JPH0416410B2 - - Google Patents

Info

Publication number
JPH0416410B2
JPH0416410B2 JP60062018A JP6201885A JPH0416410B2 JP H0416410 B2 JPH0416410 B2 JP H0416410B2 JP 60062018 A JP60062018 A JP 60062018A JP 6201885 A JP6201885 A JP 6201885A JP H0416410 B2 JPH0416410 B2 JP H0416410B2
Authority
JP
Japan
Prior art keywords
glass
furnace
melting
electrodes
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60062018A
Other languages
Japanese (ja)
Other versions
JPS61222928A (en
Inventor
Takashi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP6201885A priority Critical patent/JPS61222928A/en
Publication of JPS61222928A publication Critical patent/JPS61222928A/en
Publication of JPH0416410B2 publication Critical patent/JPH0416410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラスの熔融清澄に供する熔融炉
で、その熔融エネルギー全てを電気でまかなうガ
ラス熔融用電気炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electric furnace for glass melting, which is used for melting and refining glass, and in which the entire melting energy is supplied by electricity.

[従来の技術] 一般に成分中に酸化鉛(PbO)を含有するガラ
スの熔融を電気加熱によつて行う炉の場合(熔融
状態にある高温のガラスに通電し、ガラス自体を
抵抗発熱体とみなしジユール効果によつて発熱加
熱させる炉)、電極材料に酸化錫が用いられるの
が普通である。これは、従来から多用されている
金属モリブデン電極では、ガラス中のPbOとの反
応が強く起り、特にガラスへのモリブデンイオン
による着色が無視し得なくなる事による。しかし
ながら、酸化錫電極の性状は、金属モリブデン電
極に比し著しく脆弱であるので、熔融炉自体のデ
ザイン・運転条件等に慎重な配慮が要求されるこ
とになる。
[Prior art] Generally, in the case of a furnace that melts glass containing lead oxide (PbO) as a component by electrical heating (current is applied to the glass at a high temperature in a molten state, the glass itself is regarded as a resistance heating element). (a furnace that generates heat by the Joule effect), and tin oxide is usually used as the electrode material. This is because the metal molybdenum electrode, which has been widely used in the past, strongly reacts with PbO in the glass, and in particular, the coloring of the glass by molybdenum ions cannot be ignored. However, since the properties of tin oxide electrodes are significantly weaker than those of metal molybdenum electrodes, careful consideration is required in the design and operating conditions of the melting furnace itself.

例えば、両電極性状において、最も顕著に相違
する点として、電極表面における電流密度(A/
cm2)があげられる。すなわち金属モリブデン電極
では特許限度を1.8〜2A/cm2とするのが一般的で
あるが、酸化錫電極ではおよそ1/4の0.5A/cm2
限度とされている。この違いを炉体デザインの見
地から換言すれば、同一の熔融能力を有する炉に
おいて酸化錫電極を用いる場合、4倍の電極表面
積を確保しなければならず、炉体壁面に占める酸
化錫電極の割合が大きくなるということは、熔融
状態にあるガラスによる侵蝕に対する抵抗がその
分小さくなり、熔融炉自体の寿命を短くしてしま
うことが避けられない。
For example, the most notable difference between the properties of both electrodes is the current density (A/
cm 2 ). That is, for metal molybdenum electrodes, the patent limit is generally 1.8 to 2 A/cm 2 , but for tin oxide electrodes, the limit is about 1/4, 0.5 A/cm 2 . To put this difference in other words from the perspective of furnace design, when using a tin oxide electrode in a furnace with the same melting capacity, four times as much electrode surface area must be secured, and the tin oxide electrode occupies the furnace wall. As the ratio increases, the resistance to erosion by the glass in the molten state decreases accordingly, which inevitably shortens the life of the melting furnace itself.

こうした制限のもとで用いられる酸化錫電極の
配置は、直径100mm前後の棒状のものを炉床より
炉内に垂直に150〜200mm程挿入し(一般にボトム
垂直設置型電極と称せられている)、電流に対す
る有効な電極の表面積を、炉壁に埋め込む形で垂
直に設置する方式がよく用いられてきた。
The arrangement of tin oxide electrodes used under these restrictions is to insert a rod-shaped object approximately 100 mm in diameter vertically into the furnace from the hearth about 150 to 200 mm (generally referred to as a bottom vertically installed electrode). , a method has often been used in which the effective surface area of the electrode for the current is embedded vertically in the furnace wall.

