JPH0416339B2 - - Google Patents

Info

Publication number
JPH0416339B2
JPH0416339B2 JP59095444A JP9544484A JPH0416339B2 JP H0416339 B2 JPH0416339 B2 JP H0416339B2 JP 59095444 A JP59095444 A JP 59095444A JP 9544484 A JP9544484 A JP 9544484A JP H0416339 B2 JPH0416339 B2 JP H0416339B2
Authority
JP
Japan
Prior art keywords
heat
ptfe
firing
resistant fiber
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59095444A
Other languages
Japanese (ja)
Other versions
JPS60239232A (en
Inventor
Isamu Sakane
Satsuki Kawauchi
Tadao Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP59095444A priority Critical patent/JPS60239232A/en
Publication of JPS60239232A publication Critical patent/JPS60239232A/en
Publication of JPH0416339B2 publication Critical patent/JPH0416339B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (1) 産業上の利用分野 この発明は、耐熱性繊維材に四弗化エチレン樹
脂の加熱焼成層を有する複合材及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a composite material having a heat-sintered layer of tetrafluoroethylene resin on a heat-resistant fiber material, and a method for manufacturing the same.

(2) 従来の技術 四弗化エチレン樹脂(以下「PTFE」という)
は、周知の如く、優れた耐薬品性、耐熱性、電気
絶縁性、自己潤滑性、非粘着性等の優れた特性を
有し、工業的分野、日常生活分野に広範囲な用途
を持つているが、反面これらの諸特性により加工
が困難である。
(2) Conventional technology Tetrafluoroethylene resin (hereinafter referred to as "PTFE")
As is well known, it has excellent properties such as excellent chemical resistance, heat resistance, electrical insulation, self-lubricating properties, and non-stick properties, and has a wide range of applications in industrial and daily life fields. However, on the other hand, these characteristics make it difficult to process.

PTFEは327℃で融解しはじめるが、融点以上
でも軟化流動しないので、PTFEは一般の熱可塑
性樹脂と同じようにスクリユー押出、射出成型、
圧延成型等の方法では成形することができない。
PTFE begins to melt at 327°C, but it does not soften or flow even above its melting point, so PTFE can be processed by screw extrusion, injection molding, etc. like general thermoplastic resins.
It cannot be formed by methods such as rolling.

このため、耐熱性繊維材にPTFE層を形成する
場合の従来の方法としては、PTFEの紛末、水性
分散液またはペーストを、塗布または浸漬等によ
り耐熱性繊維材に被覆又は含浸させた後、この
PTFEを加熱焼成する方法がある。
Therefore, the conventional method for forming a PTFE layer on a heat-resistant fibrous material is to coat or impregnate the heat-resistant fibrous material with PTFE powder, aqueous dispersion, or paste by coating or dipping. this
There is a method of heating and firing PTFE.

従来、この方法によつて耐熱性繊維材の表面に
PTFEの加熱焼成層を形成する場合、PTFEの水
性分散液を耐熱性繊維材に被膜厚にして20μ以下
の量を塗布、浸漬等の手段により被覆した後、約
90℃の温度で約5分乾燥し、続いて370℃〜400℃
の温度で10〜20分間焼成するのが通常であつた。
また、耐熱性繊維の表面のPTFE層の厚みより厚
く形成する場合には、上記の塗布、焼成を繰り返
して行なつている。
Traditionally, this method has been used to coat the surface of heat-resistant fiber materials.
When forming a heat-sintered layer of PTFE, a heat-resistant fiber material is coated with an aqueous dispersion of PTFE in an amount of 20μ or less by coating, dipping, etc.
Dry at a temperature of 90℃ for about 5 minutes, followed by 370℃~400℃
It was usual to bake at a temperature of 10 to 20 minutes.
In addition, when forming a layer thicker than the PTFE layer on the surface of the heat-resistant fiber, the above coating and baking are repeated.

しかしながら、上記のようにPTFEの焼成に長
時間をかけた場合、内部の耐熱性繊維材にも高熱
がかかるので、耐熱性繊維材の強度が劣化すると
いう問題がある。例えば、ガラス繊維の場合、約
600℃以上の耐熱性を示すが、ガラス繊維自体の
強度は、300℃の加熱下でオリジナル強度に対す
る強度保持率が約72%、350℃で約57%、400℃で
約42%の強度に劣化する。
However, when PTFE is fired for a long time as described above, high heat is also applied to the internal heat-resistant fiber material, resulting in a problem that the strength of the heat-resistant fiber material deteriorates. For example, for glass fiber, approx.
It exhibits heat resistance above 600℃, but the strength of the glass fiber itself is about 72% of the original strength when heated at 300℃, about 57% at 350℃, and about 42% at 400℃. to degrade.

