JPH04164294A - Electromagnetic pump - Google Patents

Electromagnetic pump

Info

Publication number
JPH04164294A
JPH04164294A JP2288553A JP28855390A JPH04164294A JP H04164294 A JPH04164294 A JP H04164294A JP 2288553 A JP2288553 A JP 2288553A JP 28855390 A JP28855390 A JP 28855390A JP H04164294 A JPH04164294 A JP H04164294A
Authority
JP
Japan
Prior art keywords
conduit
gas
electromagnetic pump
cover
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288553A
Other languages
Japanese (ja)
Inventor
Hidetsugu Matsuzawa
松澤 秀貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2288553A priority Critical patent/JPH04164294A/en
Publication of JPH04164294A publication Critical patent/JPH04164294A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To enable a temperature rise in an electromagnetic pump to be prevented by providing a fan for the forced circulation of sealed gas through a cable passage, in the cover of the expanded section of a conduit end externally projected from a reactor vessel. CONSTITUTION:The terminal end of a conduit 9 is formed as a large diameter and eccentrically expanded section 9b, and a cylindrical conduit cover 21 is so coupled thereto as to be freely detachable. Furthermore, the internal space of the conduit 9 is divided into cable passages 25 with an axial division 22. Also, the lower section of the inside of the cover 21 is divided into two chambers with a division 27 continuous to the division 22, and an axial flow fan 28 is provided in the chamber at the side of a terminal 24. The fan 28 sucks gas from a passage 25 at the side of the chamber thereof, and blows the gas toward the other passage 25 via the upper space of the cover 21. According to the aforesaid construction, sealed gas is forcibly circulated to the inside of an electromagnetic pump 7, and the convection of the gas is facilitated. Also, the gas under convection exchanges heat with a primary coolant around the conduit 9, thereby cooling an iron core and a coil group.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速増殖炉において使用される電磁ポンプに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an electromagnetic pump used in a fast breeder reactor.

(従来の技術) 第6図は従来の液体金属冷却型の高速増殖炉の概略構成
を示す模式的断面図である。この図において、原子炉容
器1内には炉心2、−法主循環ポンプ3、中間熱交換器
4が冷却材である液体金属ナトリウム(以下単に一次冷
却材と呼ぶ)5に浸漬して収容されている。上記構成の
高速増殖炉において、−次冷却材5は図中矢符で示すよ
うに一次主循環ポンプ3により循環される。
(Prior Art) FIG. 6 is a schematic cross-sectional view showing the schematic configuration of a conventional liquid metal cooled fast breeder reactor. In this figure, a reactor core 2, a primary circulation pump 3, and an intermediate heat exchanger 4 are housed in a reactor vessel 1, immersed in liquid metal sodium 5, which is a coolant (hereinafter simply referred to as the primary coolant). ing. In the fast breeder reactor configured as described above, the secondary coolant 5 is circulated by the primary main circulation pump 3 as indicated by the arrow in the figure.

炉心2で発生した熱は一次冷却材に伝達され、高温とな
った一次冷却材は中間熱交換器4において二次冷却材(
図示しない)に伝達され、降温される。この降温された
一次冷却材は再び一次主循環ポンプ3に戻り、炉心2に
送られ前記の経過を繰り返す。
The heat generated in the reactor core 2 is transferred to the primary coolant, and the high temperature primary coolant is transferred to the secondary coolant (
(not shown), and the temperature is lowered. The primary coolant whose temperature has been lowered returns to the primary main circulation pump 3 again, is sent to the reactor core 2, and repeats the above process.

従来は前記の一次主循環ポンプ3として羽根車の回転に
より吐出圧力を発生する機械式のものが採用されてきた
。この機械式のポンプはポンプ」−方に設置した主モー
タ6によって駆動されていた。
Conventionally, as the primary main circulation pump 3, a mechanical pump that generates discharge pressure by rotation of an impeller has been employed. This mechanical pump was driven by a main motor 6 installed on the side of the pump.

上記構成の高速増殖炉の一次冷却材5は導電率の高い液
体金属ナトリウムであるから、−法主循環ポンプとして
電磁ポンプを採用することも可能である。第6図と同一
部分には同一符号を付した第5図は一次主循環ポンプと
して電磁ポンプ7を採用した高速増殖炉の一例の模式的
断面図である。
Since the primary coolant 5 of the fast breeder reactor configured as described above is liquid metal sodium with high conductivity, it is also possible to employ an electromagnetic pump as the primary circulation pump. FIG. 5, in which the same parts as in FIG. 6 are denoted by the same reference numerals, is a schematic cross-sectional view of an example of a fast breeder reactor employing an electromagnetic pump 7 as a primary main circulation pump.

