JPH04163808A - Manufacture of superconductive device - Google Patents

Manufacture of superconductive device

Info

Publication number
JPH04163808A
JPH04163808A JP2288582A JP28858290A JPH04163808A JP H04163808 A JPH04163808 A JP H04163808A JP 2288582 A JP2288582 A JP 2288582A JP 28858290 A JP28858290 A JP 28858290A JP H04163808 A JPH04163808 A JP H04163808A
Authority
JP
Japan
Prior art keywords
pattern
superconducting
thin film
resist
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288582A
Other languages
Japanese (ja)
Inventor
Akira Terada
寺田 章
Yoshihiro Kimachi
木町 良弘
Yasuhiro Nagai
靖浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2288582A priority Critical patent/JPH04163808A/en
Publication of JPH04163808A publication Critical patent/JPH04163808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent degradation due to fabrication of a superconductive film and to obtain a superconducting device with high quality by fabricating a substrate surface into a pattern shape prepared in advance and, forming an oxide superconductive film on the projection surface of the processed surface. CONSTITUTION:A device pattern 2B prepared in advance is formed on a surface of a SrTiO3 substrate 2 by a separation processing. Then, an oxide superconductive film 1A is formed on the projection surface of the processed substrate 2 by means of epitaxial growth. Degradation of superconductive characteristics in the edge side of the pattern due to ions collision can be prevented because no processing is added to such a superconductive film 1A. Furthermore, since no resist is applied to the surface of the superconductor, oxygen plasma arcing becomes unnecessary, degradation of superconductive characteristics in surface and side of the pattern due to excess or insufficiency of oxygen is not generated. High quality superconducting device can be obtained accordingly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、CuOやvO構構体体有する結晶構造を持ち
、高い臨界温度(Tc)を持つ酸化物超伝導体の薄膜を
用いて超伝導デバイスを作製する方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides superconductivity using a thin film of an oxide superconductor that has a crystal structure including CuO or vO structures and has a high critical temperature (Tc). The present invention relates to a method for manufacturing a device.

[従来の技術1 周知のように、YBaCuO系やB15rCaCuO系
などの高Tc酸化物超伝導体は液体窒素温度(77K)
以上の温度においても超伝導を示す。従って、このよう
な酸化物超伝導体を用いて液体窒素温度で動作する超伝
導デバイスを実現すれば、Nb系合金を用いた液体ヘリ
ウム冷却を要する超伝導デバイスに比較して、冷却コス
トの大幅な低減が期待されている。
[Conventional technology 1] As is well known, high Tc oxide superconductors such as YBaCuO and B15rCaCuO are heated at liquid nitrogen temperature (77K).
It exhibits superconductivity even at temperatures above this temperature. Therefore, if a superconducting device that operates at liquid nitrogen temperature is realized using such an oxide superconductor, the cooling cost will be significantly lower than that of a superconducting device that uses a Nb-based alloy and requires liquid helium cooling. A significant reduction is expected.

このため、前記高Tc酸化物超伝導体を用いた超伝導量
子干渉磁束計(SQUID:Superconduct
ingQuantum Interference D
evice) 、ジョセフソン素子、マイクロ波受動回
路、光センサ、強力磁石などの超伝導デバイスの研究が
行われている。特に、単結晶基板上にエピタキシャル成
長させた薄膜は結晶性が良好なため、Tcが高いのみで
はなく、臨界電流密度(Je)が高いので高電流密度の
デバイスが作製可能であること、高周波表面抵抗(R1
)が低いので低損失の高周波デバイスが作製可能である
こと、磁界進入長(λL)が短いので1μ脂程度の表面
層のみを超伝導体とするだけで高周波デバイスが作製可
能であることなどの利点を有しており、盛んに研究が行
われている。
For this reason, a superconducting quantum interference magnetometer (SQUID) using the above-mentioned high Tc oxide superconductor
ingQuantum Interference D
Research is being carried out on superconducting devices such as (Vice), Josephson elements, microwave passive circuits, optical sensors, and strong magnets. In particular, thin films grown epitaxially on single crystal substrates have good crystallinity, so not only do they have a high Tc, but they also have a high critical current density (Je), making it possible to fabricate devices with high current density, and high-frequency surface resistance. (R1
) is low, making it possible to create low-loss high-frequency devices; and since the magnetic field penetration length (λL) is short, high-frequency devices can be created by making only the surface layer of about 1 μm of superconductor. It has many advantages and is currently being actively researched.

