is obtained. This aqueous dithiolate solution is added dropwise to a mixture consisting of 14.5 g of 40% glyoxal, 12 g of acetic acid, and 60 ml of benzene for reaction. During this time, stir the reaction contents well and adjust the dropwise addition so as to keep the reaction temperature below 15°C. After the dropwise addition was completed, stirring was continued at room temperature, and the reaction mixture turned from reddish brown to pale yellow, and the reaction was completed for 1 hour. The benzene layer is separated, washed with water, and the benzene is distilled off to obtain crude crystals. After drying, it is recrystallized from a mixed solvent of ethyl acetate, dichloromethane, and n-hexane. Yield 17.8g, Yield 60.5
%. mp87.3℃. Example 3 Diallyl 4,5-dihydroxy-1,3-dithiolane-2-ylidenemalonate (Compound No.
12) Synthesis of A dithiolate salt aqueous solution is prepared from 6.14 g of diallyl malonate in the same manner as in Example 2 using a 45% KOH aqueous solution. Add this to 40% glyoxal 4.8
g, acetic acid 4.0 g, and benzene 30 ml, reacted in the same manner as in Example 2, post-treated, and recrystallized from dichloromethane-n-hexane to give 5.22 g of crystals with an mp. of 81.2°C [yield 49%]. Example 4 Bis(3-methoxypropan-2-yl)4,
5-dihydroxy-1,3-dithiolane-2-
Synthesis of ylidene malonate (compound No. 15) Synthesis was carried out in the same manner as in Example 2 from 8.28 g of bis(3-methoxypropan-2-yl) malonate to obtain the desired product in the form of an oil. This was purified by dry column chromatography using silica gel (developing solvent: ethyl acetate-n-hexane = 1:1) to obtain 3.5 g of an oil with n D 20 =1.5490. Yield 27.4%. In the following formulation examples, all parts are by weight. The types and proportions of the ingredients can be varied. Formulation Example 1 Compound 22 10 parts heavy magnesium oxide 10 parts lactose 80 parts are uniformly mixed to make a powder or fine granules. Formulation Example 2 Compound 10 10 parts Synthetic aluminum silicate 10 parts Calcium hydrogen phosphate 5 parts Lactose 75 parts were used to prepare a powder according to Formulation Example 1. Formulation Example 3 Compound 3 50 parts Starch 10 parts Lactose 15 parts Crystalline cellulose 20 parts Polyvinyl alcohol 5 parts Water 30 parts After homogeneous mixing, crush, granulate, dry and sieve to obtain granules. Formulation Example 4 1 part of calcium stearate was mixed with 99 parts of the granules obtained in Formulation Example 3, and compression molded to form a product with a diameter of 10 mm.
tablets. Formulation Example 5 Granules were prepared in the same manner as in Formulation Example 3 using 95 parts of Compound 2, 5 parts of polyvinyl alcohol, and 30 parts of water. 10 parts of crystalline cellulose is added to 90 parts of the obtained granules and compressed to form tablets with a diameter of 8 mm. Further, appropriate amounts of syrup gelatin, a mixed suspension of precipitated calcium carbonate, and a coloring agent are added to the tablets to form sugar-coated tablets. Formulation Example 6 Chemical No. 21 0.5 parts Nonionic surfactant 2.5 parts Physiological saline 97 parts are heated and mixed, then sterilized to prepare an injection. Formulation Example 7 The acid agent obtained in Formulation Example 1 is filled into a commercially available capsule container to form a capsule. Test example 1 Carbon tetrachloride liver damage inhibitory effect test method The test compound was dissolved or suspended in olive oil and orally administered to mice (DD male for 6 weeks) at a rate of 250 mg/Kg, and 6 hours later, carbon tetrachloride 0.05
Orally administered at the rate of ml/Kg, 24% of carbon tetrachloride administration
After a period of time, the animals were sacrificed and the degree of liver damage was examined by visual observation. On the other hand, blood was collected at the time of slaughter, plasma was obtained by centrifugation, and plasma glutamic-pyruvic transaminase (GPT) activity was measured according to the Reitman-Frankel method, and the activity was expressed in carmen units (KU). expressed. The liver damage index is as follows. Liver damage index Liver symptoms 0 Healthy liver 2 Slightly affected 4 Obvious damage 6 Severe damage Five mice were used per group, and the average values are shown. Furthermore, for GPT activities exceeding 1000 units, no further measurements were performed, but the average value was calculated as 1000 units for convenience. The results are shown in Table 1.