上記電磁ポンプの採用により、−法主循環ポンプの上部
空間8への主モータの設置は省略され、電磁ポンプ7用
の電源ケーブル挿通用の電線管を配置するだけてよいか
ら、原子炉容器1の上部構造は著しく簡素化される。
By adopting the electromagnetic pump described above, the installation of the main motor in the upper space 8 of the main circulation pump is omitted, and it is only necessary to arrange the electric conduit for the power cable insertion for the electromagnetic pump 7. The superstructure of is significantly simplified.

また、電磁ポンプ7は機械式ポンプに比して静的機器で
あり、保守が非常に容易である。さらに、自由液面がな
く制御性に優れており、これを採用することにより高速
増殖炉の信頼性の向上、構成の簡素化を図ることができ
る。
Furthermore, the electromagnetic pump 7 is a static device compared to a mechanical pump, and is much easier to maintain. Furthermore, it has no free liquid level and has excellent controllability, and by adopting this, it is possible to improve the reliability of the fast breeder reactor and simplify the configuration.

第4図は前記電磁ポンプ7の拡大縦断面図である。この
図に例示したのは2ステ一タ方式の電磁ポンプであり、
電磁ポンプ7は円筒状の内側鉄心1oと同じく円筒状の
外側鉄心11とを具え、内側鉄心10の外周に接して配
置した内側ダクト]7および外側鉄心】−1の内周に接
して配置した外側ダクト18とによって、前記両鉄心間
には断面環状の環状流路12が形成されている。
FIG. 4 is an enlarged longitudinal sectional view of the electromagnetic pump 7. The example shown in this figure is a two-stage electromagnetic pump.
The electromagnetic pump 7 includes a cylindrical inner core 1o and a cylindrical outer core 11, and an inner duct]7 is disposed in contact with the outer circumference of the inner core 10 and an inner duct is disposed in contact with the inner circumference of the outer core ]-1. An annular flow path 12 having an annular cross section is formed between the two iron cores by the outer duct 18 .

内側鉄心1oの外周面には多数のコイルを含む内側コイ
ル群13が装着され、外側鉄心11の内周面には多数の
コイルを含む外側コイル群14が装着されている。
An inner coil group 13 including a large number of coils is attached to the outer circumferential surface of the inner core 1o, and an outer coil group 14 including a large number of coils is attached to the inner circumferential surface of the outer core 11.

なお、内側ダクト17は前記各鉄心と同心の中央流路1
5を形成する内筒17aを有し、この内筒17aと前記
内側鉄心17に接する部分とは連続され、内側鉄心17
および内側コイル群13を密閉する空間を形成している
。さらに、前記外側ダク1〜18も同心の外筒18aを
有し、この外筒1−88と前記外側鉄心内周に接する部
分とは連続され、外側鉄心11および外側コイル群14
を密閉する空間を形成している。なお、図中19は封入
ガスを示している。
Note that the inner duct 17 has a central passage 1 concentric with each of the iron cores.
5, the inner cylinder 17a and the portion in contact with the inner core 17 are continuous, and the inner core 17
A space is formed in which the inner coil group 13 is sealed. Furthermore, the outer ducts 1 to 18 also have a concentric outer cylinder 18a, and the outer cylinder 1 to 88 and the part that contacts the inner periphery of the outer core are continuous, and the outer core 11 and the outer coil group 14
It forms a space that is sealed. Note that 19 in the figure indicates a sealed gas.

なお、前記各コイル群への電力の供給は電線管9に挿通
された電源ケーブル(図示しない)によってなされる。
Note that power is supplied to each coil group by a power cable (not shown) inserted through the electric conduit 9.

」−記従来の電磁ポンプ7において、電磁誘導により環
状流路12を経由して吸い上げられた一次冷却材は、中
央流路15を流過して炉心]に向けて吐出される。
In the conventional electromagnetic pump 7, the primary coolant sucked up via the annular flow path 12 by electromagnetic induction flows through the central flow path 15 and is discharged toward the reactor core.