しかし、薄膜デバイスの試作を行う際には、酸化物超伝
導体のパタンを形成する必要があるが、パタン形成の工
程でTc、Jc、R,などの超伝導特性が大幅に劣化す
ることが報告されており、パタン形状加工と超伝導特性
を両立させてデバイスを得ることは容易ではない。
However, when prototyping thin film devices, it is necessary to form a pattern of oxide superconductor, but the superconducting properties such as Tc, Jc, R, etc. may be significantly deteriorated during the pattern formation process. It has been reported that it is not easy to obtain a device that combines pattern processing and superconducting properties.

通常パタン形成には超伝導薄膜の上にレジスト膜を形成
した後にマスクを介して光露光してレジスト材料を変質
させ、変質部を溶液で除去してマスクのパタンをレジス
トに転写する。その後、レジストをマスクとして燐酸系
などの溶液を用いて酸化物超伝導薄膜の不用部分を溶か
したり、レジストをマスクとしてArなとのイオンを照
射して酸化物超伝導薄膜の不用部分をエツチングして除
去するなどの手法が用いられる。最後に酸素プラズマの
アッシングによってレジストを除去するとレジストパタ
ンと同じパタンの酸化物超伝導体が形成される。
Normally, for pattern formation, a resist film is formed on a superconducting thin film, the resist material is altered in quality by exposure to light through a mask, and the altered parts are removed with a solution to transfer the pattern on the mask to the resist. After that, using the resist as a mask, the unnecessary parts of the oxide superconducting thin film are dissolved using a solution such as phosphoric acid, or using the resist as a mask and irradiating with ions such as Ar, etching the unnecessary parts of the oxide superconducting thin film. Methods such as removing the Finally, when the resist is removed by ashing with oxygen plasma, an oxide superconductor with the same pattern as the resist pattern is formed.

しかしながら、燐酸系などを用いたウェットエツチング
では液体が酸化物超伝導体の結晶粒界を拡散してしまい
、かつエッチ速度が非常に早い。このため、パタン側面
のエツジ形状が乱れ易(、形状精度が大幅に劣化しかつ
精度の制御性に欠ける、エッチ液と酸化物超伝導体の反
応のために超伝導特性に劣化が生じるなどの問題がある
However, in wet etching using phosphoric acid or the like, the liquid diffuses through the grain boundaries of the oxide superconductor, and the etching rate is extremely high. As a result, the edge shape on the side surface of the pattern is easily disturbed (the shape accuracy is significantly deteriorated and precision controllability is lacking, and the superconducting properties are deteriorated due to the reaction between the etchant and the oxide superconductor). There's a problem.

また、イオンによるドライエツチング法では酸化物超伝
導薄膜の不用部分が除去されるに従って、パタンの側面
にも高エネルギのイオンが衝突するので、酸化物超伝導
体のCuOなどの構造から酸素が容易に奪われて、パタ
ン側面の超伝導特性が劣化するという欠点がある。さら
に、レジストパタンを除去するアッシング工程では酸化
物超伝導パタンの上部表面や側面が酸素プラズマに曝さ
れるので、CuOなどの構造に酸素が過剰に供給された
り、酸素が除去されたりして、超伝導特性が大幅に劣化
するという欠点がある。
In addition, in the dry etching method using ions, as unnecessary parts of the oxide superconducting thin film are removed, high-energy ions also collide with the sides of the pattern, so oxygen is easily removed from the structure of the oxide superconductor such as CuO. The disadvantage is that the superconducting properties of the side surfaces of the pattern deteriorate as the superconductivity is taken away by the superconducting material. Furthermore, in the ashing process for removing the resist pattern, the upper surface and side surfaces of the oxide superconducting pattern are exposed to oxygen plasma, so oxygen may be supplied excessively to structures such as CuO, or oxygen may be removed. The disadvantage is that the superconducting properties are significantly degraded.

[発明が解決しようとする課題1 本発明はこの様な従来の欠点を解消し、酸化i超伝導薄
膜の加工劣化を回避し得る超伝導デバイスの作製方法を
提供することを目的とする。
[Problem to be Solved by the Invention 1] An object of the present invention is to provide a method for manufacturing a superconducting device that can eliminate such conventional drawbacks and avoid processing deterioration of an i-oxide superconducting thin film.

