JPH04164652A - Piezoelectric element drive circuit - Google Patents

Piezoelectric element drive circuit

Info

Publication number
JPH04164652A
JPH04164652A JP29114690A JP29114690A JPH04164652A JP H04164652 A JPH04164652 A JP H04164652A JP 29114690 A JP29114690 A JP 29114690A JP 29114690 A JP29114690 A JP 29114690A JP H04164652 A JPH04164652 A JP H04164652A
Authority
JP
Japan
Prior art keywords
piezoelectric element
charging
coil
diode
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29114690A
Other languages
Japanese (ja)
Inventor
Kiyoharu Sakai
酒井 清春
Katsumi Inukai
勝己 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP29114690A priority Critical patent/JPH04164652A/en
Publication of JPH04164652A publication Critical patent/JPH04164652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)

Abstract

PURPOSE:To expand or shrink a piezoelectric element at a desired timing by a required amount by providing a charging means for charging the piezoelectric element, a discharging means for discharging it, a bypass means, and a regenerative means. CONSTITUTION:When a charge switch S1 is turned ON, a charging current ICP flows to a piezoelectric element Cp through a direct current power source E, the charge switch S1, a coil L, and a diode D4. A terminal voltage VCP of the piezoelectric element Cp is raised to expand the piezoelectric element Cp. When the terminal voltage VCP becomes higher than a power source voltage VE, a diode D1 is electrified the terminal voltage VCP is kept at approximately the same value as the power source voltage VE, and the expansion of the piezoelectric element Cp is stopped at an amount corresponding to the power voltage VE. When the charge switch S1 is turned OFF, an electromotive force is generated in the coil L, a diode 2 is electrified, and the electromotive force generated in the coil L is regenerated in a condenser C1. When a switch S2 is turned ON, a transistor TR1 is electricfied the terminal voltage VCP of the piezoelectric element Cp is lowered, the piezoelectric element Cp is shrunk, a diode D5 is electrified, the terminal voltage VCP is kept at approximately 0V, and the piezoelectric element Cp is shrunk to a state before charging.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、圧電素子に電荷を充放電して圧電素子を伸縮
させる圧電素子駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a piezoelectric element drive circuit that charges and discharges charges to a piezoelectric element to expand and contract the piezoelectric element.

[従来技術] 従来より、例えば印字ヘッドを圧電素子の伸縮により駆
動するドツトインパクト型のプリンタ等、圧電素子をア
クチュエータとして利用する種々の装置が知られている
[Prior Art] Various devices using piezoelectric elements as actuators have been known, such as a dot impact printer in which a print head is driven by expansion and contraction of a piezoelectric element.

この種の装置には、圧電素子を駆動するために駆動回路
が備えられているが、従来の駆動回路(表圧電素子とコ
イルとにより共振回路を形成し、その共振電圧により圧
電素子を伸縮させて、機械的エネルギを得てい翫 ところがこのように圧電素子とコイルとの共振により圧
電素子を伸縮させた場合、圧電素子が最伸張状態となる
伸張タイミングや圧電素子が最収縮状態となる収縮タイ
ミング(よ その共振周波数で決定さね また共振周波
数は、温度等の使用環境や圧電素子の静電容量の変化等
により変化するため、圧電素子を所望のタイミングで伸
縮させることができないことがあった。
This type of device is equipped with a drive circuit to drive the piezoelectric element, but conventional drive circuits (a resonant circuit is formed by the front piezoelectric element and a coil, and the piezoelectric element is expanded and contracted by the resonant voltage) However, when the piezoelectric element is expanded and contracted by resonance between the piezoelectric element and the coil, the timing of expansion when the piezoelectric element reaches its maximum expansion state, and the contraction timing when the piezoelectric element reaches its maximum contraction state. (The resonant frequency is determined by the other resonant frequency.) In addition, the resonant frequency changes depending on the usage environment such as temperature and changes in the capacitance of the piezoelectric element, so it may not be possible to expand or contract the piezoelectric element at the desired timing. .