(発明が解決しようとする課題) 」−記構成の従来の電磁ポンプ7において、ガス等によ
る外部からの強制冷却を施すことなく、内側コイル群1
3、外側コイル群14がポンプ作動中にそれぞれ発生す
るジュール熱を電磁ポンプを浸漬した一次冷却材中に回
収し、電磁ポンプにおけるエネルギ損失を低減させるよ
うにしている。
(Problems to be Solved by the Invention) In the conventional electromagnetic pump 7 having the configuration described above, the inner coil group 1 is
3. The outer coil group 14 recovers Joule heat generated during pump operation into the primary coolant in which the electromagnetic pump is immersed, thereby reducing energy loss in the electromagnetic pump.

而して、上記の冷却手段においてはコイル群13.14
および内側鉄心17、外側鉄心18から周囲の一次冷却
材への熱の放散は、内側ダクト17との内側鉄心」−〇
接触伝熱および外側ダクト18と外側鉄心11との接触
伝熱、輻射、電磁ポンプ内の封入ガスの自然対流等によ
ってなされるのみであり、多くを期待することはできな
い。そのため、コイル群の温度は周囲の一次冷却材温度
(400’C)より100〜200″C高い高温度とな
る。
Therefore, in the above cooling means, the coil groups 13 and 14
The heat dissipation from the inner core 17 and the outer core 18 to the surrounding primary coolant is caused by contact heat transfer between the inner core and the inner duct 17, contact heat transfer between the outer duct 18 and the outer core 11, radiation, This is done only by natural convection of the gas sealed inside the electromagnetic pump, so we cannot expect much from it. Therefore, the temperature of the coil group becomes a high temperature that is 100 to 200''C higher than the surrounding primary coolant temperature (400'C).

ところが、上記のような高温に耐えることができるコイ
ルの絶縁手段は現在実用化されていない。
However, coil insulation means that can withstand the above-mentioned high temperatures are not currently in practical use.

本発明は上記の事情に基づきなされたもので、コイル群
から発生する熱を周囲の一次冷却材中にできる限り回収
し、コイル群の温度」二昇咎可及的に小どすることがで
きる電磁ポンプを提供することを目的としている。
The present invention has been made based on the above circumstances, and it is possible to recover as much of the heat generated from the coil group into the surrounding primary coolant and to reduce the temperature of the coil group as much as possible. The purpose is to provide electromagnetic pumps.

[発明の構成コ (課題を解決するための手段) 本発明の電磁ポンプは、電磁誘導のためのコイル群に給
電する内部ケーブルを挿通する電線管を少なくとも2箇
のケーブル通路を有するものとし、前記電線管の原子炉
容器外に突出した端部には偏心膨大部を設け、これに着
脱自在に取り付けられた円筒状の電線管用蓋内には前記
ケーブル通路を介して封入ガスの強制循環を行わせる送
風機を設けたことを特徴とする。
[Configuration of the Invention (Means for Solving the Problems)] The electromagnetic pump of the present invention has at least two cable passages in a conduit through which an internal cable for feeding power to a group of coils for electromagnetic induction is inserted; An eccentric bulge is provided at the end of the conduit that protrudes outside the reactor vessel, and a cylindrical conduit lid detachably attached to the end allows forced circulation of sealed gas through the cable passage. It is characterized by being equipped with a blower to make the air flow.

(作用) 上記構成の本発明の電磁ポンプにおいては、電線管用蓋
内の送風機の設置された室側のケーブル通路からガスを
吸引し、前記蓋内の上部空間を経由して他方の電線通路
に向けて噴出する。これにより、電磁ポンプ内には封入
ガスの強制的な循環がなされることとなる。このガスの
強制循環によりガスの対流は促進され、対流中のガスは
電線管周囲の一次冷却材と熱交換を行い、鉄心およびコ
イル群の冷却を行うことができる。
(Function) In the electromagnetic pump of the present invention having the above configuration, gas is sucked from the cable passage on the room side in which the blower is installed inside the conduit cover, and is transferred to the other electric wire passage through the upper space in the cover. Squirt towards. As a result, the sealed gas is forced to circulate within the electromagnetic pump. This forced circulation of gas promotes gas convection, and the gas in the convection exchanges heat with the primary coolant around the conduit, thereby cooling the iron core and coil group.