[課題を解決するための手段j 上述した目的を達成するために、本発明は、基板表面を
あらかじめパタン形状に加工し、該加工された表面の凸
部表面上に酸化物超伝導体薄膜を形成することを特徴と
する。
[Means for Solving the Problems j] In order to achieve the above-mentioned object, the present invention processes a substrate surface into a pattern shape in advance, and forms an oxide superconductor thin film on the convex portions of the processed surface. It is characterized by forming.

[作 用1 本発明のデバイス作製方法では、あらがしめ単結晶基板
をデバイスパタンに加工しておき、単結晶基板パタン表
面に良質の酸化物超伝導薄膜を成長させて超伝導デバイ
スパタンを作製することにより、酸化物超伝導体の加工
工程を省略することによって、超伝導特性に優れたデバ
イスを作製するものである。この方法では酸化物超伝導
薄膜に加工を加えないので、イオン衝突によるパタンエ
ツジ側面の超伝導特性の劣化が防止できる。また、超伝
導体表面にレジストを塗布しないので、レジスト除去の
際の酸素プラズマアッシングが不用で、デバイスパタン
表面や側面での酸素過剰や不足による超伝導特性の劣化
が発生しない。デバイスパタン精度は単結晶基板の加工
精度に依存するが、これは通常の露光方法で実現される
[Operation 1] In the device fabrication method of the present invention, a rough single crystal substrate is processed into a device pattern, and a high quality oxide superconducting thin film is grown on the surface of the single crystal substrate pattern to fabricate a superconducting device pattern. By doing so, a device with excellent superconducting properties can be manufactured by omitting the process of processing the oxide superconductor. Since this method does not process the oxide superconducting thin film, it is possible to prevent deterioration of the superconducting properties of the side surfaces of the pattern edges due to ion collisions. Furthermore, since no resist is applied to the superconductor surface, oxygen plasma ashing is not required when removing the resist, and superconducting properties do not deteriorate due to excess or deficiency of oxygen on the surface or side surfaces of the device pattern. Device pattern accuracy depends on the processing accuracy of the single-crystal substrate, which is achieved using normal exposure methods.

本発明の方法で作製されるストリップラインパタンと従
来法によって作製されるストリップパタンをそれぞれ模
式的に第1図(A)および(B)に示す。
A strip line pattern produced by the method of the present invention and a strip pattern produced by the conventional method are schematically shown in FIGS. 1(A) and 1(B), respectively.

本発明の方法では、あらかじめパタン形状に加工された
基板2の凸部の表面2Aと平坦部表面2B(凸部が複数
個設けられている場合には、それらに挾まれた凹部の表
面となる)の上に、それぞれ超伝導薄膜IAおよびIB
が形成されており、両者は電気的に分離されている。こ
こでデバイスとして用いるのは凸部表面の超伝導薄膜I
Aであり、平坦部あるいは凹部表面の超伝導薄膜IBは
通常は使用されない。第1図(B)に示した従来法では
、基板2の表面に形成された超伝導薄膜1をデバイスパ
タンに加工している。
In the method of the present invention, the surface 2A of the convex part and the surface 2B of the flat part of the substrate 2 which has been processed into a pattern shape in advance (if a plurality of convex parts are provided, the surface of the concave part sandwiched between them) ) on top of the superconducting thin films IA and IB, respectively.
are formed, and the two are electrically isolated. The device used here is a superconducting thin film I on the surface of the convex part.
A, and the superconducting thin film IB on the flat or concave surface is not normally used. In the conventional method shown in FIG. 1(B), a superconducting thin film 1 formed on the surface of a substrate 2 is processed into a device pattern.

[実施例1 以下に実施例によって本発明を説明する。[Example 1 The present invention will be explained below by way of examples.