そこで本願出願人(よ コイルを介して圧電素子を充電
する充電回路と、充電回路による圧電素子の充電電圧(
=圧電素子の伸張量)が所定レベル以上になると充電回
路からの電荷を電源に戻すバイパス回路と、圧電素子に
充電された電荷を放電させる放電回路と、を備え、充電
及び放電タイミング、延いては伸張タイミング及び収縮
タイミングを外部からの指令によって制御できるように
した駆動回路を提案した(例えば特開平2−11927
6号)。
Therefore, the applicant (Yo) proposed a charging circuit that charges a piezoelectric element through a coil, and a charging voltage of the piezoelectric element by the charging circuit (
= expansion amount of the piezoelectric element) exceeds a predetermined level, the charge circuit includes a bypass circuit that returns the charge from the charging circuit to the power source, and a discharge circuit that discharges the charge charged in the piezoelectric element. proposed a drive circuit in which the extension timing and contraction timing could be controlled by external commands (for example, Japanese Patent Application Laid-Open No. 11927/1999).
No. 6).

[発明が解決しようとする課題] この提案の駆動回路によれ(′L圧電素子を所望のタイ
ミングで伸縮させることができ、しかもその伸張量を一
定にすることができるので、印字ヘッド等の被駆動部材
を常に安定して駆動することができるようになるのであ
るが、放電回路は圧電素子に蓄えられた電荷を抵抗等で
消費するようにしていたため、電源の使用効率が悪いと
いった問題や、回路部品の発熱が大きくなり、ヒートシ
ンク等、冷却のための部品が必要となる、といった問題
があった。
[Problems to be Solved by the Invention] The proposed drive circuit ('L) can expand and contract the piezoelectric element at a desired timing, and the amount of expansion can be kept constant, so that the print head, etc. This makes it possible to drive the drive member stably at all times, but since the discharge circuit consumes the charge stored in the piezoelectric element through a resistor, etc., there are problems such as inefficient use of the power supply. There was a problem in that the circuit components generated a large amount of heat, necessitating cooling components such as heat sinks.

そこで本発明(よ圧電素子を所望のタイミングで所望量
だけ伸縮させることができ、しかも電源乞効率よく使用
することのできる圧電素子駆動回路を堤供することを目
的としてなされた。
Therefore, it is an object of the present invention to provide a piezoelectric element drive circuit that can expand and contract a piezoelectric element by a desired amount at a desired timing and that can efficiently use a power source.

[課題を解決するための手段] 即ちこの目的を達するためになされた本発明の圧電素子
駆動回路は、外部からの充電指令により、コイルを介し
て圧電素子と直流電源とを接続して、圧電素子を充電す
る充電手段と、外部からの放電指令により、上記充電に
より圧電素子に蓄積された電荷によって上記コイルに充
電時と同一方向に電流を流し、圧電素子を放電させる放
電手段と、上記直流電源と圧電素子との間に接続さね充
電により圧電素子の充電電圧が電源電圧を越えないよう
に所定方向に電流を流すバイパス手段と、上記充電手段
及び放電手段が充電或は放電動作を終了したとき上記コ
イルに発生する起電力を、上記直流電源に回生ずる回生
手段と、を備えたことを特徴としている。
[Means for Solving the Problems] That is, the piezoelectric element drive circuit of the present invention, which has been made to achieve this object, connects the piezoelectric element and a DC power source via a coil in response to an external charging command, and generates a piezoelectric element. a charging means for charging the element; a discharging means for discharging the piezoelectric element by causing a current to flow through the coil in the same direction as when charging, using the electric charge accumulated in the piezoelectric element due to the charging, and discharging the piezoelectric element according to an external discharge command; bypass means connected between the power supply and the piezoelectric element to cause current to flow in a predetermined direction so that the charging voltage of the piezoelectric element does not exceed the power supply voltage by tongue-and-groove charging; and a bypass means for causing the charging means and the discharging means to complete the charging or discharging operation. The present invention is characterized in that it includes a regeneration means for regenerating the electromotive force generated in the coil when this occurs to the DC power source.