(実施例) 第5図、第6図と同一部分には同一符号を付した第1図
は、本発明の一実施例である電磁ポンプ7を具えた高速
増殖炉の概略構成を示す模式的断面図、第2図は前記実
施例の要部拡大縦断面図、第3図は第2図111−IH
線における断面図である。
(Embodiment) FIG. 1, in which the same parts as in FIG. 5 and FIG. A sectional view, FIG. 2 is an enlarged vertical sectional view of the main part of the above embodiment, and FIG. 3 is a sectional view of FIG. 2 111-IH.
FIG.

第1図において、電磁ポンプ7に給電する図示しない電
源ケーブルを挿通された電線管9は、第5図に示した従
来の電磁ポンプ7の電線管9とはその構造を別異とされ
ている。
In FIG. 1, a conduit 9 through which a power cable (not shown) that supplies power to the electromagnetic pump 7 is inserted has a different structure from the conduit 9 of the conventional electromagnetic pump 7 shown in FIG. .

電磁ポンプ7は原子炉容器1の」二部から吊下げケーシ
ング20により吊下げ支持されている。吊下げケーシン
グ20は密閉構造ではなく、周囲の一次冷却材と吊下げ
ケーシング20内とは連通され、吊下げケーシング20
内の一次冷却材液位と周囲の一次冷却材液位とは同一レ
ベルを保持している。
The electromagnetic pump 7 is suspended and supported from the second part of the reactor vessel 1 by a suspension casing 20. The suspended casing 20 does not have a sealed structure, and the surrounding primary coolant and the inside of the suspended casing 20 are communicated with each other.
The primary coolant liquid level inside and the surrounding primary coolant liquid level are maintained at the same level.

電線管9は一次冷却材中を通って原子炉容器1上部に至
り、吊下げケーシング20上面を気密に貫通して上方に
突出しており、電源ケーブルCは電線管9上端の終端構
成9aにおいて電線管9内に配置した内部ケーブルと接
続されている。
The conduit 9 passes through the primary coolant to reach the upper part of the reactor vessel 1, passes through the upper surface of the hanging casing 20 in an airtight manner, and protrudes upward. It is connected to an internal cable placed within the tube 9.

第2図において、電線管9終端部は他部よりも大径の偏
心膨大部9bとされ、この偏心膨大部9bには円筒状の
電線管用蓋21が着脱自在に設けられている。また、電
線管9内には軸方向の隔壁22が設けられ、電線管9内
は前記隔壁22によりケーブル通路25.25に区画さ
れている。これ等のケーブル通路25.25には、前記
電源ケーブルCと偏心膨大部9bの偏心側周面に設けた
端子箱24において接続した内部ケーブル23.23が
挿通されている。
In FIG. 2, the terminal end portion of the conduit 9 is formed into an eccentric enlarged portion 9b having a larger diameter than other portions, and a cylindrical conduit lid 21 is removably provided on the eccentric enlarged portion 9b. Further, an axial partition wall 22 is provided inside the conduit tube 9, and the inside of the conduit tube 9 is divided into cable passages 25 and 25 by the partition wall 22. Into these cable passages 25.25 are inserted internal cables 23.23 which are connected to the power supply cable C at a terminal box 24 provided on the peripheral surface of the eccentric side of the eccentric enlarged portion 9b.

電線管用蓋21内にも前記隔壁22と連続し蓋内下部を
2室に区画する隔壁27が設けられ、この2室の中の前
記端子24側の室には、軸流現送態様28が設けられて
いる。なお、図中26は隔壁22に設けられ、気密に構
成された内部ケーブル貫通部を示している。
A partition wall 27 is also provided in the conduit lid 21, which is continuous with the partition wall 22 and divides the lower part of the lid into two chambers, and of these two chambers, the chamber on the terminal 24 side has an axial flow mode 28. It is provided. Note that 26 in the figure indicates an internal cable penetration portion provided in the partition wall 22 and configured to be airtight.

さらに、前記電線管用蓋21内の前記軸流型送風機28
は、第3図に示すように前記蓋内の前記送風機を収容し
た室を横断する送風機取付板29に、その吸引口を前記
取付板29下方に位置させて取り付けられている。
Furthermore, the axial blower 28 inside the conduit cover 21
As shown in FIG. 3, the air blower is attached to a blower mounting plate 29 that crosses the chamber housing the blower in the lid, with its suction port located below the mounting plate 29.