【衚】 第衚に瀺すように、本発明によ぀お埗られる
化合物は四塩化炭玠単独投䞎矀にくらべ、著しく
肝障害指数及び−GTPを改善し、肝障害抑制
効果を有するこずを瀺しおいる。 詊隓䟋  α−ナフチルむ゜チオシアネヌト肝障害抑制 効 果 α−ナフチルむ゜チオシアネヌト以䞋、α−
NITずいう。を健康な被隓動物に投䞎しお胆汁
う぀滞型肝障害を実隓的に生じさせうるこずは知
られおおり、人間の病態モデルずしおも甚いられ
おいる。 本詊隓䟋でのα−NIT肝障害モデルおよび詊
隓䟋での四塩化炭玠肝障害モデルに぀いおは、
いずれの堎合も血挿GPT掻性の䞊昇を䌎うが、
その皋床にはかなりの差がみられ、たたその原因
ずなる肝臓の壊死に぀いおも前者の堎合がグリ゜
ン鞘呚囲の肝実質内に小壊死巣を圢成するのに察
しお、埌者では小葉䞭心垯の肝现胞凝固壊死が認
められるずの報告がある日本臚牀30巻号216
ペヌゞ1972。 これらのこずからもわかるように、䞡病態モデ
ルでの血挿GPTの䞊昇は異぀た性質のものであ
るこずがわかる。 α−NITによ぀お起぀た肝障害の皋床や薬剀
によるその障害の予防䜜甚を知る指暙ずしお、血
挿グルタミツク−ピルビツクトランスアミナヌれ
GPT掻性および血挿アルカリ性フオスフアタ
ヌれ掻性の枬定は適圓な方法である。 詊隓方法 䟛詊化合物をオリヌブ油に溶解たたは懞濁させ
おマりス〜週什、dd系♂に250mgKgの
割合で時間間隔で回経口投䞎し、回目の投
䞎から時間埌にα−ナフチルむ゜チオシアネヌ
ト以䞋、α−NITず蚘す。を35mgKg経口投
䞎した。 α−NIT投䞎24時間埌にマりスを屠殺し、採
血した。血液を遠沈するこずにより血挿を埗、血
挿GPT掻性をラむトマン・フランケル法、同ア
ルカリ性フオスフアタヌれ掻性をベツセむ・ロヌ
リヌ法に埓぀お枬定し、掻性をカヌメン単䜍およ
びベツセむ・ロヌリヌ単䜍で衚した。 結果を第衚に瀺す。
[Table] As shown in Table 1, the compound obtained by the present invention significantly improves the liver damage index and p-GTP compared to the group administered with carbon tetrachloride alone, indicating that it has a liver damage suppressing effect. ing. Test Example 2 α-naphthyl isothiocyanate liver damage inhibitory effect α-naphthyl isothiocyanate (hereinafter referred to as α-
It's called NIT. ) is known to be able to experimentally induce cholestatic liver damage by administering it to healthy test animals, and it is also used as a model for human pathology. Regarding the α-NIT liver injury model in this test example and the carbon tetrachloride liver injury model in Test Example 1,
Although both cases are accompanied by an increase in plasma GPT activity,
There are considerable differences in the degree of necrosis, and the cause of liver necrosis is that in the former case, small necrosis foci are formed in the liver parenchyma around Gleason's sheath, whereas in the latter case, small necrotic foci are formed in the centrilobular zone. There is a report that coagulative necrosis of hepatocytes is observed (Nippon Rinsai Vol. 30, No. 1, 216
Page (1972)). As can be seen from these facts, it can be seen that the increase in plasma GPT in both pathological models has different characteristics. Measurement of plasma glutamic-pyruvic transaminase (GPT) activity and plasma alkaline phosphatase activity is an appropriate method as an indicator of the degree of liver damage caused by α-NIT and the preventive effect of drugs on that damage. Test method: The test compound was dissolved or suspended in olive oil and orally administered to mice (6 to 7 weeks old, DD male) at a rate of 250 mg/Kg twice at 3 hour intervals. After an hour, 35 mg/Kg of α-naphthyl isothiocyanate (hereinafter referred to as α-NIT) was orally administered. Mice were sacrificed 24 hours after α-NIT administration and blood was collected. Plasma was obtained by centrifuging the blood, and plasma GPT activity was measured according to the Reitman-Frankel method and alkaline phosphatase activity was measured according to the Betsey-Lowry method, and the activity was expressed in Carmen units and Betsey-Lowry units. The results are shown in Table 2.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 
CC
 