[作用] このように構成された本発明の圧電素子駆動回路におい
ては、外部から充電指令を入力すると、充電手段がコイ
ルを介して圧電素子と直流電源とを接続して、圧電素子
を充電すると共に、バイパス手段が、圧電素子の充電電
圧が電源電圧を越えないように所定方向に電流を流し、
圧電素子に充電された電荷を直流電源に戻す(この結果
圧電素子は電源電圧で決定される所定量だけ伸張する)
[Function] In the piezoelectric element drive circuit of the present invention configured as described above, when a charging command is input from the outside, the charging means connects the piezoelectric element and the DC power source via the coil to charge the piezoelectric element. At the same time, the bypass means causes current to flow in a predetermined direction so that the charging voltage of the piezoelectric element does not exceed the power supply voltage,
Return the electric charge charged in the piezoelectric element to the DC power supply (as a result, the piezoelectric element expands by a predetermined amount determined by the power supply voltage)
.

一方外部から放電指令を入力すると、放電手段が、圧電
素子に蓄積された電荷によって上記コイルに充電時と同
一方向に電流を流し、圧電素子を放電させる(この結果
圧電素子は充電前の状態まで収縮する)。また充電時及
び放電時に(よ コイルに電流を流すため、充電又は放
電終了時に匝 コイルに蓄積された電磁エネルギにより
、コイルに起電力が発生するが、この起電力は回生手段
を介して直流電源に回生される。
On the other hand, when a discharge command is input from the outside, the discharging means uses the charge accumulated in the piezoelectric element to cause current to flow through the coil in the same direction as when charging, discharging the piezoelectric element (as a result, the piezoelectric element returns to the state before charging). shrink). In addition, during charging and discharging, current flows through the coil, so when charging or discharging is finished, electromagnetic energy is generated in the coil, and this electromotive force is transferred to the DC power supply through regeneration means. will be regenerated.

尚放電手段(表 コイルに充電時と同一方向に電流を流
して圧電素子を放電させるが、これは圧電素子に充電さ
れた電荷を効率よく直流電源に回生できるようにするた
めである。つまりコイルに放電電流を流すことにより、
圧電素子に充電された電荷をコイルの電磁エネルギに変
換し、放電終了後回生手段を介して直流電源に回生でき
るようにすると共に、コイルへの放電電流の通電方向を
充電時と同一方向とすることにより、コイルに充電時と
は逆方向に放電電流を流した場合に生ずる問題 即ちコ
イルに逆方向の電流を流すと、ヒステリシス損によりコ
イルが発熱して、電力を無駄に消費してしまう、といっ
た問題を防止している。
The piezoelectric element is discharged by passing current through the coil in the same direction as when charging.This is to enable the electric charge charged in the piezoelectric element to be efficiently regenerated into the DC power supply.In other words, the coil By applying a discharge current to
The electric charge charged in the piezoelectric element is converted into electromagnetic energy in the coil, and after the discharge is completed, it can be regenerated into the DC power source via the regeneration means, and the direction of the discharge current to the coil is the same as that during charging. This causes a problem that occurs when a discharging current is passed through the coil in the opposite direction to that used during charging.In other words, when a current is passed in the opposite direction to the coil, the coil generates heat due to hysteresis loss, and power is wasted. This prevents such problems.

[実施例] 以下、本発明の実施例を図面と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

まず第1図は実施例の圧電素子駆動回路の構成を表す電
気回路図である。
First, FIG. 1 is an electrical circuit diagram showing the configuration of a piezoelectric element drive circuit according to an embodiment.