上記構成の実施例においては、軸流型送風機28は電線
管9のケーブル通路25の一方、すなわち蓋2コの軸流
型送風機28の設置された室側のケーブル通路からガス
を吸引し、前記蓋内の上部空間を経由して他方の電線通
路に向けて噴出する。
In the embodiment with the above configuration, the axial blower 28 sucks gas from one of the cable passages 25 of the conduit 9, that is, from the cable passage on the side of the room where the axial blower 28 of the two lids is installed. It ejects through the upper space inside the lid toward the other wire passage.

これにより、電磁ポンプ7内には封入ガスの強制的な循
環がなされることとなる。このガスの強制循環によりガ
スの対流は促進され、対流中のガスは電線管9周囲の一
次冷却材と熱交換を行い、鉄心およびコイル群の冷却を
行うことができる。
As a result, the sealed gas is forced to circulate within the electromagnetic pump 7. This forced circulation of gas promotes gas convection, and the convecting gas exchanges heat with the primary coolant around the electrical conduit 9, thereby cooling the iron core and coil group.

上記の構成により、電磁ポンプ7内のガスの対流はさか
んとなり、コイル群、鉄心の発生する熱が−次冷却材中
に効率よく排出される。さらに、電線管を介しても一次
冷却材中との熱交換がなされるので、従来の電磁ポンプ
におけるよりもコイル群、鉄心の温度」二部を抑制する
ことができる。
With the above configuration, the gas convection within the electromagnetic pump 7 is increased, and the heat generated by the coil group and the iron core is efficiently discharged into the secondary coolant. Furthermore, since heat is exchanged with the primary coolant through the conduit, the temperature of the coil group and the iron core can be suppressed more than in conventional electromagnetic pumps.

また、軸流型送風機故障の場合にあっても電線管用蓋を
取り外して容易に交換することができる。
Furthermore, even in the event of a failure of the axial blower, the conduit cover can be removed and replaced easily.

本発明は上記実施例のみに限定されない。例えば、電線
管の一次冷却材中に浸漬される部分に冷却用フィンを設
け、冷却効果を増大させることも可能である。さらに、
電線管内の電線通路は必要に応じ例示の2箇を超すもの
としてもよい。
The present invention is not limited to the above embodiments. For example, it is also possible to provide cooling fins in the portion of the conduit that is immersed in the primary coolant to increase the cooling effect. moreover,
The number of wire passages in the conduit may exceed the two illustrated as necessary.

[発明の効果] −I−記から明らかなように本発明の1!磁ポンプにお
いては、電磁ポンプの各コイル群、各鉄心の発生する熱
の大部分を一次冷却材中に回収しながら、電磁ポンプ内
の温度の上昇を防止することができる。
[Effects of the Invention] As is clear from Section -I-, the present invention has the following advantages: In the magnetic pump, it is possible to prevent the temperature inside the electromagnetic pump from increasing while recovering most of the heat generated by each coil group and each iron core in the primary coolant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である電磁ポンプ7を具えた
高速増殖炉の概略構成を示す模式的断面図、第2図は前
記実施例の要部拡大縦断面図、第3図は第2図■−■線
における断面図、第4図は従来の電磁ポンプの拡大縦断
面図、第5図は一次主循環ポンプとして電磁ポンプ7を
採用した液体金属冷却型の高速増殖炉の一例の模式的断
面図、第6図は一次主循環ポンプとして機械式ポンプを
採用した液体金属冷却型の高速増殖炉の概略構成を示す
模式的断面図である。 1 ・・原子炉容器 2・・・炉心 3 −・次主循環
ポンプ 4  中間熱交換器 5 ・液体金属すI〜リ
ウム 7 ・ 電磁ポンプ 8 ・ 」二部空間 9 
 電線管 9a ・終端構成 9b偏心膨大部 10 
 内側鉄心 11・・ 外側鉄心 12 ・・環状流路
 13 ・・内側コイル群]4  外側コイル群 15
  中央流路 17  ・内側ダクト ]8・・・ 外
側ダクi〜 19封入ガス 20− 吊り下げケーシン
グ 21電線管用蓋 22.27  隔壁 23・・内
部ケーブル 24  ・端子箱 25・・・・ケーブル
通路 26 ・ケーブル貫通部 28 ・・軸流型送風
機 29・ ・・送風機取付板
FIG. 1 is a schematic sectional view showing a schematic configuration of a fast breeder reactor equipped with an electromagnetic pump 7, which is an embodiment of the present invention, FIG. 2 is an enlarged vertical sectional view of the main part of the embodiment, and FIG. Figure 2 is a cross-sectional view taken along the ■-■ line, Figure 4 is an enlarged vertical cross-sectional view of a conventional electromagnetic pump, and Figure 5 is an example of a liquid metal cooled fast breeder reactor that uses electromagnetic pump 7 as the primary main circulation pump. FIG. 6 is a schematic cross-sectional view showing the schematic configuration of a liquid metal cooled fast breeder reactor that employs a mechanical pump as a primary main circulation pump. 1 Reactor vessel 2 Reactor core 3 - Secondary main circulation pump 4 Intermediate heat exchanger 5 Liquid metal 7 Electromagnetic pump 8 Two-part space 9
Conduit 9a ・Terminal configuration 9b Eccentric enlarged part 10
Inner core 11...Outer core 12...Annular flow path 13...Inner coil group] 4 Outer coil group 15
Central channel 17 ・Inner duct] 8... Outer duct i~ 19 Filled gas 20- Hanging casing 21 Conduit cover 22. 27 Partition wall 23... Internal cable 24 ・Terminal box 25... Cable passage 26 ・Cable penetration part 28...Axial flow blower 29...Blower mounting plate