表面が(110)結晶面で平滑に研磨された5rTiO
s単結晶基板を以下の方法でパタン形成した。パタン形
成方法を第2図に示す、まず、5rTiOs基板3上に
ポジ型レジストを塗布して200℃でベーキングし、レ
ジスト膜(下部レジスト)4を基板上に形成した(第2
図(A))。次に、スパッタリング法により1000人
の膜厚のTa薄膜5をレジスト膜4上に形成し、さらに
その上にポジ型のレジスト膜(上部レジスト)6を形成
して3層構造とした(第2図(B))。次に、マスクを
用いて上部レジスト6を光露光し、レジストを現像して
上部レジストのパタン6′を作製した。上部レジスト6
の除去された部分ではTa薄膜5が露出している(第2
図(C))、次に、Arイオンを用いてTa薄膜5の露
出している部分をエツチングして除去し、Ta薄膜5の
パタン5′を作製した(第2図(D))。さらに、窒素
イオンを用いてエツチングを行った。これによって、上
部レジストパタン6′は除去されるがTaマスクパタン
5′は窒素イオンによってほとんどエツチングされない
ので、上部レジストパタン6゛と下部レジスト層4が除
去された後に基板の5rTLO,単結晶がエツチングさ
れて、5rTiOsのパタン3′が形成される(第2図
(E))。所定の深さに5rTiOiがエツチングされ
たら、窒素イオンエッチを終了する。最後に、酸素プラ
ズマに曝して、残留している下部レジスト4′とTaマ
スク5′を除去し、5rTiO,パタン3′のみを残し
た(第2図(F))。作製したパタン形状は幅5μmの
ラインからなる4端子電気抵抗測定用パタンであり、S
rTi0mパタンの段差は5μmである。
5rTiO whose surface is polished to a smooth (110) crystal plane
A pattern was formed on a single crystal substrate using the following method. The pattern forming method is shown in FIG.
Figure (A)). Next, a Ta thin film 5 with a thickness of 1000 nm was formed on the resist film 4 by sputtering, and a positive resist film (upper resist) 6 was further formed on top of it to form a three-layer structure (second Figure (B)). Next, the upper resist 6 was exposed to light using a mask, and the resist was developed to produce an upper resist pattern 6'. Upper resist 6
The Ta thin film 5 is exposed in the removed portion (second
Next, the exposed portion of the Ta thin film 5 was removed by etching using Ar ions to form a pattern 5' of the Ta thin film 5 (FIG. 2(D)). Furthermore, etching was performed using nitrogen ions. As a result, the upper resist pattern 6' is removed, but the Ta mask pattern 5' is hardly etched by the nitrogen ions, so the 5rTLO and single crystal of the substrate are etched after the upper resist pattern 6' and the lower resist layer 4 are removed. As a result, a 5rTiOs pattern 3' is formed (FIG. 2(E)). When the 5rTiOi is etched to a predetermined depth, the nitrogen ion etching is terminated. Finally, the remaining lower resist 4' and Ta mask 5' were removed by exposure to oxygen plasma, leaving only the 5rTiO pattern 3' (FIG. 2(F)). The fabricated pattern shape is a 4-terminal electrical resistance measurement pattern consisting of lines with a width of 5 μm, and S
The step difference in the rTi0m pattern is 5 μm.

5rTiOsパタン表面をILLm程度研磨してきれい
な(110)結晶面とし、反応電子ビーム蒸着法で30
00人の膜厚のYBazCusOa、 118薄膜をエ
ピタキシャル成長させた。5rTiOsの4端子電気抵
抗測定用パタン表面に成長したYBatCusOs、 
os薄膜とエッチされた5rTiOi低面に成長したY
BaxCusOs、 ms薄膜の間には電気的導通がな
かった。蒸着法では蒸着粒子の直進性が良いのでパタン
表面の膜とパタン以外の部分の膜が独立に成長したと思
われる。第3図の曲線Aは4端子法で測定したこの薄膜
の臨界電流密度Jcの温度依存性を示す。
The surface of the 5rTiOs pattern was polished to a degree of ILLm to obtain a clean (110) crystal plane, and then 30
A YBazCusOa 118 thin film with a thickness of 0.00 mm was epitaxially grown. YBatCusOs grown on the surface of a 4-terminal electrical resistance measurement pattern of 5rTiOs,
Y grown on the os thin film and the etched 5rTiOi lower surface.
There was no electrical continuity between the BaxCusOs and ms thin films. In the vapor deposition method, since the vapor deposited particles move in a straight line, it is thought that the film on the surface of the pattern and the film on the parts other than the pattern grew independently. Curve A in FIG. 3 shows the temperature dependence of the critical current density Jc of this thin film measured by the four-terminal method.