図に示す如く本実施例の圧電素子駆動回路(表コンデン
サC1が並列接続され、負極側端子が圧電素子cpに直
接接続された直流電源Eと、外部から充電信号が入力さ
れたときにON状態となり、コイルL、ダイオードD4
を介して直流電源Eの正極側端子と圧電素子cpの正極
側端子とを接続して、圧電素子cpに正の電荷を充電す
る充電手段としての充電スイッチS]と、コイルLの圧
電素子cp側端部と直流電源Eの正極側端子との間に設
けらね圧電素子cp側から直流電源E方向への通電を可
能とするバイパス手段としてのダイオードD1と、外部
から放電信号が入力されたときにON状態となり、充電
により圧電素子cpに蓄積された正の電荷を、PNP型
のトランジスタTRI、  ダイオードD3.  コイ
ルLを通して放電させる放電手段としての放電スイッチ
S2と、圧電素子cpに並列接続さ札放電時に圧電素子
Cpの正極側端子の電位が負にならないようにするため
のダイオードD5と、充電スイッチS1又は放電スイッ
チS2がONからOFF状態に切り替わったとき、コイ
ルしに発生する起電力をダイオードD]を通して直流電
源Eに回生させる回生手段としてのダイオードD2と、
から構成されている。
As shown in the figure, the piezoelectric element drive circuit of this embodiment (the DC power supply E in which the front capacitor C1 is connected in parallel and the negative terminal is directly connected to the piezoelectric element cp) is in an ON state when a charging signal is input from the outside. So, coil L, diode D4
A charging switch S serving as a charging means that connects the positive terminal of the DC power source E and the positive terminal of the piezoelectric element cp to charge the piezoelectric element cp with a positive charge via the piezoelectric element cp of the coil L; A diode D1 is provided between the side end and the positive terminal of the DC power supply E, and a diode D1 is provided as a bypass means to enable current to flow from the side of the piezoelectric element CP in the direction of the DC power supply E, and a discharge signal is input from the outside. When the piezoelectric element cp is turned on, the positive charge accumulated in the piezoelectric element cp is transferred to the PNP transistor TRI, the diode D3. A discharge switch S2 as a discharging means for discharging through the coil L, a diode D5 connected in parallel to the piezoelectric element CP to prevent the potential of the positive terminal of the piezoelectric element CP from becoming negative during discharge, and a charging switch S1 or a diode D2 as a regeneration means for regenerating the electromotive force generated in the coil to the DC power source E through the diode D when the discharge switch S2 is switched from ON to OFF;
It consists of

尚上記充電スイッチS1及び放電スイッチS2(上 図
では開閉スイッチの形で示しているが、実際にはFET
又はトランジスタ等によるスイッチング素子により構成
される。またトランジスタTR1のベースは抵抗器R1
を介してコイルLの圧電素子cp側端部に接続されてお
り、放電スイッチS2のON時に抵抗器R1及び放電ス
イッチS2を介して直流電源Eの負極側端子に接続され
て、ON状態となる。
The charging switch S1 and the discharging switch S2 (shown as open/close switches in the figure above, but are actually FETs)
Alternatively, it is configured by a switching element such as a transistor. Also, the base of transistor TR1 is connected to resistor R1.
It is connected to the end of the piezoelectric element cp side of the coil L through the coil L, and when the discharge switch S2 is turned on, it is connected to the negative terminal of the DC power supply E through the resistor R1 and the discharge switch S2, and is turned on. .

上記のように構成された本実施例の圧電素子駆動回路に
おいて(表第2図に示す如く、外部から充電信号が入力
さね、充電スイッチS1がON状態となると(時点tl
)、直流電源E−充電スイッチS1−コイルし一ダイオ
ードD4−圧電素子Cp−直流電源Eの経路で充電電流
1cPが流ね圧電素子Cpの端子電圧VCPが上昇し、
この結果圧電素子Cpが伸張し始める。
In the piezoelectric element drive circuit of this embodiment configured as described above (as shown in Table 2), when a charging signal is not input from the outside and the charging switch S1 is turned on (time tl
), a charging current of 1 cP does not flow in the path of DC power supply E - charging switch S1 - coil diode D4 - piezoelectric element Cp - DC power supply E, and the terminal voltage VCP of piezoelectric element Cp rises.
As a result, the piezoelectric element Cp begins to expand.