Claims (1)

【特許請求の範囲】[Claims] 電磁誘導のためのコイル群に給電する内部ケーブルを挿
通する電線管を少なくとも2箇のケーブル通路を有する
ものとし、前記電線管の原子炉容器外に突出した端部に
は偏心膨大部を設け、これに着脱自在に取り付けられた
円筒状の電線管用蓋内には前記ケーブル通路を介して封
入ガスの強制循環を行わせる送風機を設けたことを特徴
とする電磁ポンプ。
A conduit through which an internal cable for feeding power to a group of coils for electromagnetic induction is inserted has at least two cable passages, and an eccentric enlarged portion is provided at an end of the conduit that protrudes outside the reactor vessel, An electromagnetic pump characterized in that a blower for forcedly circulating the sealed gas through the cable passage is provided in a cylindrical conduit lid detachably attached to the electromagnetic pump.
JP2288553A 1990-10-29 1990-10-29 Electromagnetic pump Pending JPH04164294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288553A JPH04164294A (en) 1990-10-29 1990-10-29 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288553A JPH04164294A (en) 1990-10-29 1990-10-29 Electromagnetic pump

Publications (1)

Publication Number Publication Date
JPH04164294A true JPH04164294A (en) 1992-06-09

Family

ID=17731738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288553A Pending JPH04164294A (en) 1990-10-29 1990-10-29 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JPH04164294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112888A (en) * 2019-04-17 2019-08-09 江苏大学 A kind of magnetic fluid pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112888A (en) * 2019-04-17 2019-08-09 江苏大学 A kind of magnetic fluid pump

Similar Documents

Publication Publication Date Title
CN110445307B (en) Stator segment, stator assembly and cooling system of stator assembly
EP0104505A2 (en) A canned motor pump
US3555319A (en) Submersible electric motor
CN215171068U (en) Heat dissipation mechanism for magnetic suspension blower
RU2697511C1 (en) Motor with external rotor and stator cooling system
CN212033944U (en) Oil-cooled casing and oil-cooled motor
US20230314079A1 (en) Metal melt pump
JPH04164294A (en) Electromagnetic pump
CN107425638A (en) A kind of motor radiating structure
CN106451881A (en) Magnetic suspension air blower air cooling structure
JP2011250601A (en) Electric motor
CN211350271U (en) Oil-immersed transformer shell
CN213124077U (en) Oil-cooled heat dissipation oil tank of transformer
CN213044004U (en) Heat dissipation device of new energy automobile charging management system practical training platform
CN210008128U (en) water-cooling heat dissipation device for electronic and electrical equipment
CN210247127U (en) Plasma generator
CN109519415B (en) Heat insulation shell for high-temperature pump
CN101728060A (en) High-power transformer air-cooling device for ozone generator
CN214755942U (en) Water-cooled explosion-proof motor shell
CN212276973U (en) High-power high-frequency switching power supply transformer cooling device
CN213959883U (en) Heat dissipation shell for magnetic suspension motor
CN210806934U (en) Motor casing
CN220291818U (en) High-speed air-cooled motor
CN216016642U (en) Generator stator winding cooling system
CN115133714B (en) Overheat-proof high-temperature tail gas exhaust device of high-temperature furnace