JPH04163A - Laminated refrigerant evaporator - Google Patents

Laminated refrigerant evaporator

Info

Publication number
JPH04163A
JPH04163A JP9990390A JP9990390A JPH04163A JP H04163 A JPH04163 A JP H04163A JP 9990390 A JP9990390 A JP 9990390A JP 9990390 A JP9990390 A JP 9990390A JP H04163 A JPH04163 A JP H04163A
Authority
JP
Japan
Prior art keywords
inlet tank
inlet
section
refrigerant
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9990390A
Other languages
Japanese (ja)
Inventor
Yasunobu Ito
康伸 伊藤
Yoshiyuki Yamauchi
芳幸 山内
Osamu Kasebe
修 加瀬部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9990390A priority Critical patent/JPH04163A/en
Publication of JPH04163A publication Critical patent/JPH04163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively operate a gas pressure difference on a refrigerant and oil existent at an inlet tank part by a method wherein the inlet tank is disposed at the bottom of an evaporation unit and the upper part of a communication part between the inlet tank part and a heat exchange flow passage part is drawn by a dam part. CONSTITUTION:Refrigerant on which a refrigeration cycle is operated is introduced from an inlet pipe 6 to an inlet tank part 1. Thereupon, even through a fluid level of an inlet tank part 1 located in the vicinity of an inlet pipe 6 is higher than the lower end of a dam part 9, a flow rate flowing to a heat exchanger flow passage 3 is substantially not increased because of the existence of the dam part 9, and flows longitudinally of the inlet pipe 6. Accordingly, owing to the existence of the dam part 9 there is reduced a difference between a flow rate of an evaporation unit 4 in the vicinity of the inlet pipe 6 and a flow rate of the evaporation unit 4 remove from the inlet pipe 6. Further, owing to the installation of the dam part 9 a refrigerator flow is drawn by an inlet of the heat exchange flow passage part 3, and when a fluid level in the evaporation unit 4 is higher than the lower end of the dam part 9, a communication passage 8 is interrupted by the refrigerant, and a pressure difference formed by attraction force of a compressor is applied between the fluid surface of the inlet tank part 1 and a fluid surface of an outlet tank 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は積層型冷媒蒸発器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a stacked refrigerant evaporator.

[従来の技術] 従来の積層型冷媒蒸発器を第7図にそれを構成するプレ
ート200の一枚だけを第8図に示す。
[Prior Art] A conventional stacked refrigerant evaporator is shown in FIG. 7, and only one of the plates 200 constituting it is shown in FIG. 8.

この積層型冷媒蒸発器は、冷媒液導入用の入口タンク部
1aと、冷媒液導出用の出口タンク部2aと、両タンク
部1a、2aを連通する熱交換流路部3aとを備える蒸
発ユニット4aを、コルゲトフィン5aと交互に入口タ
ンク部1aの延伸方向へ積層してなり、各蒸発ユニット
4aは一対のプレート200を対面させ外周縁及び中央
部をロウ付けして接合されている。
This stacked refrigerant evaporator is an evaporation unit that includes an inlet tank part 1a for introducing refrigerant liquid, an outlet tank part 2a for leading out refrigerant liquid, and a heat exchange passage part 3a that communicates both tank parts 1a and 2a. 4a and corrugated fins 5a are alternately stacked in the extending direction of the inlet tank portion 1a, and each evaporation unit 4a is joined by making a pair of plates 200 face each other and brazing the outer peripheral edge and the center portion.

この冷媒蒸発器では、入口パイプ122から入口タンク
部1aに導入された気液二相の冷媒が各蒸発ユニット4
aの熱交換流路部3aに落下する。
In this refrigerant evaporator, the gas-liquid two-phase refrigerant introduced from the inlet pipe 122 into the inlet tank portion 1a is supplied to each evaporator unit 4.
It falls into the heat exchange flow path section 3a of a.