そしてこの圧電素子cpの端子電圧VCPがコイルLの
作用により電源電圧VEより高くなるとく時点t2)、
ダイオードD1が導通して、充電スイッチSt、  コ
イルし、ダイオードD1による閉口路が形成さね充電電
流1cPがほぼ0となり、圧電素子Cpの端子電圧VC
Pがほぼ電源電圧VEに保持される。この結果、圧電素
子Cpの伸張(よ電源電圧VEで決定される所定の伸張
量で停止する。尚第2図において1[はコイルLの電流
値を表し、圧電素子Cpへの充電が停止しても、充電ス
イッチSl、  コイルL、ダイオードD]からなる閉
回路に電流が流れ続ける。
Then, at a time t2), the terminal voltage VCP of the piezoelectric element cp becomes higher than the power supply voltage VE due to the action of the coil L.
The diode D1 conducts, the charging switch St coils, and a closed circuit is formed by the diode D1.The charging current 1cP becomes almost 0, and the terminal voltage VC of the piezoelectric element Cp increases.
P is maintained approximately at power supply voltage VE. As a result, the piezoelectric element Cp stops expanding at a predetermined amount determined by the power supply voltage VE. In FIG. 2, 1 represents the current value of the coil L, and charging to the piezoelectric element Cp stops. However, current continues to flow through the closed circuit consisting of charging switch Sl, coil L, and diode D].

次に充電信号の入力が停止し、充電スイッチS1がON
からOFF状態に切り替えられると(時点t3)、上記
通電によってコイルLに蓄積された電磁エネルギにより
コイルLに起電力が発生するが、この起電力により今度
はダイオードD2が導通し、ダイオードD2.  コイ
ルL、ダイオードD1、直流電源Eからなる閉回路が形
成されて、コイルしに発生した起電力が直流電源Eに並
列接続されたコンデンサC]に回生される。
Next, the charging signal input stops and the charging switch S1 is turned on.
When switched to the OFF state (time t3), an electromotive force is generated in the coil L due to the electromagnetic energy accumulated in the coil L due to the above-mentioned energization, but this electromotive force in turn makes the diode D2 conductive, causing the diode D2. A closed circuit consisting of a coil L, a diode D1, and a DC power source E is formed, and the electromotive force generated in the coil is regenerated to a capacitor C connected in parallel to the DC power source E.

一方上記のように圧電素子cpが充電さね圧電素子Cp
が伸張状態にあるとき、外部から放電信号が入力されて
放電スイッチS2がON状態になると(時点t4)、ト
ランジスタTRIが導通し、圧電素子Cp−トランジス
タTRl−ダイオードD3−コイルL−放電スイッチS
2−圧電素子Cpの経路で放電電流−ICPが流ね圧電
素子cpの端子電圧VCPが低下し、この結果圧電素子
Cpが収縮し始める。
On the other hand, as described above, when the piezoelectric element cp is charged, the piezoelectric element cp
is in the extended state, when a discharge signal is input from the outside and the discharge switch S2 is turned on (time t4), the transistor TRI becomes conductive, and the piezoelectric element Cp - the transistor TRl - the diode D3 - the coil L - the discharge switch S
2-A discharge current -ICP does not flow in the path of the piezoelectric element Cp, and the terminal voltage VCP of the piezoelectric element cp decreases, and as a result, the piezoelectric element Cp begins to contract.

そしてこの圧電素子cpの端子電圧VCPがほぼOvに
達すると(時点t5)、ダイオードD5が導通して、ダ
イオードD5.トランジスタTRI。
When the terminal voltage VCP of the piezoelectric element cp reaches approximately Ov (time t5), the diode D5 becomes conductive, and the diode D5. Transistor TRI.

ダイオードD3.  コイルし、放電スイッチs2によ
る閉回路が形成さね 放電電流−ICPがOとなり、圧
電素子cpの端子電圧VCPがほぼOvに保持される。
Diode D3. A closed circuit is formed by the discharge switch s2.The discharge current -ICP becomes O, and the terminal voltage VCP of the piezoelectric element cp is maintained at approximately Ov.

この結果、圧電素子Cpは充電前の状態まで収縮する。As a result, the piezoelectric element Cp contracts to the state before charging.

尚この放電時、コイルLには充電時と同一方向に電流が
流わ、圧電素子cpの放電が終了しても、上記閉回路に
より電流が流れ続ける。
Note that during this discharging, a current flows through the coil L in the same direction as during charging, and even after the piezoelectric element cp has finished discharging, the current continues to flow through the closed circuit.