また、全芳香族ポリアミドの場合は、300℃の
加熱下でオリジナル強度に対する強度保持率が約
48%、350℃で約30%、400℃で約22%の強度に劣
化する。
In addition, in the case of fully aromatic polyamide, the strength retention rate compared to the original strength under heating at 300℃ is approximately
The strength deteriorates by 48%, about 30% at 350℃, and about 22% at 400℃.

したがつて、上記従来の方法により、耐熱性繊
維材の表面にPTFEの加熱焼成層を有する弗素樹
脂複合材を製造した場合、焼成によつて耐熱性繊
維の強度が劣化するので、複合材として十分な強
度が得られなかつた。
Therefore, when a fluororesin composite material having a heat-sintered layer of PTFE on the surface of a heat-resistant fiber material is produced by the conventional method described above, the strength of the heat-resistant fiber deteriorates due to baking, so it cannot be used as a composite material. Sufficient strength could not be obtained.

(3) 発明が解決しようとする問題点 この発明は、強度劣化のない複合材とその製造
方法を提供しようとするものである。
(3) Problems to be solved by the invention This invention aims to provide a composite material that does not deteriorate in strength and a method for manufacturing the same.

(4) 問題点を解決するための手段 この発明の複合材は、引張り強度が四弗化エチ
レン樹脂を被覆又は含浸する前の耐熱性繊維材の
引張強度と等しいか又はそれ以上にしたものであ
る。
(4) Means for solving the problem The composite material of the present invention has a tensile strength equal to or higher than that of the heat-resistant fiber material before being coated or impregnated with the tetrafluoroethylene resin. be.

上記複合材を製造するために、この発明は、耐
熱性繊維材のPTFEを被覆又は含浸させた後、こ
のPTFEを加熱焼成して成る弗素樹脂複合材の製
造方法において、上記加熱焼成の際における焼成
温度xと焼成時間tとの関係を次式により規制し
たものである。
In order to produce the above-mentioned composite material, the present invention provides a method for producing a fluororesin composite material in which a heat-resistant fiber material is coated or impregnated with PTFE, and then the PTFE is heated and fired. The relationship between firing temperature x and firing time t is regulated by the following equation.

−0.147x+170≧t・x≧−0.042x+45 但し、x≧400℃ (5) 作用 上記の式は実験的に得られたものであり、この
式を満足するように上記複合物を焼成した場合、
上記複合物は高温、短時間で焼成されることにな
る。したがつて、多分、上記複合物はPTFE層の
みが焼成され、内部の耐熱性繊維材には高熱がか
からず耐熱性繊維材の強度劣化を防止することが
できているものと思われる。
−0.147x+170≧t・x≧−0.042x+45 However, x≧400℃ (5) Effect The above formula was obtained experimentally, and when the above composite is fired to satisfy this formula,
The above composite is fired at high temperature and in a short time. Therefore, it is likely that in the above composite, only the PTFE layer is fired, and the internal heat-resistant fiber material is not exposed to high heat, thereby preventing the strength of the heat-resistant fiber material from deteriorating.

上記の式をグラフで示すと第2図のとおりであ
り、このグラフから、この発明において許容され
る焼成ゾーンは、y≦−0.147x+170,y≧−
0.042x+45,x≧400の3本の直線で囲まれた範
囲であることがわかり、また、y=txであるの
で、tが可変の場合、焼成温度はx1〜x2の範囲で
許容されることもわかる。
The above formula is shown in a graph as shown in Figure 2. From this graph, the firing zone allowed in this invention is y≦-0.147x+170, y≧-
It can be seen that the range is surrounded by three straight lines: 0.042x+45, x≧400, and since y=tx, if t is variable, the firing temperature is allowed within the range of x 1 to x 2 . I also understand that.