熱交換流路部3aは中央部の仕切り壁112aにより0
字状の通路をもち、冷媒はこの通路を通過中に蒸発して
出口タンク部2aから出ロパイプ121に流出する。
The heat exchange flow path section 3a has a partition wall 112a in the center.
It has a letter-shaped passage, and the refrigerant evaporates while passing through this passage and flows out from the outlet tank portion 2a to the outlet pipe 121.

また、従来の積層型の冷媒蒸発器の例を第6図に示す。FIG. 6 shows an example of a conventional stacked refrigerant evaporator.

この装置では、入りロタンク1b及び出口タンク2bが
装置床部に設けられている。
In this device, an entry tank 1b and an outlet tank 2b are provided on the floor of the device.

[発明が解決しようとする課題] しかしながら、上記従来装置では、入口タンク部1aが
熱交換流路部3aより上方に位置するので、各蒸発ユニ
ット4aの内、入口パイプ122により近接する蒸発ユ
ニット4aに多くの冷媒が流入し、入口パイプ122か
ら遠隔側の蒸発ユニット4aに流入する冷媒量が減り、
全体としての冷却効率が低下するという問題点がある。
[Problems to be Solved by the Invention] However, in the conventional device described above, since the inlet tank portion 1a is located above the heat exchange flow path portion 3a, the evaporator unit 4a that is closer to the inlet pipe 122 among the evaporator units 4a A large amount of refrigerant flows into the inlet pipe 122, and the amount of refrigerant flowing into the remote side evaporation unit 4a decreases.
There is a problem that the overall cooling efficiency decreases.

また、熱交換流路部3aの底部にオイルが溜るという問
題もある。この問題は第6図の従来例においても同様に
生じる。
There is also the problem that oil accumulates at the bottom of the heat exchange passage section 3a. This problem similarly occurs in the conventional example shown in FIG.

本発明はこのような問題に鑑みなされたものであり、各
蒸発ユニットへの冷媒流入量の差が少なく、かつ、蒸発
ユニットへのオイル貯溜も少ない積層型冷媒蒸発器を提
供することを目的とする。
The present invention was made in view of these problems, and an object of the present invention is to provide a stacked refrigerant evaporator in which there is little difference in the amount of refrigerant flowing into each evaporation unit, and there is also little oil accumulation in the evaporation units. do.

[課題を解決するための手段] 本発明の積層型冷媒蒸発器は、冷媒液導入用の管部から
なる入口タンク部と、前記入口タンク部と同方向に伸び
冷媒ガス導出用の管部からなる出口タンク部と、前記入
口タンク部の軸心方向と直交する方向に伸び前記両タン
ク部を連通ずる熱交換流路部とを備える蒸発ユニットを
前記入口タンク部の延伸方向へ積層してなる積層型冷媒
蒸発器において、前記入口タンク部を前記蒸発ユニット
の底部転配設し、かつ、前記入口タンク部の側部に開設
され前記入口タンク部と前記熱交換流路部とを連通ずる
連通部に収部が下垂していることを特徴としている。
[Means for Solving the Problems] The stacked refrigerant evaporator of the present invention includes an inlet tank section consisting of a pipe section for introducing refrigerant liquid, and a pipe section extending in the same direction as the inlet tank section for leading out refrigerant gas. evaporation units each having an outlet tank section, and a heat exchange passage section extending in a direction perpendicular to the axial direction of the inlet tank section and communicating the two tank sections, stacked in the extending direction of the inlet tank section. In the stacked refrigerant evaporator, the inlet tank section is relocated to the bottom of the evaporation unit, and the communication section is opened at a side of the inlet tank section and communicates the inlet tank section and the heat exchange flow path section. It is characterized by a hanging part.

好適な実施態様において、入口タンク部に冷媒を導入す
る入口パイプが積層方向における入口タンク部の一端に
接続されている。
In a preferred embodiment, an inlet pipe for introducing the refrigerant into the inlet tank section is connected to one end of the inlet tank section in the stacking direction.