すなわち、かかる形状の酸化錫電極を用いるガ
ラス熔融炉の一般的な姿は、長さ、幅、深さがお
よそ3:2:1の直方体であり、炉床には長さ方
向に左右15〜20対のボトム垂直設置型電極が対向
して挿入されている。もちろん挿入される電極の
数は熔融量に比例して決められるが、上述の場合
10〜20ton/日のガラス熔融能力が見込まれる。
In other words, the general shape of a glass melting furnace using such a shaped tin oxide electrode is a rectangular parallelepiped with a ratio of length, width, and depth of approximately 3:2:1, and the hearth has a diameter of 15 to 15 mm on the left and right in the length direction. Twenty pairs of bottom vertically mounted electrodes are inserted facing each other. Of course, the number of electrodes inserted is determined in proportion to the amount of melting, but in the above case
It is expected to have a glass melting capacity of 10 to 20 tons/day.

[発明が解決しようとする問題点] しかしながら、上記のような形状の熔融炉はガ
ラスの全電気熔融炉の理念からして避け難い欠点
を有している事が指摘できる。すなわち、ガラス
の全電気熔融炉は、炉内部のガラスへの直接通電
によつてもたらされるジユール熱を熱源として熔
融を行つている故に、ガラス原料の投入場所であ
る炉内表面は、出来るだけ均一にガラス原料で覆
うことによつて、投入された熱エネルギーの放射
による損失を防ぎ、熔融炉内を常に安定した熱平
衡下に置くことが出来るのであり、そうすること
が操炉の最大のポイントでもある。
[Problems to be Solved by the Invention] However, it can be pointed out that the melting furnace of the above shape has disadvantages that cannot be avoided from the concept of an all-electric glass melting furnace. In other words, in an all-electric glass melting furnace, the glass is melted using the Joule heat produced by direct electricity to the glass inside the furnace as a heat source, so the surface inside the furnace where the glass raw materials are introduced is as uniform as possible. By covering the melting furnace with glass raw material, it is possible to prevent the loss of the input thermal energy due to radiation and to keep the inside of the melting furnace under stable thermal equilibrium at all times, which is the most important point in furnace operation. be.

ところで、この炉内表面のガラス原料層の厚さ
は、ガラス熔融量つまり炉から取出される引上量
の多少と、それに伴う投入電力量との関係(ガラ
ス原料層を浮かせている熔融状態のガラス温度と
言い換えることもできる)によつて決まる。一般
的には、ガラスの引上量が増えればその量に見合
うガラス原料が投入されて、ガラス原料層は厚く
なり、引上量が減少すれば炉内での滞在時間が長
くなり十分に熔融されて原料層は薄くなる。
By the way, the thickness of the frit layer on the inner surface of the furnace is determined by the relationship between the amount of glass melt, that is, the amount of glass drawn out from the furnace, and the accompanying amount of input power (the molten state that makes the frit layer float). (which can also be called the glass temperature). Generally speaking, as the amount of glass pulled increases, the amount of glass raw material corresponding to that amount is input, resulting in a thicker layer of glass raw material, and as the amount of glass pulled decreases, the residence time in the furnace becomes longer and sufficient melting is achieved. As a result, the raw material layer becomes thinner.