したがつて、焼成炉中を所定の速度で耐熱性繊
維材を走行せしめて、耐熱性繊維材に被覆又は含
浸されたPTFEを焼成する場合、焼成炉の長さl
と耐熱性繊維材の走行速度vとにより焼成時間t
はl/vで求められるため、この時、焼成炉内の
温度をx1〜x2の範囲に設定すれば、上記の式を満
足することになる。同様にして、まず焼成温度を
決定し、その焼成温度に基づいて焼成時間t、す
なわち、焼成炉の長さlと耐熱性繊維材の走行速
度vとの関係l/vを決定することもできる。
Therefore, when PTFE coated or impregnated with the heat-resistant fiber material is fired by running the heat-resistant fiber material at a predetermined speed through the kiln, the length of the kiln is l.
The firing time t is determined by the traveling speed v of the heat-resistant fiber material and
is determined by l/v, so if the temperature in the firing furnace is set in the range of x 1 to x 2 at this time, the above equation will be satisfied. Similarly, it is also possible to first determine the firing temperature, and then determine the firing time t based on the firing temperature, that is, the relationship l/v between the length l of the firing furnace and the running speed v of the heat-resistant fiber material. .

(6) 実施例 第1図は、耐熱性繊維材からなる原材料1に
PTFEの加熱焼成層を有する弗素樹脂複合材の連
続製造装置の概略図であり、次のようにして弗素
樹脂複合材が製造される。
(6) Example Figure 1 shows raw material 1 made of heat-resistant fiber material.
1 is a schematic diagram of a continuous manufacturing apparatus for a fluororesin composite material having a heated and fired layer of PTFE, and the fluororesin composite material is manufactured in the following manner.

まず、耐熱性繊維材からなる原材料1をPTFE
の水性分散液2を収容した浸漬タンク3内へ給送
し、原材料1にPTFEの水性分散液2を含浸付着
させた後、焼成炉4中を一定速度で通過させ、原
材料1に含浸付着させたPTFEを加熱焼成する。
この場合、焼成炉4の焼成温度xと焼成時間t
(焼成炉の長さl/原材料1の走行速度v)が次
式を満足するように、焼成炉4の焼成温度xと原
材料1を走行速度vを制御する。
First, raw material 1 consisting of heat-resistant fiber material is converted into PTFE.
The aqueous dispersion 2 of PTFE is fed into the dipping tank 3 containing the aqueous dispersion 2 of PTFE, and the raw material 1 is impregnated with the aqueous dispersion 2 of PTFE, and then passed through the firing furnace 4 at a constant speed to be impregnated and adhered to the raw material 1. Heat and sinter the PTFE.
In this case, the firing temperature x of the firing furnace 4 and the firing time t
The firing temperature x of the firing furnace 4 and the running speed v of the raw material 1 are controlled so that (Length l of the firing furnace/running speed v of the raw material 1) satisfies the following equation.

−0.147x+170≧t・x≧−0.042x+45(但し、
x≧400℃) なお、上記焼成温度xと焼成時間tは、乾燥ゾ
ーン、熱処理ゾーン、焼成ゾーンから成る焼成炉
4における焼成ゾーンの温度と通過時間である。
−0.147x+170≧t・x≧−0.042x+45 (however,
x≧400° C.) The above-mentioned firing temperature x and firing time t are the temperature and passing time of the firing zone in the firing furnace 4, which consists of a drying zone, a heat treatment zone, and a firing zone.

上記のようにして、耐熱性繊維材からなる原材
料1の表面にPTFEの加熱焼成層を有する弗素樹
脂複合材5が連続的に製造され、弗素樹脂複合材
5は徐冷室6を経て、巻取ロール7に巻き取らせ
るようになつている。
As described above, the fluororesin composite material 5 having a heat-sintered layer of PTFE on the surface of the raw material 1 made of a heat-resistant fiber material is continuously produced, and the fluororesin composite material 5 is passed through the annealing chamber 6 and rolled. It is adapted to be wound onto a take-up roll 7.

上記耐熱性繊維材としては、ガラス繊維、全芳
香族m−ポリアミド繊維、全芳香族p−ポリアミ
ド繊維、カーボン繊維、セラミツク繊維、及びこ
れらの混紡からなる糸、織物等を使用することが
でき、勿論、これらの耐熱性繊維材に顔料等を含
ませておいてもよい。また、耐熱性繊維材に
PTFEを被覆、付着させる手段としては、耐熱性
繊維材にPTFEの水性分散液を含浸させる方法、
耐熱性繊維材にPTFEのペースト状物を塗布する
方法、耐熱性繊維材に塗装又は静電塗装により
PTFEの紛末を塗布する方法等があり、これらの
PTFEに顔料を含ませることもできる。
As the heat-resistant fiber material, glass fibers, fully aromatic m-polyamide fibers, fully aromatic p-polyamide fibers, carbon fibers, ceramic fibers, and yarns and fabrics made of blends thereof can be used. Of course, these heat-resistant fiber materials may contain pigments and the like. In addition, it can be used as a heat-resistant fiber material.
Methods for coating and adhering PTFE include impregnating a heat-resistant fiber material with an aqueous dispersion of PTFE;
Method of applying PTFE paste to heat-resistant fiber materials, by painting or electrostatic coating on heat-resistant fiber materials
There are methods such as applying PTFE powder, and these
Pigments can also be incorporated into PTFE.