また次に放電信号の入力が停止し、放電スイッチS2が
ONからOFF状態に切り替えられると(時点t6)、
充電スイッチ$1がONからOFF状態に切り替わった
ときと同様、コイルしに起電力が発生するが、この起電
力によりダイオードD2が導通し、ダイオードD2. 
 コイルし、ダイオードDI、  直流電源Eからなる
閉回路が形成されて、コイルLに発生した起電力が直流
電源Eに並列接続されたコンデンサC]に回生される。
Next, when the input of the discharge signal is stopped and the discharge switch S2 is switched from ON to OFF (time t6),
Similar to when charging switch $1 is switched from ON to OFF, an electromotive force is generated in the coil, but this electromotive force causes diode D2 to conduct, causing diode D2.
A closed circuit consisting of a diode DI and a DC power source E is formed, and the electromotive force generated in the coil L is regenerated to a capacitor C connected in parallel to the DC power source E.

以上のように本実施例の圧電素子駆動回路において(上
圧電素子の充電電圧を電源電圧VEとほぼ同一にしてい
るので、圧電素子を常に一定に伸張させることができる
。また充電及び放電を外部からの独立した制御信号(充
電信号、放電信号)により任意に制御できるため、所望
のタイミングで必要な時間だけ圧電素子を伸張又は収縮
させることができる。従って本実施例の圧電素子駆動回
路をドツトインパクト型プリンタの印字ヘッド駆動回路
に用いれ(′i、常に安定した印字品質を得ることがで
きる。
As described above, in the piezoelectric element drive circuit of this embodiment (the charging voltage of the upper piezoelectric element is made almost the same as the power supply voltage VE), the piezoelectric element can always be expanded at a constant rate. Since the piezoelectric element can be controlled arbitrarily by independent control signals (charging signal, discharging signal) from the Used in the print head drive circuit of impact printers ('i), it is possible to always obtain stable print quality.

また本実施例で(よ圧電素子の充電及び放電をコイルを
介して行ない、しかもコイルには常に同一方向に電流を
流すようにしているため、圧電素子の伸縮に必要な電力
以外は電源側に回生ずることができ、しかもコイルでの
消費電力も最小限に抑えることができる。従って電源の
使用効率を著しく向上することができる。また回路構成
部品での消費電力が少ないので、余分な発熱を抑えるこ
ともでき、冷却のための部品を必要としない。この結果
、電源を含む駆動回路全体の小型化を図ることもできる
In addition, in this example, since the piezoelectric element is charged and discharged via the coil, and current is always passed through the coil in the same direction, the power other than that required for expanding and contracting the piezoelectric element is transferred to the power source. Moreover, the power consumption in the coil can be minimized.Therefore, the efficiency of power usage can be significantly improved.Also, since the power consumption in the circuit components is low, excess heat generation can be avoided. Therefore, the entire drive circuit including the power supply can be made smaller.

尚前記トランジスタTRIに代えて、他のスイッチング
素子を用い、放電信号がONのときに該スイッチング素
子をONとし、放電信号がOFFのときに該スイッチン
グ素子をOFFとするようにしてもよい。
Note that in place of the transistor TRI, another switching element may be used, and the switching element may be turned on when the discharge signal is on, and turned off when the discharge signal is off.

[発明の効果] 以上詳述したように、本発明の圧電素子駆動回路によれ
(i圧電素子を、単に所望のタイミングで所望量だけ伸
縮させることができるだけでなく、電源の使用効率を最
小限にとどめることができ、圧電素子を効率よく駆動す
ることが可能となる。
[Effects of the Invention] As detailed above, the piezoelectric element drive circuit of the present invention not only allows the piezoelectric element to be expanded and contracted by a desired amount at a desired timing, but also minimizes power usage efficiency. This makes it possible to drive the piezoelectric element efficiently.