[作用及び効果コ 本発明の積層型冷媒蒸発器では、入口タンク部が蒸発ユ
ニットの底部に配設されるともに、入口タンク部と熱交
換流路部との間の連通部の上部が収部により絞られてい
る。したがって、この収部の作用により、入口タンク部
の冷媒及びオイルにガス差圧を有効に作用させ、これら
冷媒及びオイルを有効に熱交換流路部に吹上げることが
できる。
[Operations and Effects] In the stacked refrigerant evaporator of the present invention, the inlet tank section is disposed at the bottom of the evaporation unit, and the upper part of the communication section between the inlet tank section and the heat exchange flow path section is arranged in the housing section. narrowed down by. Therefore, by the action of this storage part, a gas pressure difference can be effectively applied to the refrigerant and oil in the inlet tank part, and these refrigerant and oil can be effectively blown up into the heat exchange passage part.

また、入口タンク部に流入した冷媒は入口タンク部内を
その長手方向に速やかに流れて入口タンク各部に行渡り
、従来装置(第7図)のように入口タンク部の末端に達
する前に熱交換流路部にその多くが落下してしまって、
各蒸発ユニット毎に流入冷媒量がばらつくという不具合
が解消される。
In addition, the refrigerant flowing into the inlet tank quickly flows in the longitudinal direction within the inlet tank and is distributed throughout each part of the inlet tank, allowing heat exchange before reaching the end of the inlet tank as in the conventional system (Fig. 7). Much of it fell into the flow path,
This solves the problem of variations in the amount of refrigerant flowing into each evaporation unit.

そのため、各蒸発ユニット個々の蒸発能力を最大限に活
用することができ、総合的な冷却効率を向上することが
できる。また、各蒸発ユニットの間を通過する空気の温
度が均一にすることができる。
Therefore, the evaporation capacity of each evaporation unit can be utilized to the maximum, and the overall cooling efficiency can be improved. Moreover, the temperature of the air passing between each evaporation unit can be made uniform.

更に、上記した従来装置(第7図)の如く、−旦落下し
たオイルを、蒸発の結果として気相優勢な冷媒流体によ
り重力に逆らって出口タンクに吹き上げるのは容易では
ないが、本発明装置の如く、熱交換流路部に流入したば
かりでまだ液相優勢な冷媒流体及びその液中に混入する
オイルを一旦、熱交換流路部に吹き上げ、その後、蒸発
により気相優勢となったオイルを重力に従って出口タン
クに降下させるのは、非常に容易である。
Furthermore, as in the conventional device described above (FIG. 7), it is not easy to blow the fallen oil up into the outlet tank against gravity by the refrigerant fluid, which is dominated by gas phase as a result of evaporation, but in the device of the present invention. As shown in the figure, the refrigerant fluid that has just entered the heat exchange flow path and is still in the liquid phase and the oil mixed in the liquid are once blown up into the heat exchange flow path, and then the oil that has become vapor phase dominant due to evaporation. It is very easy to lower it by gravity into the outlet tank.

そのため、本発明の積層型冷媒蒸発器では、熱交換流路
部へのオイル貯溜を低減することができる。
Therefore, in the stacked refrigerant evaporator of the present invention, oil accumulation in the heat exchange flow path portion can be reduced.

[実施例] 以下、本発明の積層型冷媒蒸発器の一実施例を図面に基
づき説明する。
[Example] Hereinafter, an example of the stacked refrigerant evaporator of the present invention will be described based on the drawings.

この積層型冷媒蒸発器は、第1図及び第3図に示すよう
に、冷媒液導入用の入口タンク部1と、冷媒液導出用の
出口タンク部2と、両タンク部1.2を連通する熱交換
流路部3とを備える蒸発ユニット4を、コルゲートフィ
ン5と交互に入口タンク部1及び出口タンク部2の長手
方向Xへ積層してなり、入口タンク部1の第3図左端に
は入口パイプ6が、出口タンク部2の第3図右端には出
口パイプ7が連結されている。
As shown in FIGS. 1 and 3, this stacked refrigerant evaporator has an inlet tank section 1 for introducing the refrigerant liquid, an outlet tank section 2 for leading out the refrigerant liquid, and both tank sections 1.2 are connected to each other. An evaporation unit 4 equipped with a heat exchange flow path section 3 is stacked alternately with corrugated fins 5 in the longitudinal direction X of the inlet tank section 1 and the outlet tank section 2, and a An inlet pipe 6 is connected to the right end of the outlet tank section 2 in FIG. 3, and an outlet pipe 7 is connected to the right end of the outlet tank section 2 in FIG.