パタンを形成しない通常の(110) 5rTiO,単
結晶基板に反応蒸着法で3000人膜厚のYBaiCu
sOs□薄膜を形成し、上述のレジスト/Ta/レジス
トの3層構造とArイオンエッチと窒素イオンエッチを
併用する方法で4端子電気抵抗測定用のYBatCus
Os、 wsをパタンを作製した。第3図の曲線Bは4
端子法で測定したこの薄膜の臨界電流密度J、の温度依
存性を示す。
Normal (110) 5rTiO, which does not form a pattern, is coated with YBaiCu with a thickness of 3000 nm by reactive vapor deposition on a single crystal substrate.
YBatCus for 4-terminal electrical resistance measurement by forming a sOs□ thin film and using the above-mentioned three-layer structure of resist/Ta/resist together with Ar ion etching and nitrogen ion etching.
Patterns of Os and ws were prepared. Curve B in Figure 3 is 4
The temperature dependence of the critical current density J of this thin film measured by the terminal method is shown.

第3図の曲1IIAとBの特性を比較して明瞭なように
、曲線AではYBazCus’Oa、 is薄膜のパタ
ン加工工程がないので、液体窒素温度(77K)でのJ
cは2.5 X 10’A/cm”と優れた値を示し、
超伝導臨界温度も92にとYBazCusOs、 ms
の本来の値となっている。これに対して、曲線Bでは超
伝導臨界温度の劣化は認められないものの、77にでの
Jeは2×10’A/cm”と明らかに劣化している。
As is clear from comparing the characteristics of curves 1IIA and B in Figure 3, curve A does not involve the patterning process of YBazCus'Oa, is thin film, so J at liquid nitrogen temperature (77K)
c shows an excellent value of 2.5 x 10'A/cm'',
The superconducting critical temperature is also 92, YBazCusOs, ms
is the original value. On the other hand, in curve B, although no deterioration of the superconducting critical temperature is observed, Je at 77 is clearly deteriorated to 2×10'A/cm''.

これは、窒素イオンを用いたYBazCusOs、 s
s薄膜のエツチングの際にパタン側面に窒素イオンが衝
突して酸化物超伝導体から酸素を除去するとともに、レ
ジストのアッシングの際にYBa諺CuJ@。6パタン
の表面や側面が酸素プラズマに曝されるので酸化物超伝
導体中に酸素が過剰に供給されるなどによって、パタン
表面と側面の超伝導特性が劣化したためと見られる。
This is the result of YBazCusOs using nitrogen ions.
s During thin film etching, nitrogen ions collide with the side surfaces of the pattern to remove oxygen from the oxide superconductor, and during resist ashing, YBa proverbial CuJ@. This appears to be because the superconducting properties of the pattern surface and side surfaces deteriorated due to excessive supply of oxygen into the oxide superconductor as the surface and side surfaces of the pattern were exposed to oxygen plasma.

第3図の曲11Aの特性の薄膜パタンと同じ方法で作製
した4端子電気抵抗測定用パタンの電流導入端子部(2
mmX 2++ua)の表面をマイクロXPS (X−
rayPhotoelectron 5pectros
copy)法でCu2ps/2スペクトルを測定した。
The current introduction terminal part (2
Micro-XPS (X-
rayPhotoelectron 5pectros
The Cu2ps/2 spectrum was measured using the copy method.

結果を第4図の曲線Aで示す。Cu2psz□スペクト
ルには、933eV近傍の主スペクトルと942eV周
辺のサテライトスペクトルがあるが、面積強度の比(サ
テライト強度/主強度)は0.33で清浄なYBazC
usOslls表面での強度比に一致している。
The results are shown by curve A in FIG. The Cu2psz□ spectrum has a main spectrum near 933eV and a satellite spectrum around 942eV, but the area intensity ratio (satellite intensity/main intensity) is 0.33, which is clean YBazC.
This corresponds to the intensity ratio at the usOslls surface.

第3図の曲線Bの特性の薄膜パタンと同じ方法で作製し
た4端子電気抵抗測定用パタンの電流導入端子部(2m
mx 2mm)の表面のCu2pxy*スペクトルを第
4図の曲線Bで示す。面積強度の比(サテライト強度/
主強度)は0,35で清浄なYBaaCusOslls
表面での強度比よりやや大きく、酸素が過剰となってい
ることを示している。パタンの表面や側面は酸素プラズ
マに曝されて、臨界電流密度が低下したとみられる。ま
た、第3図の曲線Aの特性の薄膜パタンと同じ方法で作
製した4端子電気抵抗測定用パタンの電流導入端子部(
2!lll11×2fflIfi)に窒素イオンを照射
した後測定したCu2psyzスペクトルを第4図の曲
線Cで示す。面積強度の比(サテラト/主強度比)は0
.12へ大幅に低下するとともに主ピークの半値幅が減
少しており、窒素イオン照射によってCuO構造から酸
素が除去されて超伝導特性が大幅に劣化したことを示し
ている。したがって、第3図の曲線Bの特性の薄膜パタ
ンと同じ方法で作製した4端子電気抵抗測定用パタンの
側面は窒素イオンに曝されているので、臨界電流密度特
性の大幅な劣化が生じていることは明らかである。
The current introduction terminal part (2 m
Curve B in FIG. 4 shows the Cu2pxy* spectrum of the surface of the material (mx 2 mm). Area intensity ratio (satellite intensity/
Main strength) is 0.35 and clean YBaaCusOslls
The intensity ratio is slightly larger than that at the surface, indicating that oxygen is in excess. It appears that the surface and sides of the pattern were exposed to oxygen plasma, resulting in a decrease in critical current density. In addition, the current introduction terminal part (
2! Curve C in FIG. 4 shows the Cu2psyz spectrum measured after irradiating nitrogen ions onto the sample (111×2fflIfi). The area intensity ratio (satellite/main intensity ratio) is 0
.. 12, and the half width of the main peak also decreased, indicating that oxygen was removed from the CuO structure by nitrogen ion irradiation and the superconducting properties were significantly deteriorated. Therefore, since the side surfaces of the 4-terminal electrical resistance measurement pattern fabricated using the same method as the thin film pattern with the characteristics shown in curve B in Figure 3 are exposed to nitrogen ions, the critical current density characteristics are significantly degraded. That is clear.

表面のXPS測定結果から明らかなように、正常なCu
O構造を持つ、超伝導特性に優れたデバイスパタンか本
発明の方法で作製可能となった。
As is clear from the surface XPS measurement results, normal Cu
A device pattern having an O structure and having excellent superconducting properties can be manufactured using the method of the present invention.

[発明の効果1 以上説明したように、酸化物超伝導体はイオンやプラズ
マと作用して容易に超伝導特性の劣化を生じる。このた
め、あらかじめ超伝導デバイスのパタンに加工した基板
を用い、その上に薄膜形成するだけで超伝導デバイスを
作製することによって、特性劣化が原理的に生じない超
伝導デバイスの作製が可能となる。上述の実施例では超
伝導特性としてTcとJcに対する本発明の効果を示し
たが、高周波デバイスに不可欠なR3や磁界進入長え、
などの基本特性も同様に加工劣化を受けないことは容易
に理解される。
[Advantageous Effects of the Invention 1] As explained above, oxide superconductors interact with ions and plasma and easily deteriorate their superconducting properties. Therefore, by using a substrate that has been pre-processed into the pattern of a superconducting device and simply forming a thin film on it, it is possible to create a superconducting device that, in principle, does not suffer from characteristic deterioration. . In the above-mentioned examples, the effects of the present invention on Tc and Jc were shown as superconducting properties, but R3 and magnetic field entry length, which are essential for high frequency devices,
It is easily understood that the basic properties such as 1.

また、実施例ではYBazCusOa、 9!+薄膜を
5rTiOs単結晶基板のパタンの上にエピタキシャル
成長させた場合のみを示した。しかし、各種イオンやプ
ラズマに対する酸化物超伝導体の劣化機構は酸化物超伝
導体から酸素を取り去ったり、注入する機構で生じてい
るので、Yを他の元素で置き換えた組成の酸化物超伝導
体やB15rCaCuO系の酸化物超伝導体などの超伝
導体においても、本発明のデバイス作製方法が有効であ
ることは自明である。また、エピタキシャル成長を行わ
ない薄膜においても、イオンやプラズマによる劣化機構
は同じなので、本発明のデバイス作製方法が有効である
ことは自明である。さらに、5rTiOs単結晶基板以
外にも、酸化物超伝導体がエピタキシャル成長する基板
として、YAlOm、 LaGa0m、 MgOなどの
多(の単結晶があり、本発明の方法は5rTiOs単結
晶基板のみに限定されるものではないことも自明である
。また、作製するデバイスによっては、すべてのパタン
を本発明の方法では作製できない場合もあるが、適宜、
従来法と組み合わせることによって、最高の超伝導特性
の必要な部分を本発明の方法で作製すればよく、本発明
の方法は作製可能なデバイスの種類を限定するものでは
ないことも明らかである。
In addition, in the example, YBazCusOa, 9! Only the case where a thin film was epitaxially grown on a pattern of a 5rTiOs single crystal substrate is shown. However, the deterioration mechanism of oxide superconductors due to various ions and plasmas occurs through the mechanism of removing or injecting oxygen from the oxide superconductor, so oxide superconductors with compositions in which Y is replaced with other elements It is obvious that the device manufacturing method of the present invention is also effective for superconductors such as B15rCaCuO-based oxide superconductors and B15rCaCuO-based oxide superconductors. Furthermore, since the deterioration mechanism caused by ions and plasma is the same even in thin films that are not epitaxially grown, it is obvious that the device manufacturing method of the present invention is effective. Furthermore, in addition to the 5rTiOs single crystal substrate, there are poly(YAlOm, LaGa0m, MgO, etc.) single crystals as substrates on which oxide superconductors are epitaxially grown, and the method of the present invention is limited only to 5rTiOs single crystal substrates. Also, depending on the device to be manufactured, it may not be possible to create all patterns using the method of the present invention;
It is also clear that the method of the present invention does not limit the types of devices that can be produced, as it is only necessary to produce the required portions with the best superconducting properties by the method of the present invention in combination with conventional methods.

このように、本発明のデバイス作製方法は原理的に作製
工程での超伝導特性の劣化が生じないので、エピタキシ
ャル薄膜を用いた各種のエレクトロニクスや通信用デバ
イスが理想的な性能で作製可能となる。たとえば、フィ
ルタや遅延回路などの高周波デバイスではエピタキシャ
ル薄膜の超伝導特性をそのまま維持することが不可欠な
ので、この方法は特別に有用である。さらに、結晶粒界
を利用した5QUID素子においても弱結合部分が加工
劣化を受けないので、デバイス性能の再現性・制御性が
格段に向上することになる。この結果、酸化物超伝導体
の優れた超伝導特性を最高に引き出すことが可能となり
、高性能の超伝導デバイスを提供することが可能となる
ので、将来の工業的効果は計り知れないものがある。
As described above, since the device fabrication method of the present invention does not, in principle, cause deterioration of superconducting properties during the fabrication process, it is possible to fabricate various electronics and communication devices using epitaxial thin films with ideal performance. . For example, this method is particularly useful in high-frequency devices such as filters and delay circuits, where it is essential to maintain the superconducting properties of epitaxial thin films. Furthermore, even in the 5QUID element that utilizes crystal grain boundaries, the weakly coupled portions are not subject to processing deterioration, so the reproducibility and controllability of device performance are significantly improved. As a result, it will be possible to bring out the excellent superconducting properties of oxide superconductors to the maximum and provide high-performance superconducting devices, which will have immeasurable future industrial effects. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)および(B)はそれぞれ本発明の方法およ
び従来の方法で作製したストリップラインパタンの模式
図、 第2図=(A)〜(F)は、本発明による基板パタン形
成法の実施例を示す順次の工程における模式第3図は本
発明の方法(A)および従来法(B)で作製したYBa
*Cu5Os、 os薄膜の臨界電流密度J。の温度依
存性特性図、 第4図はxPS法で測定したCu2psz□スペクトル
図、 A:本発明の方法で作製した4端子電気抵抗パタンでの
測定結果。 B:従来法で作製した4端子電気抵抗測定パタンでの測
定結果。 C:本発明の方法で作製した4端子電気抵抗パタン表面
に窒素イオン照射を行ったあとの測定結果。 1・・・酸化物超伝導体、 2・・・基板、 3−−・5rTiOs基板、 4・・・下部レジスト、 5・・・Ta薄膜、 6・・・上部レジスト。
Figures 1 (A) and (B) are schematic diagrams of stripline patterns produced by the method of the present invention and the conventional method, respectively. Figures 2 (A) to (F) are schematic diagrams of the substrate pattern forming method according to the present invention. FIG. 3 is a schematic diagram of the sequential steps showing examples of YBa produced by the method (A) of the present invention and the conventional method (B).
*Critical current density J of Cu5Os, os thin film. Figure 4 is a Cu2psz□ spectrum diagram measured by the xPS method. A: Measurement results for a 4-terminal electrical resistance pattern produced by the method of the present invention. B: Measurement results using a 4-terminal electrical resistance measurement pattern prepared using a conventional method. C: Measurement results after nitrogen ion irradiation was performed on the surface of the 4-terminal electrical resistance pattern produced by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Oxide superconductor, 2... Substrate, 3--.5rTiOs substrate, 4... Lower resist, 5... Ta thin film, 6... Upper resist.

Claims (1)

【特許請求の範囲】[Claims] 1)基板表面をあらかじめパタン形状に加工し、該加工
された表面の凸部表面上に酸化物超伝導体薄膜を形成す
ることを特徴とする超伝導デバイスの作製方法。
1) A method for producing a superconducting device, which comprises processing the surface of a substrate in advance into a pattern, and forming an oxide superconductor thin film on the surface of the convex portions of the processed surface.
JP2288582A 1990-10-29 1990-10-29 Manufacture of superconductive device Pending JPH04163808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288582A JPH04163808A (en) 1990-10-29 1990-10-29 Manufacture of superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288582A JPH04163808A (en) 1990-10-29 1990-10-29 Manufacture of superconductive device

Publications (1)

Publication Number Publication Date
JPH04163808A true JPH04163808A (en) 1992-06-09

Family

ID=17732136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288582A Pending JPH04163808A (en) 1990-10-29 1990-10-29 Manufacture of superconductive device

Country Status (1)

Country Link
JP (1) JPH04163808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160266A (en) * 1996-02-22 2000-12-12 Matsushita Electric Industrial Co., Ltd. Superconducting device and a method of manufacturing the same
JP2001110256A (en) * 1999-10-14 2001-04-20 Toshiba Corp Superconductive complex and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160266A (en) * 1996-02-22 2000-12-12 Matsushita Electric Industrial Co., Ltd. Superconducting device and a method of manufacturing the same
JP2001110256A (en) * 1999-10-14 2001-04-20 Toshiba Corp Superconductive complex and its manufacture

Similar Documents

Publication Publication Date Title
JP3589656B2 (en) High Tc microbridge superconductor device using SNS junction between stepped edges
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
US5439875A (en) Process for preparing Josephson junction device having weak link of artificial grain boundary
KR100297531B1 (en) How to form a step on the deposition surface of the substrate for superconducting devices using an oxide superconductor
Wakana et al. Improvement in reproducibility of multilayer and junction process for HTS SFQ circuits
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JPH01161881A (en) Josephson element and its manufacture
EP0468868A2 (en) Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH04163808A (en) Manufacture of superconductive device
US5877122A (en) Josephson element having a NdBa2 Cu3 O7-y superconductor thin-film wiring pattern
JPH0355889A (en) Manufacture of superconducting multilayered circuit
KR100372889B1 (en) Ramp edge josephson junction devices and methods for fabricating the same
Wakana et al. Development of thin film multilayer structures with smooth surfaces for HTS SFQ circuits
EP0597663B1 (en) Process of producing a Josephson junction
Villegier et al. RF-sputter-deposited magnesium oxide films as high-quality adjustable tunnel barriers
JPH09260734A (en) Composite substrate and manufacture thereof
JPH104223A (en) Oxide superconducting josephson element
JP3739436B2 (en) Superconducting device apparatus and manufacturing method thereof
Leca et al. MICROSTRUCTURAL AND ELECTRICAL TRANSPORT PROPERTIES OF RBa2Cu3O7–δ (R= Y, Pr) BASED THIN FILMS AND RAMP-TYPE JOSEPHSON JUNCTIONS
JP2994190B2 (en) High-temperature superconducting thin film structure and method for producing the same
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
JPH06132577A (en) Formation of oxide suprconducting josephson element
Flokstra et al. Basic elements for photodeposited high Tc thin film devices