また充放電によりコイル等に発熱を生じることがないの
で、放熱用の特別な部材を設ける必要がない。従って、
電源を含む駆動回路全体の小型化を図ることができる。
Furthermore, since no heat is generated in the coil or the like due to charging and discharging, there is no need to provide a special member for heat radiation. Therefore,
The entire drive circuit including the power supply can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の圧電素子駆動回路を表す電気回路図、
第2図はその動作を説明するタイムチャート、 である
FIG. 1 is an electric circuit diagram showing the piezoelectric element drive circuit of the embodiment,
FIG. 2 is a time chart explaining the operation.

Claims (1)

【特許請求の範囲】 外部からの充電指令により、コイルを介して圧電素子と
直流電源とを接続して、圧電素子を充電する充電手段と
、 外部からの放電指令により、上記充電により圧電素子に
蓄積された電荷によつて上記コイルに充電時と同一方向
に電流を流し、圧電素子を放電させる放電手段と、 上記直流電源と圧電素子との間に接続され、充電により
圧電素子の充電電圧が電源電圧を越えないように所定方
向に電流を流すバイパス手段と、上記充電手段及び放電
手段が充電或は放電動作を終了したとき上記コイルに発
生する起電力を、上記直流電源に回生する回生手段と、 を備えたことを特徴とする圧電素子駆動回路。
[Claims] Charging means for charging the piezoelectric element by connecting the piezoelectric element and a DC power source via a coil in response to an external charging command; A discharging means is connected between the DC power supply and the piezoelectric element, and a discharging means is connected between the DC power source and the piezoelectric element, and the piezoelectric element is discharged by causing a current to flow through the coil in the same direction as when charging due to the accumulated charge, and the charging voltage of the piezoelectric element is increased by charging. bypass means for flowing a current in a predetermined direction so as not to exceed the power supply voltage; and regeneration means for regenerating the electromotive force generated in the coil when the charging means and discharging means finish charging or discharging operations into the DC power supply. A piezoelectric element drive circuit comprising:
JP29114690A 1990-10-29 1990-10-29 Piezoelectric element drive circuit Pending JPH04164652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29114690A JPH04164652A (en) 1990-10-29 1990-10-29 Piezoelectric element drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29114690A JPH04164652A (en) 1990-10-29 1990-10-29 Piezoelectric element drive circuit

Publications (1)

Publication Number Publication Date
JPH04164652A true JPH04164652A (en) 1992-06-10

Family

ID=17765039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29114690A Pending JPH04164652A (en) 1990-10-29 1990-10-29 Piezoelectric element drive circuit

Country Status (1)

Country Link
JP (1) JPH04164652A (en)

Similar Documents

Publication Publication Date Title
US4947074A (en) Piezoelectric element drive circuit
US4404502A (en) Energy saving circuit arrangement for a piezoelectric positioning element
US5130598A (en) Apparatus for driving a piezoelectric actuator
US6081061A (en) Method and device for charging and discharging a piezoelectric element
EP1079447B1 (en) Piezo-electric/electrostrictive element driving circuit
JPH09115727A (en) Apparatus and method for controlling electromagnetic load
JP2001053348A (en) Device for charging or discharging plural piezoelectric elements
US6717829B2 (en) Charge pump device with reduced ripple and spurious low frequency electromagnetic signals
JPH04351200A (en) Piezoelectric ceramic actuator drive circuit
JP2002067304A (en) Driving circuit and its driving method for ink jet recording head
JPS63130357A (en) Piezoelectric element driving circuit
JP2003086422A (en) Electromagnetic valve driver
JPH04164652A (en) Piezoelectric element drive circuit
Newton et al. Piezoelectric actuation systems: optimization of driving electronics
JP2985375B2 (en) Piezo element drive circuit
EP1522700A3 (en) Voltage booster circuit for powering a piezoelectric actuator of an injector
EP1195883B1 (en) Control circuit for rectification
JPS63130358A (en) Piezoelectric element driving unit
JPH10256881A (en) Pulse generator
JPS63130356A (en) Piezoelectric element driving device
JP2003134851A (en) Piezo-actuator drive circuit
JPH02136245A (en) Piezoelectric element driving apparatus
JP2945093B2 (en) Piezo element drive circuit
JPH0828333A (en) Driving device for actuator solenoid
JP2818425B2 (en) Excitation method of piezoelectric actuator