各蒸発ユニット4は、一対のプレート100(第1図参
照、ただし一方だけが図示されている。
Each evaporation unit 4 includes a pair of plates 100 (see FIG. 1, only one of which is shown).

)を対面させ外周縁、中央部及び各タンク部周囲などを
ロウ付げにより接合されており、入口タンク部1は第1
図中、蒸発ユニット4の左側底部に配設され、出口タン
ク部2は入口タンク部1の直上に配設されている。一対
のプレート100により形成される内部空間の内、両タ
ンク部1.2以外の部分は、中央部に垂直に伸びる仕切
りリブ112を隔壁とする逆U字状の熱交換流路部3と
なっており、この熱交換流路部3は第1図中、蒸発ユニ
ット4の右側底部から出口タンク部2の直上まで配設さ
れている。入口タンク部1の右側部は熱交換流路部3の
底部に連通ずる連通部8となっており、出口タンク部2
の上部は熱交換流路部3の末端部に連通している。した
がって、両タンク部1.2はプレート100の面方向と
直交する方向に伸び、熱交換流路部3はプレート100
の面方向に伸びている。
) are facing each other and are joined by brazing at the outer periphery, center, and around each tank part, and the inlet tank part 1 is connected to the first tank part.
In the figure, the evaporation unit 4 is disposed at the bottom left side, and the outlet tank section 2 is disposed directly above the inlet tank section 1. In the internal space formed by the pair of plates 100, the part other than both tank parts 1.2 becomes an inverted U-shaped heat exchange flow path part 3 with a partition rib 112 extending vertically in the center as a partition wall. The heat exchange passage section 3 is arranged from the bottom right side of the evaporation unit 4 to just above the outlet tank section 2 in FIG. The right side of the inlet tank part 1 is a communication part 8 that communicates with the bottom of the heat exchange flow path part 3, and
The upper part of the heat exchange channel section 3 communicates with the end section of the heat exchange channel section 3. Therefore, both tank portions 1.2 extend in a direction perpendicular to the surface direction of the plate 100, and the heat exchange flow path portion 3
It extends in the direction of the plane.

連通部8は、第2図に示すように仕切りリブ112の下
方延長線上に在り、したがって入口タンク部1の右端(
第1図参照)はこの下方延長線上に位置している。この
入口タンク部1の右端上部は、仕切りリブ112から垂
下する収部9により熱交換流路部3から隔てられており
、連通部8は収部9によって狭搾されている。
The communication portion 8 is located on the downward extension line of the partition rib 112 as shown in FIG.
(see FIG. 1) is located on this downward extension line. The upper right end of the inlet tank section 1 is separated from the heat exchange channel section 3 by a recess 9 hanging from a partition rib 112, and the communication section 8 is narrowed by the recess 9.

プレ一ト100にはその外周縁などのろう付は部分を除
いて0字状をなす通路用くぼみ部101と、入口タンク
部用くぼみ部102と、出口タンク用くぼみ部103と
が形成されている。通路用くぼみ部101の中心部には
仕切りブ112が形成されており、又、通路用くぼみ部
101には、更なる凹部109とリブ107とが形成さ
れている。
The plate 100 is formed with a passage recess 101 having a 0-shape except for the brazed portion such as the outer peripheral edge, an inlet tank recess 102, and an outlet tank recess 103. There is. A partition 112 is formed in the center of the passage recess 101, and further recesses 109 and ribs 107 are formed in the passage recess 101.

入口タンク部用くぼみ部102及び出口タンク用くぼみ
部103は、通路用くぼみ部101よりさらに深く凹成
されて底無しに形成されており、これらくぼみ部102
.103はそれぞれ接合後に、入口タンク部1及び出口
タンク部2の各一部を構成する。
The inlet tank recess 102 and the outlet tank recess 103 are deeper than the passage recess 101 and are bottomless.
.. 103 respectively constitute a part of the inlet tank part 1 and the outlet tank part 2 after being joined.