以下、この発明の具体的な実施例と比較例を挙
げる。
Specific examples and comparative examples of the present invention are listed below.

実施例 1 ガラス繊維撚糸(ECD 450 4/3 10S)を
PTFEの水性分散液(ダイキン社製ポリフロンD
−2、濃度60%)に浸漬し、付着量が20%になる
ように上記水性分散液を上記ガラス繊維糸に含浸
せしめ、続いて、このガラス繊維糸を乾燥炉(長
さ2m,温度200℃)、焼成炉(長さ5m,温度
600℃)中を走行速度50m/minで通過させて
PTFEを乾燥焼成した。
Example 1 Glass fiber twisted yarn (ECD 450 4/3 10S)
Aqueous dispersion of PTFE (Daikin Polyflon D)
-2, concentration 60%) and impregnated the above aqueous dispersion with the above aqueous dispersion to a coating amount of 20%.Then, the glass fiber thread was immersed in a drying oven (length 2m, temperature 200%). °C), firing furnace (length 5m, temperature
600℃) at a running speed of 50m/min.
PTFE was dried and fired.

このようにして得られた複合糸の引張強度を測
定したところ、1本当りの引張強度は9.4Kg/1
本を示し、PTFEを含浸焼結させる前の上記ガラ
ス繊維撚糸の引張強度7.5Kg/1本に比し、引張
り強度が約1.25倍向上していた。
When the tensile strength of the composite yarn thus obtained was measured, the tensile strength per yarn was 9.4Kg/1
The tensile strength was approximately 1.25 times higher than the tensile strength of the glass fiber twisted yarn, which was 7.5 kg/strand before being impregnated with PTFE and sintered.

比較例 1 実施例1と同一のガラス繊維撚糸、PTFEの水
性分散液、及び装置を使用し、従来の一般的な加
熱焼成条件にて加熱焼成を行なつた。すなわち乾
燥炉の温度を90℃、焼成炉の温度を400℃にして
これらの炉中を走行速度2m/minで通過させ
た。
Comparative Example 1 Using the same glass fiber twists, aqueous PTFE dispersion, and equipment as in Example 1, heating and firing was performed under conventional heating and firing conditions. That is, the temperature of the drying furnace was set to 90°C, and the temperature of the firing furnace was set to 400°C, and the material was passed through these furnaces at a running speed of 2 m/min.

このようにして得られた複合糸は、見かけ上は
実施例1のものと同様であつたが、引張強度を測
定すると6.2Kg/1本であり、引張強度がPTFE
を含浸焼成する前のガラス繊維撚糸の約83%に低
下していた。
The composite yarn obtained in this way was apparently similar to that of Example 1, but when the tensile strength was measured, it was 6.2 kg/1 yarn, and the tensile strength was PTFE.
Before impregnating and firing, the glass fiber twist was reduced to about 83%.

実施例 2 ガラス繊維クロス(WE05E104)をPTFEの水
性分散液(旭硝子社製、AD−1)に浸漬してガ
ラス繊維クロスに上記水性分散液を含浸付着させ
る。続いて、このガラス繊維クロスを乾燥炉(長
さ2m,温度200℃)、焼成炉(長さ5m,温度
520℃)中を走行速度35m/minで通過させて
PTFEを乾燥焼成した。このPTFEの含浸焼成を
3回繰り返して付着量約25%の複合材を製造し
た。
Example 2 A glass fiber cloth (WE05E104) was immersed in an aqueous PTFE dispersion (AD-1, manufactured by Asahi Glass Co., Ltd.) to impregnate the glass fiber cloth with the aqueous dispersion. Next, this glass fiber cloth was placed in a drying oven (length 2m, temperature 200℃) and a firing oven (length 5m, temperature 200℃).
520℃) at a running speed of 35 m/min.
PTFE was dried and fired. This PTFE impregnation and firing process was repeated three times to produce a composite material with a coating weight of about 25%.