先に例示している従来形状の酸化錫使用の全電
気式ガラス熔融炉の有する欠点の第一は、この点
に起因しており、ガラスの引上量が減少すると炉
内表面のガラス原料層が薄くなり、従つて表面か
らの熱ロスが増加する。このため投入電力量がそ
のままでは、炉温が低下し始めるが、炉内中央部
附近は、熔融ガラスの清澄の為に必要な一定温度
に常に維持しておかねばならず、投入電力量の相
対的な上昇が避けられなくなる。また、引上量の
上限値に関しても、従来型の熔融炉は、大きく制
限を受けている。すなわち、熔融ガラスの表面を
ガラス原料層で覆つているという事は、熔融清澄
されたガラスの炉外への取り出し口であるスロー
トの真上にもガラス原料があるという事であり、
本来、十分に熔融され清澄されたガラスとしてス
ロートに到達すべきものが、不十分な清澄のまま
で流れ込んでしまう、いわゆるシヨートパスを引
き起こす大きな危険をさらされていることを意味
する。このシヨートパスの発生源は、低温の、従
つて比重のより大きいガラス成分がより速く沈降
すること、また炉壁によつて冷やされて同じく比
重差によつて降下速度が加速されることであり、
この傾向は、ガラス引上量の増大に比例して強く
なる。かかる場合、投入電力量を一層増大してい
けば、それなりのシヨートパス防止の効果を得ら
れるが、スロートを通過するガラス温度の過度の
上昇による後工程の温度制御の困難さやそれ以上
に炉体損傷が加速され、経済面への悪影響が甚大
となる。従つて、ガラス引上量の上限についても
大きく制限を受けることになる。
The first drawback of the conventionally shaped all-electric glass melting furnace using tin oxide as exemplified above is due to this point; when the amount of glass pulled decreases, the glass raw material layer on the surface of the furnace becomes thinner and therefore heat loss from the surface increases. For this reason, if the input power remains unchanged, the furnace temperature will begin to drop, but the area around the center of the furnace must always be maintained at a constant temperature necessary for fining the molten glass. A rise in economic growth becomes inevitable. Furthermore, conventional melting furnaces are severely limited in terms of the upper limit of the pulling amount. In other words, the fact that the surface of the molten glass is covered with a frit layer means that there is also glass raw material directly above the throat, which is the outlet for taking the molten and refined glass out of the furnace.
This means that there is a great danger that what is originally supposed to reach the throat as sufficiently molten and clarified glass may flow into the throat as an insufficiently clarified glass, causing a so-called short pass. The source of this short pass is that the lower temperature and therefore higher specific gravity glass component settles faster and is also cooled by the furnace wall and the rate of descent is accelerated due to the difference in specific gravity.
This tendency becomes stronger in proportion to the increase in the amount of glass pulled up. In such a case, if the input power is further increased, a certain amount of shot pass prevention effect can be obtained, but an excessive rise in the temperature of the glass passing through the throat may make it difficult to control the temperature in the subsequent process, and moreover, it may cause damage to the furnace body. will be accelerated, and the negative impact on the economy will be enormous. Therefore, the upper limit of the glass pulling amount is also greatly restricted.

この様に、酸化錫電極を用いた既存の全電気式
ガラス熔融炉の主流であるところの、前記したよ
うな比較的底が浅く水平方向に長い直方体形状で
ボトム垂直設置型電極配置の熔熔炉は、前記欠点
のため引上量変更に対して非常に狭い許容度しか
なく、生産条件に応じてガラスの引上量を自由に
変更する事が極めて困難である。
In this way, the melting furnace with the above-mentioned rectangular parallelepiped shape with a relatively shallow bottom and horizontally long bottom vertically installed electrode arrangement, which is the mainstream of existing all-electric glass melting furnaces using tin oxide electrodes, Because of the above-mentioned drawbacks, there is only a very narrow tolerance for changing the pulling amount, and it is extremely difficult to freely change the pulling amount of glass according to production conditions.

また、特公昭53−5687号公報では、前記した未
清澄ガラスのシヨートパスを防止するために、熔
融炉を深くして、その垂直方向に複数の電極を、
その側壁から炉内に突出させた熔融炉が提案され
ている。このような炉は、スロート近傍にまで電
極が配されているため、スロートを通過するガラ
ス温度が高く、従つて、スロートの入口を形成し
ている耐火煉瓦のガラスによる侵蝕が激しい。特
に、スロートを通過したガラスが直ちに作業槽に
導かれる場合には、作業温度まで急速に降温しな
ければならず温度制御が極めて困難であつた。さ
らに炉内に水平に突出した最上層の電極は、ガラ
ス化しつつある粗熔融状態のガラスやガラス化直
後の極めて化学的活性力の強いガラスと常に接し
ているため極めて侵蝕され易く、電極のライフが
短いという欠点を有していた。
In addition, in Japanese Patent Publication No. 53-5687, in order to prevent the above-mentioned shot pass of unfined glass, the melting furnace is made deep and a plurality of electrodes are installed in the vertical direction.
A melting furnace that protrudes into the furnace from its side wall has been proposed. In such a furnace, since the electrodes are arranged close to the throat, the temperature of the glass passing through the throat is high, and therefore the refractory brick forming the entrance to the throat is severely eroded by the glass. In particular, when the glass that has passed through the throat is immediately led to the working tank, the temperature must be rapidly lowered to the working temperature, making temperature control extremely difficult. Furthermore, the top electrode, which protrudes horizontally into the furnace, is in constant contact with coarsely molten glass that is becoming vitrified and extremely chemically active glass immediately after vitrification, so it is extremely susceptible to corrosion and has a life-spanning effect on the electrode. It had the disadvantage of being short.

本発明は、この様な問題点を解消し、引上量に
対してより自由度の高いガラスの溶融運転を可能
ならしめる炉体構造と酸化錫電極配置を提供する
ものである。
The present invention solves these problems and provides a furnace structure and a tin oxide electrode arrangement that enable a glass melting operation with a higher degree of freedom in terms of the pulling amount.