CH−S
COCH−i
‖
O
第衚−に瀺すように、本発明によ぀お
埗られる化合物はα−NIT単独投䞎矀α−
NIT察照にくらべ、著しく血挿GPT掻性およ
び血挿アルカリ性フオスフアタヌれ掻性を改善
し、肝障害抑制効果を有するこずを瀺しおいる。
[Table] 
CC
 
CH−S
COC 3 H 7 -i
‖
O
As shown in Table 2-1 and 2, the compound obtained by the present invention was found in the α-NIT alone administration group (α-
Compared to NIT control), it significantly improved plasma GPT activity and plasma alkaline phosphatase activity, indicating that it has a liver damage suppressive effect.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、 R1およびR2は同䞀かたたは異぀お、アルキル
基、シクロヘキシル基、ベンゞル基、アルケニル
基、アルキニル基たたはアルコキシアルキル基を
衚わし、 はアルカリ金属原子たたはアンモニりム基を
衚わす。 で衚わされる化合物ず次匏 で衚わされるグリオキサヌルずを酞の存圚䞋で反
応させるこずを特城ずする䞀般匏 匏䞭、R1およびR2は前蚘に同じ。 で衚わされる−ゞヒドロキシ−−ゞ
チオラン−−むリデンマロン酞誘導䜓の補法。
[Claims] 1 General formula (): (In the formula, R 1 and R 2 are the same or different and represent an alkyl group, a cyclohexyl group, a benzyl group, an alkenyl group, an alkynyl group, or an alkoxyalkyl group, and M represents an alkali metal atom or an ammonium group.) The compound represented and the following formula: General formula () characterized by reacting glyoxal represented by in the presence of an acid: (In the formula, R 1 and R 2 are the same as above.) A method for producing a 4,5-dihydroxy-1,3-dithiolan-2-ylidenemalonic acid derivative represented by the following.
JP5073883A 1983-03-26 1983-03-26 Preparation of 4,5-dihydroxy-1,3-dithiolan-2-indenmalonic acid derivative Granted JPS59175485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5073883A JPS59175485A (en) 1983-03-26 1983-03-26 Preparation of 4,5-dihydroxy-1,3-dithiolan-2-indenmalonic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5073883A JPS59175485A (en) 1983-03-26 1983-03-26 Preparation of 4,5-dihydroxy-1,3-dithiolan-2-indenmalonic acid derivative

Publications (2)

Publication Number Publication Date
JPS59175485A JPS59175485A (en) 1984-10-04
JPH0416473B2 true JPH0416473B2 (en) 1992-03-24

Family

ID=12867176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073883A Granted JPS59175485A (en) 1983-03-26 1983-03-26 Preparation of 4,5-dihydroxy-1,3-dithiolan-2-indenmalonic acid derivative

Country Status (1)

Country Link
JP (1) JPS59175485A (en)

Also Published As

Publication number Publication date
JPS59175485A (en) 1984-10-04

Similar Documents

Publication Publication Date Title
JPS63159385A (en) Malonic acid derivative, production and use thereof
JPH0154339B2 (en)
CA1331464C (en) Anti-tumor method and compounds
JPS6155915B2 (en)
JPH0416473B2 (en)
JPH0237357B2 (en)
JPH0439470B2 (en)
JPH0322878B2 (en)
JPH0454666B2 (en)
JPS59204187A (en) Dithiolane derivative, its use and its preparation
JPS5942377A (en) Dithiol derivative
EP0413843B1 (en) Dithiolane derivatives
JPS63183586A (en) Cyclohexanedione derivative, production and use thereof
KR970003126B1 (en) Dithiolane derivatives
JPH0452263B2 (en)
JPH0430946B2 (en)
JPH0427989B2 (en)
JPS5927887A (en) Dithiolan derivative and remedy for hepatic disease
JPS5942378A (en) Dithiolane derivative
JPS62277320A (en) Remedy for hepatopathy
JPH0412267B2 (en)
JPH07116180B2 (en) Dithiol derivative, process for producing the same and use thereof
JPS59196887A (en) Dithietane derivative, its preparation and use
JPS62158274A (en) Substituted 1,3-dithiethane derivative
JPH01203391A (en) Heterocyclic compound, its production and pharmaceutical use thereof