このようにして得られた複合材の引張強度を測
定したところ、縦方向の引張強度は40.2Kg/25
mm・横方向の引張強度は28.7Kg/25mmであり
PTFEを含浸焼結させる前のガラス繊維クロスの
引張強度(縦方向35Kg/25mm・横方向25Kg/25
mm)に比し、引張強度が約1.5倍向上していた。
When the tensile strength of the composite material thus obtained was measured, the longitudinal tensile strength was 40.2Kg/25
The tensile strength in mm/lateral direction is 28.7Kg/25mm.
Tensile strength of glass fiber cloth before PTFE impregnation and sintering (vertical direction 35Kg/25mm, horizontal direction 25Kg/25
mm), the tensile strength was approximately 1.5 times higher.

比較例 2 実施例2の焼成炉の温度を380℃、走行速度を
1.5m/minにして、実施例2と同様にガラス繊
維クロスPTFEを含浸焼成せしめた。
Comparative Example 2 The temperature of the firing furnace of Example 2 was 380℃, and the running speed was
The glass fiber cloth PTFE was impregnated and fired in the same manner as in Example 2 at a speed of 1.5 m/min.

このようにして得られた複合材は、見かけ上は
実施例2のものと同様であつたが、引張強度を測
定すると、縦方向の引張強度は26.5Kg/25mm横方
向の引張強度は19.3Kg/25mmであり、引張強度が
PTFEを含浸焼成する前のガラス繊維クロスより
低下していた。
The thus obtained composite material was apparently similar to that of Example 2, but when the tensile strength was measured, the tensile strength in the longitudinal direction was 26.5 Kg/25 mm, and the tensile strength in the transverse direction was 19.3 Kg. /25mm, and the tensile strength is
It was lower than the glass fiber cloth before PTFE impregnation and firing.

(7) 効果 以上のように、この発明の製造方法によれば、
耐熱性繊維材自体の強度を劣化させることなく、
耐熱性繊維材の表面にPTFEの加熱焼成層を有す
る弗素樹脂複合材を製造することができる。
(7) Effects As described above, according to the manufacturing method of the present invention,
without deteriorating the strength of the heat-resistant fiber material itself.
It is possible to produce a fluororesin composite material having a heat-sintered layer of PTFE on the surface of a heat-resistant fiber material.

また、この発明の製造方法によれば、PTFEの
含浸焼成を繰り返しても耐熱性繊維材自体の強度
劣化がないので、PTFEの加熱焼成層を厚く形成
することができる。
Furthermore, according to the manufacturing method of the present invention, even if the PTFE impregnation and firing is repeated, the strength of the heat-resistant fiber material itself does not deteriorate, so that a thick heated and fired layer of PTFE can be formed.

この発明の製造方法によつて得られる複合材は
耐熱性繊維材のみが有する強度よりも強度が高
く、しかもPTFEの撥水性、離型性、耐蝕性、滑
り性がよいという特性を有するとともに、耐熱性
繊維材によりPTFE単独では有しない熱膨脹収縮
が少なく、伸びが少ないという特性を有するの
で、離型用材、テント用材、摺動材、プリント基
盤材、縫糸、織糸、撥水性織物、フイルター等多
くの用途がある。
The composite material obtained by the manufacturing method of the present invention has higher strength than that of heat-resistant fiber materials alone, and has the characteristics of PTFE such as good water repellency, mold releasability, corrosion resistance, and slipperiness. The heat-resistant fiber material has characteristics such as low thermal expansion/contraction and low elongation that PTFE alone does not have, so it can be used as mold release materials, tent materials, sliding materials, printed base materials, sewing threads, woven threads, water-repellent fabrics, filters, etc. It has many uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は弗素樹脂複合材の製造装置の概略図、
第2図はこの発明の製造方法における焼成温度x
と焼成時間tとの関係を示すグラフである。 1……耐熱性繊維材、2……四弗化エチレン樹
脂、4……焼成炉、5……複合材。
Figure 1 is a schematic diagram of the fluororesin composite manufacturing equipment;
Figure 2 shows the firing temperature x in the manufacturing method of this invention.
It is a graph which shows the relationship between and baking time t. 1... Heat-resistant fiber material, 2... Tetrafluoroethylene resin, 4... Calcining furnace, 5... Composite material.