以上のようにプレス成形されたプレート100の一対を
向かい合わせて接合した場合、プレート100の外周部
100a、仕切りリブ112、リブ107同士が互いに
当接した状態となる。くぼみ部101が合わさることに
より熱交換流路部3が形成され、蒸発ユニット4が形成
される。
When a pair of plates 100 press-formed as described above are joined facing each other, the outer circumferential portion 100a of the plates 100, the partition ribs 112, and the ribs 107 are brought into contact with each other. The heat exchange flow path section 3 is formed by combining the depressions 101, and the evaporation unit 4 is formed.

複数段積層された蒸発ユニット4のそれぞれの間には空
気との接触面積を増大させ、放熱効果を促進させるため
の波状に折り曲げられたコルゲートフィン5が配され、
炉中の一体ろう付により接合がなされる。
Between each of the evaporation units 4 stacked in multiple stages, corrugated fins 5 are arranged in a wavy manner to increase the contact area with air and promote the heat dissipation effect.
The joint is made by integral brazing in a furnace.

次に作動について説明する。Next, the operation will be explained.

冷凍サイクルが作動すると冷媒が入口パイプ6から入口
タンク部1に導入される。
When the refrigeration cycle operates, refrigerant is introduced into the inlet tank section 1 from the inlet pipe 6.

この時、入口パイプ6近傍に位置する入口タンク部1の
液位が収部9の下端より高くなっても、収部9の存在の
ために熱交換流路部3へ横流する流量はほとんど増加せ
ず、入口パイプ6の長手方向に流れる。したがって、こ
の収部9の存在により、入口パイプ6近傍の蒸発ユニッ
ト4の流量と、入口パイプ6から遠隔の蒸発ユニット4
の流量との差が減少し、各蒸発ユニット4間の冷却性能
のばらつきを減らすことができる。
At this time, even if the liquid level in the inlet tank section 1 located near the inlet pipe 6 becomes higher than the lower end of the reservoir section 9, the flow rate flowing horizontally to the heat exchange channel section 3 will almost increase due to the presence of the reservoir section 9. Instead, it flows in the longitudinal direction of the inlet pipe 6. Therefore, due to the presence of this storage part 9, the flow rate of the evaporation unit 4 near the inlet pipe 6 and the evaporation unit 4 remote from the inlet pipe 6 can be adjusted.
The difference between the flow rate and the flow rate is reduced, and variations in cooling performance among the evaporation units 4 can be reduced.

また、収部9の設置により、冷媒流は熱交換流路部3の
入口で絞られることになり、もし蒸発ユニット4内の液
面が収部9の下端より高くなれば、連通路8は冷媒によ
り遮断されることとなって、圧縮機(図示せず)の導引
力により形成される入口タンク部1と出口タンク2との
間の差圧が、入口タンク部1の液面と出口タンク2の液
面との間に全面的に加わり、その結果として、蒸発ユニ
ット4の底部に貯溜する冷媒液及びオイルを熱交換流路
部3の上部に吹き上げる。したがって、収部9の存在に
より、蒸発ユニット4の底部に冷媒液及びオイルが貯溜
しにくいという効果も奏することができる。
Furthermore, due to the installation of the storage section 9, the refrigerant flow is restricted at the inlet of the heat exchange channel section 3, and if the liquid level in the evaporation unit 4 becomes higher than the lower end of the storage section 9, the communication path 8 will be restricted. The difference in pressure between the inlet tank section 1 and the outlet tank 2, which is cut off by the refrigerant and is formed by the attraction force of the compressor (not shown), is the difference between the liquid level in the inlet tank section 1 and the outlet. As a result, the refrigerant liquid and oil stored at the bottom of the evaporation unit 4 are blown up to the upper part of the heat exchange passage section 3. Therefore, the presence of the storage portion 9 also provides the effect that refrigerant liquid and oil are less likely to accumulate at the bottom of the evaporation unit 4.

そして、熱交換流路部3内に吹き上げられた冷媒は蒸発
してガスリッチとなって出口タンク2に送られ、出口パ
イプ7から図示しない圧縮機に導かれる。
Then, the refrigerant blown up into the heat exchange passage section 3 evaporates and becomes gas-rich, and is sent to the outlet tank 2, and then guided from the outlet pipe 7 to a compressor (not shown).

なお、変形態様として、第5図に示すように熱交換流路
部3の右下底部が斜面199となってぃる。このように
すると、入口タンク1から出た冷媒の吹き上がりが一層
改善される。
In addition, as a modified form, as shown in FIG. 5, the lower right bottom part of the heat exchange flow path section 3 has a slope 199. In this way, the blowing up of the refrigerant discharged from the inlet tank 1 is further improved.

また、収部9の形状は連通路8の上方を遮断あるいは狭
搾するものであれば、形状自由である。
Further, the shape of the receiving portion 9 is free as long as it blocks or narrows the upper part of the communication path 8.

更に、第7図に示すように、入口タンク部1の両端では
入口パイプ6からの距離が巽なり、そのために流体抵抗
が異なる。この流体抵抗差を相殺するために入口パイプ
6近傍の連通路8にはより狭い断面積を与え、入口パイ
プ6から遠隔の連通路8にはより広い断面積を与えるこ
ともできる。
Furthermore, as shown in FIG. 7, the distance from the inlet pipe 6 is different at both ends of the inlet tank section 1, and therefore the fluid resistance is different. In order to offset this difference in fluid resistance, the communication passage 8 near the inlet pipe 6 may be provided with a narrower cross-sectional area, and the communication passage 8 remote from the inlet pipe 6 may be provided with a wider cross-sectional area.

このようにすれば、上記流体抵抗差を補償して、更に、
各蒸発ユニット4間の流量を均一化することができる。
In this way, the fluid resistance difference described above can be compensated for, and further,
The flow rate between each evaporation unit 4 can be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の積層型冷媒蒸発器の一実施例に用いる
プレート100の正面図、第2図は第1図の連通路8近
傍の拡大正面図、第3図はこの実施例の積層型冷媒蒸発
器の積層後の側面図、第4図は冷媒流れを示す模式線図
、第5図はプレートの変形実施例を示す正面図、第6図
及び第7図はそれぞれ従来の積層型冷媒蒸発器の側面図
、第8図は第7図のプレート100の正面図である。 1・・・入口タンク部、 2・・・出口タンク部、 3・・・熱交換流路部 4・・・蒸発ユニット 5・・・コルゲートフィン 6・・・入口パイプ 7・・・出口パイプ 8・・・連通路 9・・・収部 100・・・プレート、
FIG. 1 is a front view of a plate 100 used in an embodiment of the stacked refrigerant evaporator of the present invention, FIG. 2 is an enlarged front view of the vicinity of the communication passage 8 in FIG. 1, and FIG. 3 is a stacked layer of this embodiment. Fig. 4 is a schematic diagram showing the refrigerant flow, Fig. 5 is a front view showing a modified example of the plate, and Figs. 6 and 7 are respectively the conventional stacked type refrigerant evaporator. A side view of the refrigerant evaporator, FIG. 8 is a front view of the plate 100 of FIG. 7. DESCRIPTION OF SYMBOLS 1... Inlet tank part, 2... Outlet tank part, 3... Heat exchange channel part 4... Evaporation unit 5... Corrugated fin 6... Inlet pipe 7... Outlet pipe 8 ... Communication path 9 ... Accommodation section 100 ... Plate,

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒液導入用の管部からなる入口タンク部と、前
記入口タンク部と同方向に伸び冷媒ガス導出用の管部か
らなる出口タンク部と、前記入口タンク部の軸心方向と
直交する方向に伸び前記両タンク部を連通する熱交換流
路部とを備える蒸発ユニツトを前記入口タンク部の延伸
方向へ積層してなる積層型冷媒蒸発器において、 前記入口タンク部を前記蒸発ユニツトの底部に配設し、
かつ、前記入口タンク部の側部に開設され前記入口タン
ク部と前記熱交換流路部とを連通する連通部に堰部が下
垂していることを特徴とする積層型冷媒蒸発器。
(1) An inlet tank section consisting of a pipe section for introducing refrigerant liquid, an outlet tank section extending in the same direction as the inlet tank section and consisting of a pipe section for deriving refrigerant gas, and perpendicular to the axial direction of the inlet tank section. In the stacked refrigerant evaporator, evaporation units are stacked in the extending direction of the inlet tank section, and the evaporation units are stacked in the extending direction of the inlet tank section. placed at the bottom,
A stacked refrigerant evaporator characterized in that a dam part hangs down from a communication part that is opened on a side of the inlet tank part and communicates the inlet tank part and the heat exchange flow path part.
(2)前記入口タンク部に冷媒を導入する入口パイプが
積層方向における前記入口タンク部の一端に接続されて
いる請求項1記載の積層型冷媒蒸発器。
(2) The stacked refrigerant evaporator according to claim 1, wherein an inlet pipe for introducing the refrigerant into the inlet tank section is connected to one end of the inlet tank section in the stacking direction.
JP9990390A 1990-04-16 1990-04-16 Laminated refrigerant evaporator Pending JPH04163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9990390A JPH04163A (en) 1990-04-16 1990-04-16 Laminated refrigerant evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9990390A JPH04163A (en) 1990-04-16 1990-04-16 Laminated refrigerant evaporator

Publications (1)

Publication Number Publication Date
JPH04163A true JPH04163A (en) 1992-01-06

Family

ID=14259736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9990390A Pending JPH04163A (en) 1990-04-16 1990-04-16 Laminated refrigerant evaporator

Country Status (1)

Country Link
JP (1) JPH04163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170850A (en) * 1995-10-20 1997-06-30 Denso Corp Refrigerant evaporator
US5669439A (en) * 1995-04-21 1997-09-23 Nippondenso Co., Ltd. Laminated type heat exchanger
JP2019100565A (en) * 2017-11-29 2019-06-24 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669439A (en) * 1995-04-21 1997-09-23 Nippondenso Co., Ltd. Laminated type heat exchanger
JPH09170850A (en) * 1995-10-20 1997-06-30 Denso Corp Refrigerant evaporator
JP2019100565A (en) * 2017-11-29 2019-06-24 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same

Similar Documents

Publication Publication Date Title
EP1466133B1 (en) Submerged evaporator with integrated heat exchanger
US5875650A (en) Refrigerant condenser including super-cooling portion
CN101619939B (en) Heat exchanger
EP2447657B1 (en) Heat exchanger with plurality of heat exchange sections and partitioned manifolds
US10041710B2 (en) Heat exchanger and air conditioner
EP2447661A2 (en) Header unit and heat exchanger having the same
US5178209A (en) Condenser for automotive air conditioning systems
US6502420B2 (en) Plate heat exchanger for multiple circuit refrigeration system
JPH04163A (en) Laminated refrigerant evaporator
KR200259605Y1 (en) Integral Condenser
JP6833042B2 (en) Heat exchanger and refrigeration cycle equipment
JP2001215096A (en) Heat exchanger
JP7010958B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle device
JP2020115070A (en) Heat exchanger
KR100452347B1 (en) A evaporator using micro channel heat exchanger
KR102148722B1 (en) Heat exchanger and air conditional having the same
JP3863217B2 (en) Stacked evaporator
JP7049555B2 (en) Evaporator with cold storage function
KR100822632B1 (en) 4-tank type evaporator
CN115734559A (en) Heat transfer plate
JP2663745B2 (en) Centrifugal chiller heat exchanger
KR20030056590A (en) Heat exchanger
JPS63150565A (en) Heat exchanger
JPH03211375A (en) Heat exchanger for air conditioner
KR20000043145A (en) Heat exchanger of air conditioner