[問題点を解決するための手段] 上記目的を達成するため、本発明は、炉縦方向
に数段の電極群を配置し、そのうち第2電極群を
張出部炉床から炉内に垂直に設け、さらに最下段
電極群下端とスロートとの間にガラスの溶融清澄
を行わせるための清澄室を形成することにより上
記の欠点を除去したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention arranges several stages of electrode groups in the longitudinal direction of the furnace, and the second electrode group is arranged perpendicularly into the furnace from the overhanging hearth. The above-mentioned drawbacks have been eliminated by further forming a refining chamber for melting and refining the glass between the lower end of the lowermost electrode group and the throat.

すなわち、本発明のガラス溶融用電気炉は、ガ
ラスを熔融し清澄する熔融炉において、熔融炉の
上部側壁に複数の電極が対向してほぼ同一レベル
に配設された第1電極群と、該熔融炉の下部側壁
上端から外方に張出部した張出炉床から炉内に向
けて垂直に複数の電極が対向して配設されたボト
ム垂直配置型の第2電極群と、該熔融炉の下部側
壁に複数の電極が、前記第1、第2電極群のそれ
ぞれ対をなす電極の対向方向とは90°異なる方向
に複数の電極が対向してほぼ同一レベルに配設さ
れた第3電極群と、さらに、第3電極群と該熔融
炉の下方に位置するスロートとの間に、熔融され
たガラスを清澄するための清澄ゾーンを有してい
ることを特徴とするものである。
That is, the electric furnace for glass melting of the present invention is a melting furnace for melting and refining glass, and includes a first electrode group in which a plurality of electrodes are arranged on the upper side wall of the melting furnace, facing each other and disposed at approximately the same level; a bottom vertical arrangement type second electrode group in which a plurality of electrodes are disposed vertically facing each other in the furnace from an overhanging hearth extending outward from the upper end of the lower side wall of the melting furnace; A plurality of electrodes are disposed on the lower side wall of the third electrode group, and the plurality of electrodes are arranged at substantially the same level and facing each other in a direction 90 degrees different from the opposing direction of the pair of electrodes in the first and second electrode groups. It is characterized by having a fining zone for fining the melted glass between the electrode group, the third electrode group, and the throat located below the melting furnace.

前記電極群は、少なくとも3群の独立して制御
可能な複数の酸化錫電極で、熔融炉の縦方向に配
置するものである。
The electrode group includes at least three groups of independently controllable tin oxide electrodes arranged in the longitudinal direction of the melting furnace.

本発明と、従来技術の欠点解消との解決につい
て以下説明する。
The solution of the present invention and the drawbacks of the prior art will be described below.

自由度のより高いガラスの熔融運転とは、熔融
されたガラスの品質とその経済性を一定レベルに
保ちながら、ガラスの引上量をその時々の必要に
応じて増減出来るという事であり、その増減幅が
大きい程、自由度が高いと言える。そこで、ガラ
スの進行方向(本発明の場合、深さ方向)に沿つ
て、投入電力量を任意に設定出来る様に少なくと
も3群の酸化錫電極を置く。ガラスの引上量、つ
まりガラス熔融量に応じて増減するガラス原料の
量に対応させて、ガラス原料層近傍の第1電極群
の投入電力量を増減させ、ガラス原料の熔融速度
を調節し、炉内熔融ガラス表面のガラス原料層の
厚さをほぼ一定に保つ。これにより、炉体からの
熱の散逸の割合は常にほぼ一定に維持されるの
で、炉中央部以降における温度の維持は、ガラス
原料層から十分に離れて位置する第2、第3電極
群からの投入電力量によつて、ガラス原料層厚さ
に影響を与えずに行うことが出来る。この機能に
より、ガラス熔融量が減少していく際に生じるガ
ラス原料層の厚さの減少と熱損失による投入電力
量の増大という逆現象を防止することが可能とな
る。さらに第2電極群は、通電に有効な電極表面
を十分に有しているため、ガラスを脱泡・清澄に
必要な高温度へと導くことができる。
A more flexible glass melting operation means that the amount of glass drawn can be increased or decreased according to the needs of the time, while maintaining the quality of the melted glass and its economic efficiency at a constant level. It can be said that the larger the range of increase/decrease, the higher the degree of freedom. Therefore, at least three groups of tin oxide electrodes are placed along the direction in which the glass travels (in the case of the present invention, the depth direction) so that the input power amount can be set arbitrarily. Adjusting the melting speed of the glass raw materials by increasing or decreasing the amount of power input to the first electrode group near the glass raw material layer in accordance with the amount of glass raw materials that increases or decreases depending on the amount of glass pulled up, that is, the amount of glass melting, The thickness of the frit layer on the surface of the molten glass in the furnace is kept almost constant. As a result, the rate of heat dissipation from the furnace body is always maintained almost constant, so the temperature from the center of the furnace onward is maintained from the second and third electrode groups located sufficiently away from the frit layer. This can be done without affecting the thickness of the glass raw material layer depending on the amount of input power. This function makes it possible to prevent the reverse phenomenon of a decrease in the thickness of the frit layer and an increase in the amount of input power due to heat loss, which occur when the amount of glass melt decreases. Furthermore, since the second electrode group has a sufficient electrode surface that is effective for energization, it is possible to bring the glass to a high temperature necessary for defoaming and clarification.

尚、熔融炉の上部を、張出部を設けて下部より
も広い構造としたことによつて、上部に投入され
たガラス原料は既にガラス化した熔融ガラスとの
接触面積が増し、熱効率良くより短時間で熔融さ
れる。
In addition, by making the upper part of the melting furnace wider than the lower part by providing an overhang, the glass raw material charged into the upper part has an increased contact area with the molten glass that has already been vitrified, and the melting furnace can be heated more efficiently. Melts in a short time.

次に、ガラス熔融量が大きくなる際に起るシヨ
ートパス現象に対しては、第3電極群の対となつ
て対向している一方の側の電極をスロートの存在
する側の炉側面に設置し、かつガラス原料層とス
ロートとの間に十分な距離をおくことによつて防
止する。ここで、十分な距離とは、炉体の幅の半
分の値と長さの値のうち大きい方の値の2倍の長
さが前提であり、さらに第3電極群の下端とスロ
ートとの間に最大熔融量の80〜100%容積に相当
する空間、すなわち清澄ゾーンを形成させること
である。例えば、炉体寸法としては、幅、長さ、
深さの比が2:1:2等がその代表となる。これ
らの炉体構造と第3電極群の機能とによつてシヨ
ートパス現象を防ぎ、熔融能力の100%運転に対
しても安定した操業が可能となる。
Next, in order to prevent the short pass phenomenon that occurs when the amount of glass melt increases, one electrode of the third electrode group that is facing each other is installed on the side of the furnace on the side where the throat is present. , and by providing a sufficient distance between the frit layer and the throat. Here, the sufficient distance is assumed to be twice the larger of half the width of the furnace body and the length, and also between the lower end of the third electrode group and the throat. A space corresponding to 80 to 100% of the maximum melt volume, that is, a clarification zone, is formed between the two. For example, the furnace body dimensions include width, length,
A typical example is a depth ratio of 2:1:2. These furnace body structures and the functions of the third electrode group prevent the short pass phenomenon and enable stable operation even at 100% melting capacity.

また、投入される電力は、前述の如く深さ方向
に配置される少なくとも3群の酸化錫電極により
炉内ガラス中へ供給されるが、各電極群に投入さ
れる電力の割合は、上方から順に2:4:1を基
準とすることが望ましく、従つて最も負荷のかか
る第2電極群は、通電に有効な電極表面を十分に
大きくする目的で、ガラス中に突出させ、炉壁か
らの水平挿入よりもより安定して支持できるボト
ム垂直設置型とし、そのために炉の上部側を下部
よりも左右に張出した構造とし、この張出部炉床
に第2電極群を設け、電極の直径も150mm以上と
大きくすることが肝要である。
In addition, as mentioned above, the power input is supplied into the glass in the furnace by at least three groups of tin oxide electrodes arranged in the depth direction, but the proportion of the power input to each electrode group is from above. It is desirable to use a ratio of 2:4:1 in this order, and therefore, the second group of electrodes, which carries the most load, should be made to protrude into the glass and be separated from the furnace wall in order to make the electrode surface that is effective for current conduction sufficiently large. The bottom vertical installation type provides more stable support than horizontal insertion, and for this purpose, the upper side of the furnace has a structure that extends to the left and right than the lower part, and a second electrode group is provided on this overhanging hearth, and the diameter of the electrode is It is important that the diameter be larger than 150mm.

第1及び第3電極群については、投入される電
力の割合から、炉内側の電極先端面を炉内壁面近
傍に位置せしめた配置で十分である。(但し、そ
の形状は望ましくは150mm以上の直径を持つ円筒
状電極である。) [実施例] 次に、本発明の実施例を図面に基いて説明す
る。第1図は本発明の代表的実施例のスロートを
含む断面図、第2図は第1図の−線における
断面図、第3図は同じく−線における断面図
である。
Regarding the first and third electrode groups, it is sufficient to position the electrode tip surfaces inside the furnace near the wall surface inside the furnace, considering the ratio of input power. (However, its shape is preferably a cylindrical electrode with a diameter of 150 mm or more.) [Example] Next, an example of the present invention will be described based on the drawings. FIG. 1 is a sectional view including the throat of a typical embodiment of the present invention, FIG. 2 is a sectional view taken along the - line in FIG. 1, and FIG. 3 is a sectional view taken along the - line in FIG.

ガラス原料は投入機1によつて、熔融炉頂部2
の側面より、炉内表面3へ均等に投入分配され
る。投入されたガラス原料は炉内の熔融ガラス4
に浮び、バツチ層(ガラス原料層)5を形成し
て、炉内表面を覆う。このガラス原料層5と清澄
されたガラスの出口(スロート)9との間には、
少なくとも3段の酸化錫電極群が各々対向して配
置されており、本例では上から第1段電極群6、
第2段電極群7、第3段電極群8と呼称する。第
2段電極群7は図の如く、通電に有効な電極表面
を大きくとる目的で張出部炉床16から炉内に垂
直方向に突出して設置され、他の第1と第3段電
極群6,8はほぼ同一レベルで対向して、炉内側
電極先端面が炉内壁近傍に位置するように置かれ
ている。
The glass raw material is transferred to the top part 2 of the melting furnace by the charging machine 1.
It is evenly distributed to the inner surface 3 of the furnace from the side. The input glass raw material is molten glass 4 in the furnace.
The mixture floats to form a batch layer (glass raw material layer) 5 to cover the inner surface of the furnace. Between this frit layer 5 and the outlet (throat) 9 of the clarified glass,
At least three stages of tin oxide electrode groups are arranged facing each other, and in this example, from the top, the first stage electrode group 6,
They are called a second stage electrode group 7 and a third stage electrode group 8. As shown in the figure, the second stage electrode group 7 is installed to protrude vertically into the furnace from the overhanging hearth 16 in order to increase the effective electrode surface for current conduction, and the second stage electrode group 7 6 and 8 are placed facing each other at substantially the same level so that the front end surfaces of the furnace inner electrodes are located near the furnace inner wall.

これらの電極群は、それぞれ次のような機能を
果たすことを目的として投入電力量の調整が行わ
れる。すなわち、第1段電極群6は、ガラス原料
層5の厚みを一定の範囲内に維持すべく所要のガ
ラス熔融量に応じて投入電力量が増減される。こ
のようにして粗熔融されたガラスは、第2段電極
群7によつて必要十分な最高温度にまで昇温され
る。この最高温度域を通過する間に、ガラス原料
の分解によつて発生する気体の脱泡が行われ、次
の第3段電極群8の投入電力量の調整によつて、
スロート9を通過するガラスの温度は所定の温度
に調整されて、ガラスは後工程へ誘導される。
The amount of power input to each of these electrode groups is adjusted for the purpose of fulfilling the following functions. That is, the amount of power input to the first stage electrode group 6 is increased or decreased according to the required amount of glass melt to maintain the thickness of the glass raw material layer 5 within a certain range. The glass roughly melted in this manner is heated to a necessary and sufficient maximum temperature by the second stage electrode group 7. While passing through this maximum temperature range, the gas generated by the decomposition of the glass raw material is defoamed, and by adjusting the amount of power input to the next third stage electrode group 8,
The temperature of the glass passing through the throat 9 is adjusted to a predetermined temperature, and the glass is guided to a subsequent process.

一般に連続式のガラス熔融炉では、ガラス液面
高さ10は常に一定に維持される故に、必要なガ
ラスの熔融量に応じた適切な第1段電極群6と第
2段電極群7の投入電力量に設定すれば、結果と
してあたかもガラス原料層と電極との距離を自由
に設定できるわけで、ガラス原料層を残し、炉内
の熱バランスを良好に保つことが可能となる。
In general, in a continuous glass melting furnace, the glass liquid level 10 is always maintained constant, so the appropriate first stage electrode group 6 and second stage electrode group 7 are inserted according to the required amount of glass to be melted. If the amount of electric power is set, the distance between the frit layer and the electrode can be set freely as a result, and it becomes possible to leave the frit layer and maintain a good heat balance in the furnace.

また第3段電極群8は、対向する一方の側の電
極がスロート上方に位置しているため、通電加熱
による上昇流11により、側壁12に沿つて下降
してくる下降流13によるスロートへのシヨート
パスを防ぐ機能を持つている。
In addition, in the third stage electrode group 8, since one opposing electrode is located above the throat, the upward flow 11 due to electrical heating causes the downward flow 13 that descends along the side wall 12 to reach the throat. It has a function to prevent short passes.

更に、第3段電極群8のレベルを通過したガラ
スは、スロート9までの清澄室15を十分な時間
をかけて層流で温度を下げつつ下降する為に、分
解ガスの脱泡に続いて微小泡をガラス中に吸収
し、つまり“しめ”の効果が顕著に現われ、ガラ
ス品質、及び熔融条件に対する自由度を向上する
ことができる。
Furthermore, the glass that has passed the level of the third stage electrode group 8 descends through the clarification chamber 15 to the throat 9 while lowering the temperature in a laminar flow over a sufficient period of time. The microbubbles are absorbed into the glass, resulting in a remarkable "tightening" effect, and the quality of the glass and the degree of freedom regarding melting conditions can be improved.

なお、本実施例での熔融能力は2ton/日であ
り、酸化錫電極表面における平均電流密度は、第
1段、第3段電極群で、0.28A/cm2、第2段電極
群で0.25A/cm2にて稼働している。熔融量も
0.6ton/日から2ton/日まで変更できた。
The melting capacity in this example was 2 tons/day, and the average current density on the surface of the tin oxide electrode was 0.28 A/cm 2 for the first and third electrode groups, and 0.25 for the second electrode group. It operates at A/ cm2 . The amount of melting
It was possible to change from 0.6ton/day to 2ton/day.

[発明の効果] 以上、述べた通り、本発明は炉縦方向に数段の
酸化錫電極群を配置し、そのうち第2電極群を張
出部炉床から炉内に垂直に設け、さらに最下段電
極群下端とスロートとの間にガラスの熔融清澄を
行わせるために清澄室を形成させたものであるか
ら、従来の電気熔融炉に比べ、熔融量の設定の際
の自由度が広がり、40〜100%(基準熔融量に対
して)の幅で安定した品質のガラスを供給可能と
なつた。
[Effects of the Invention] As described above, the present invention arranges several stages of tin oxide electrode groups in the longitudinal direction of the furnace, with the second electrode group being installed vertically from the overhanging hearth into the furnace, and furthermore, Since a fining chamber is formed between the lower end of the lower electrode group and the throat to melt and refine the glass, the degree of freedom in setting the melting amount is greater than with conventional electric melting furnaces. It has become possible to supply glass with stable quality in the range of 40 to 100% (relative to standard melting amount).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電気炉の縦断面図、第2図
は第1図の−線における縦断面図、第3図は
同じく−線における断面図である。 1……原料投入機、2……炉頂部、3……表
面、4……熔融ガラス、5……バツチ層(ガラス
原料層)、6……第1段電極群、7……第2段電
極群、8……第3段電極群、9……スロート、1
0……ガラス液面高さ、15……清澄ゾーン、1
6……張出部炉床。
FIG. 1 is a longitudinal sectional view of the electric furnace of the present invention, FIG. 2 is a longitudinal sectional view taken along the - line in FIG. 1, and FIG. 3 is a sectional view taken along the - line in FIG. 1... Raw material feeder, 2... Furnace top, 3... Surface, 4... Molten glass, 5... Batch layer (glass raw material layer), 6... First stage electrode group, 7... Second stage Electrode group, 8... Third stage electrode group, 9... Throat, 1
0... Glass liquid level height, 15... Clear zone, 1
6... Overhang hearth.

Claims (1)

【特許請求の範囲】 1 ガラスを熔融し清澄する熔融炉において、熔
融炉の上部側壁に複数の電極が対向してほぼ同一
レベルに配設された第1電極群と、該熔融炉の下
部側壁上端から外方に張出した張出部炉床から炉
内に向けて垂直に複数の電極が対向して配設され
たボトム垂直配置型の第2電極群と、該熔融炉の
下部側壁に複数の電極が、前記第1、第2電極群
のそれぞれ対をなす電極の対向方向とは90°異な
る方向に複数の電極が対向してほぼ同一レベルに
配設された第3電極群と、さらに、第3電極群と
該熔融炉の下方に位置するスロートとの間に、熔
融されたガラスを清澄するための清澄ゾーンを有
していることを特徴とするガラス熔融用電気炉。 2 少なくとも3群の独立して制御可能な複数の
電極から成る電極群を熔融炉の縦方向に配置した
ことを特徴とする特許請求の範囲第1項記載のガ
ラス熔融用電気炉。 3 前記電極の材料が酸化錫であることを特徴と
する特許請求の範囲第1項又は第2項記載のガラ
ス熔融用電気炉。
[Scope of Claims] 1. A melting furnace for melting and refining glass, comprising: a first electrode group in which a plurality of electrodes are arranged on an upper side wall of the melting furnace so as to face each other at substantially the same level; and a lower side wall of the melting furnace. A bottom vertical arrangement type second electrode group in which a plurality of electrodes are vertically arranged facing each other from the overhang hearth extending outward from the upper end into the furnace; a third electrode group in which a plurality of electrodes are arranged at substantially the same level and facing each other in a direction 90° different from the opposing direction of the pair of electrodes in the first and second electrode groups; An electric furnace for melting glass, characterized in that it has a fining zone for fining melted glass between the third electrode group and a throat located below the melting furnace. 2. The electric furnace for melting glass according to claim 1, characterized in that at least three groups of electrodes each consisting of a plurality of independently controllable electrodes are arranged in the longitudinal direction of the melting furnace. 3. The electric furnace for glass melting according to claim 1 or 2, wherein the material of the electrode is tin oxide.
JP6201885A 1985-03-28 1985-03-28 Glass-smelting electric furnace Granted JPS61222928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201885A JPS61222928A (en) 1985-03-28 1985-03-28 Glass-smelting electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201885A JPS61222928A (en) 1985-03-28 1985-03-28 Glass-smelting electric furnace

Publications (2)

Publication Number Publication Date
JPS61222928A JPS61222928A (en) 1986-10-03
JPH0416410B2 true JPH0416410B2 (en) 1992-03-24

Family

ID=13188005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201885A Granted JPS61222928A (en) 1985-03-28 1985-03-28 Glass-smelting electric furnace

Country Status (1)

Country Link
JP (1) JPS61222928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452432A (en) * 2020-11-04 2021-03-09 余诗国 Waste heat power generation waste glass sorting machine and use method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022124155A1 (en) 2022-09-20 2024-03-21 Beteiligungen Sorg Gmbh & Co. Kg Glass melting tank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925170A (en) * 1972-06-28 1974-03-06
JPS535687A (en) * 1976-07-02 1978-01-19 Australian Wire Ind Pty Method of making samples for analyzing devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925170A (en) * 1972-06-28 1974-03-06
JPS535687A (en) * 1976-07-02 1978-01-19 Australian Wire Ind Pty Method of making samples for analyzing devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452432A (en) * 2020-11-04 2021-03-09 余诗国 Waste heat power generation waste glass sorting machine and use method thereof

Also Published As

Publication number Publication date
JPS61222928A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
US5078777A (en) Glass-melting furnace
US4693740A (en) Process and device for melting, fining and homogenizing glass
US3885945A (en) Method of and apparatus for electrically heating molten glass
US4818265A (en) Barrier apparatus and method of use for melting and refining glass or the like
EP0186972B1 (en) Improvements in or relating to glass melting tanks and to refractory materials for use therein
US4809294A (en) Electrical melting technique for glass
US3420653A (en) Glass melting furnace
CN110028225A (en) Electric boosting system suitable for the fusing of high alumina special glass
US2975224A (en) Method and apparatus for melting glass
JPH0416410B2 (en)
EP0325055B1 (en) Glass melting furnace
US4737966A (en) Electric melter for high electrical resistivity glass materials
US4246432A (en) Method and apparatus for melting frits for inorganic oxidic surface coatings by electric resistance heating
US3416906A (en) Method and apparatus for processing heat-softened mineral material
KR20060020888A (en) Electric boosting device for glass melting furnace melter
US4421538A (en) Device for the manufacture of glass filaments
US2281408A (en) Method and apparatus for manufacture and treatment of glass and analogous substances
US3997316A (en) Use of crossed electrode pairs in a glassmaking furnace
US3013096A (en) Method and apparatus for melting and feeding heat-softenable materials
US3321289A (en) Rotatable current baffle in glass flow furnace
US4741753A (en) Method and apparatus for electrically heating molten glass
US3806396A (en) Control of flow of glass to a glass ribbon being drawn
CN220845891U (en) Glass substrate kiln structure
EP0206001A1 (en) Method of and furnace for melting glass
CA1065610A (en) Method and apparatus for making molten glass