Claims (1)

【特許請求の範囲】 1 耐熱性繊維材に四弗化エチレン樹脂を被覆又
は含浸させた後、この四弗化エチレン樹脂を加熱
焼成して成る複合材の製造方法において、上記加
熱焼成の際における焼成温度xと焼成時間tの関
係を次式により規制したことを特徴とする弗素樹
脂複合材の製造方法。 −0.147x+170≧t・x≧−0.042x+45 (但し、x≧400℃) 2 上記耐熱性繊維材がガラス繊維、全芳香族ポ
リアミド、カーボン繊維、セラミツク繊維のいず
れか一つ又はこれらの繊維の混紡からなる特許請
求の範囲1項に記載の複合材の製造方法。
[Scope of Claims] 1. A method for producing a composite material by coating or impregnating a heat-resistant fibrous material with a tetrafluoroethylene resin and then heating and firing the tetrafluoroethylene resin, wherein A method for producing a fluororesin composite material, characterized in that the relationship between firing temperature x and firing time t is regulated by the following equation. −0.147x+170≧t・x≧−0.042x+45 (However, x≧400℃) 2. The heat-resistant fiber material is any one of glass fiber, fully aromatic polyamide, carbon fiber, ceramic fiber, or a blend of these fibers. A method for producing a composite material according to claim 1.
JP59095444A 1984-05-11 1984-05-11 Composite material and manufacture thereof Granted JPS60239232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095444A JPS60239232A (en) 1984-05-11 1984-05-11 Composite material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095444A JPS60239232A (en) 1984-05-11 1984-05-11 Composite material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60239232A JPS60239232A (en) 1985-11-28
JPH0416339B2 true JPH0416339B2 (en) 1992-03-23

Family

ID=14137859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095444A Granted JPS60239232A (en) 1984-05-11 1984-05-11 Composite material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60239232A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961991A (en) * 1990-01-29 1990-10-09 Ucar Carbon Technology Corporation Flexible graphite laminate
JPH0541768U (en) * 1991-11-08 1993-06-08 エヌオーケー株式会社 Plate
EP4261064A1 (en) * 2020-12-14 2023-10-18 MAFTEC Co., Ltd. Battery pack cover, battery pack unit, and electric mobility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152950A (en) * 1981-03-17 1982-09-21 Daikin Ind Ltd Composite material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152950A (en) * 1981-03-17 1982-09-21 Daikin Ind Ltd Composite material and its manufacture

Also Published As

Publication number Publication date
JPS60239232A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
US20200347526A1 (en) Twisted yarn, opened yarn, carbon fiber-covered twisted yarn, and method for manufacturing these
US5275883A (en) Composite material the characteristics of which can be modulated by preimpregnation of a continuous fiber
US4678681A (en) Process for preparation of water-proof sheets
US4731283A (en) Waterproof cloth and process for production thereof
US4671950A (en) High-strength carbonaceous fiber
IE62562B1 (en) Monoaxially stretched shaped article of polytetrafluoroethylene
DE159942T1 (en) FLUOROPOLYMER COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF.
US2754223A (en) Coated glass fiber and method of making
KR102464625B1 (en) Heat-resistant tape and its manufacturing method
KR20110109697A (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
US4781972A (en) Composite material and process for making same
CN104963030B (en) A kind of corrosion-resistant high-toughness high-strength composite fibre and its production technology
JPH0416339B2 (en)
CN104191738A (en) Method for preparing modified basalt fiber/polyphenylene sulfide compound filter material through dip coating
US7309520B2 (en) Flat packing and method for the production thereof
US3653949A (en) Coated fabrics and methods for applying coatings thereto
CA1259000A (en) Metal-coated non-metallic or semi-metallic filaments
JP2997392B2 (en) Fluororesin-coated fiber and method for producing the same
DE2601569B1 (en) Process for the production of a smooth, non-porous coating made of fluoropolymers on a textile-like substrate
US3976746A (en) Graphitic fibers having superior composite properties and methods of making same
JPH04122734A (en) Fiber-reinforced resin composite material
KR102486097B1 (en) Resin coated carbon fiber and manufacturing method thereof
JP2001026483A (en) Oxidation-resistant, carbon-fiber-reinforced carbon composite material and its production
JPS58136833A (en) Spinning device for pitch carbon fiber
CN108654211A (en) A kind of dedusting high temperature resistance filtration material and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees